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1 RSA
One way to use Diffie-Hellman’s 1976 secret key exchange protocol is to create a key to be used in
later rounds for symmetric encryption. This requires multiple rounds of communication. Rivest,
Shamir, and Adleman in 1978 developed the one round communication scheme discussed earlier.

Namely, in order for Bob to receive messages Bob produces an integer N = pq where p and q
are primes of equal length and Bob also produces e relatively prime to ϕ(N) = (p− 1)(q− 1) and
computes d = e−1 mod (p− 1)(q − 1). Bob publishes the public key (N, e) and retains d as his
private key.

Given message M , Alice can then compute C = RSA(N,e)(M) = M e mod N and send C to
Bob. Bob decrypts by computing Cd mod N since

Cd mod N = (M e mod N)d mod N = Mde mod N = M1 mod N = M

where we used Euler’s theorem that for M relatively prime to N (true for almost all M ) we have
Mϕ(N) mod N = 1. We call this scheme Plain RSA and we will see that it is not very secure.

The key observations about this scheme are that RSA(N,e) is a permutation and that knowledge
of d acts like a ‘trapdoor’ that suddenly opens a way to invert RSA(N,e). We will give a more
general definition of objects like this.

2 Collections of Trapdoor Permutations
Definition 2.1. A collection of trapdoor permutations is a collection of functions {fi : Di →
Di}i∈I such that

• Each fi is a permutation of Di.

• Sampling:

– There is a PPT C+
I that on input 1k produces a pair (i, ti) where i is an element of

I ∩ {0, 1}k and ti is a string called the trapdoor for fi.

– There is a PPT SD that on input i ∈ I produces a (nearly) uniformly randomly chosen
element x of Di.
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• Easy to Compute: There is a deterministic polynomial-time algorithm F that on input i ∈ I
and x ∈ Di computes fi(x).

• Hard to Invert: For all PPT A the function ε is negligible for

ε(k) = Pr[A(fi(x), i) ∈ f−1
i (fi(x)) | i← CI(1

k); x← SD(i)],

where CI(1
k) is the first component of C+

i (1k).

• Easy to Invert given Trapdoor: There is a deterministic polynomial-time algorithm F−1 that
on input ti for i ∈ I and y ∈ Di computes f−1

i (y).

Since, in particular, collections of trapdoor permutations are special cases of collections one-
way functions, a collection of trapdoor permutations is guaranteed to have associated hard-core
functions Bi : Di → {0, 1}bi . (Hard-core bits if bi = 1.)

We will see that these will be sufficient for IND-CPA secure public-key cryptosystems.

3 Public Key Encryption
Definition 3.1. A public key cryptosystem is given by three algorithms:

(i) Key generation: There is a PPT algorithm G that on input 1k produces a pair of keys (e, d)
where e is an encryption key and d is a decryption key.

(ii) Encryption: There is a PPT algorithm E that on input key e together with a message M
produces Ee(M) = E(e,M).

(iii) Decryption: There is a deterministic polynomial time algorithm D that on input d and C =
Ee(M), satisfies Dd(C) = D(d, C) = M .

We now define IND-CPA security for public key encryption. Since the public key is indeed
public, instead of given the adversary an encryption oracle it suffices to give the adversary the
public key e. However, we must explicitly represent the choice of the two messages M0 and M1

in IND-CPA-style security.

Definition 3.2. A public key encryption scheme (G, E , D) is IND-CPA secure if and only if for
every PPT A and every PPTM, the function ε is negligible for

ε(k) = Pr[A(e, Ee(M
0)) = 1 | (e, d)← G(∞‖); (M0, M1)←M(e)]

−Pr[A(e, Ee(M
1)) = 1 | (e, d)← G(∞‖); (M0, M1)←M(e)]

Observe that as with other deterministic schemes, the original version of RSA encryption de-
scribed above is not IND-CPA secure. Goldwasser and Micali, who first defined IND-CPA security
for public-key encryption also defined a probabilistic encryption scheme that achieved it. The fol-
lowing method is similar in spirit to their construction although it is slightly different in details.
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Probabilistic Encryption Let {fi : Di → Di}i∈I be a collection of trapdoor permutations and
suppose that {Bi : Di → {0, 1}bi} is a collection of hard-core functions for this trapdoor collection
(i.e., for random x ∈ Di, given fi(x) it is hard to distinguish Bi(x) from Ubi

). The encryption
scheme is defined as follows:

G(1k) Run C+
I (1k) to generate (e, d) and set e = i and d = ti.

Ee(M) Break M into blocks of b = bi bits, M = β1β2 . . . β`. For j = 1 to `, set rj ← SD(i) and set
Cj = (fi(rj), Bi(rj)⊕ βj), return C = C1 . . . C`.

Dd(C1 . . . C`) For j = 1 to ell and Cj = (y, z) compute F−1(ti, y) = f−1
i (y) = rj . Then return βj =

z ⊕Bi(rj).

For example, using the fact that for an n-bit N = pq of n bits the log2 n least significant bits
of x ∈ Z∗

N is a hard-core function for RSA(N,e). Thus the probabilistic encryption scheme for
RSA(N,e) encrypts each block β of log2 n bits using (re mod N, β ⊕ LSBlog2 n(r)).

Theorem 3.3. If {fi : Di → Di} is a collection of trapdoor permutations with associated col-
lection of hard-core functions {Bi : D→{0, 1}bi} then probabilistic encryption scheme above is
IND-CPA secure.

Proof. By our typical hybrid argument it suffices to show that IND-CPA security for two messages
M0 = β0 and M1 = β1 that consist of a single blocks of bi bits. Thus we are interested in the
difference between the probability that A outputs 1 on input (fi(r), Bi(r)⊕β0) for random r ∈ Di

versus (fi(r), Bi(r) ⊕ β1) for random r ∈ Di. Since Bi is a hard-core function for fi and fi

is a permutation the string (fi(r), Bi(r)) is computationally indistinguishable from a distribution
consisting of a random element of Di and an independent random string of bi bits. Therefore,
(fi(r), Bi(r) ⊕ β1) and (fi(r), Bi(r) ⊕ β1) are also computationally indistinguishable from this
same distribution. (Essentially we have used the fact that fi(r)Bi(r) is pseudorandom.)

For the probabilistic scheme above using RSA transmits n + log2 n bits for every log2 n bits
of the message M since only the O(log n) least significant bits of RSA have been proved to be
hard-core. This can be made substantially more efficient if the following conjecture is true.

Conjecture For n = |N |, LSBn/2 is a hard-core for function for RSA(N,e).

A more efficient (PRNG-based) public key scheme The idea here is to use the observation that
since fi is a permutation, fi(r) for random r is also a random element of Di and thus, just as in the
case of pseudorandom generators, fi(r) can be used for the next blocks of bits:

Ee(M) If |M | = bi`, i.e. M consists of ` blocks, then C = Ee(M) = (f `
i (r), G

`
i(r)⊕M) for random

r ∈ Di where G`
i(r) = Bi(r)Bi(fi(r)) . . . B(f `−1

i (r)) is the standard PRNG applied to seed
r.

Dd To decrypt C = (y, z), write z = z1 . . . z` where each zj has bi bits. Then for j = ` down to
1 do: Compute y′ = F−1(ti, y) = f−1

i (y), set Mj = zj ⊕Bi(y
′), and replace y by y′.
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This scheme is significantly more efficient than the above scheme since the overhead is only one
element of Di per message.

Theorem 3.4. Given a collection of trapdoor permutations and related collection of hard-core
functions for the trapdoor permutations, the PRNG-based scheme above is IND-CPA secure.

Proof Sketch. The argument is similar to the above proof except this time we use the fact that

G`+(x) = B(x)B(f(x)) . . . B(f `−1(x))f `(x) = G`(x)f `(x)

is PRNG.

4 A Hybrid Encryption Scheme
Since public-key (asymmetric) encryption has more stringent requirements than symmetric encryp-
tion, symmetric encryption schemes in general will be more efficient than public-key encryption.
Thus a natural scheme for public-key encryption will be to use the public-key aspects as little
as possible, namely use a secure public-key scheme to send a randomly chosen key to use in a
symmetric encryption scheme. This is the most common use of public-key encryption.

Suppose that (G, E , D) is an IND-CPA secure public-key encryption scheme and (K, E ′, D′) is
an IND-CPA secure symmetric encryption scheme then, provided that for (e, d) ← G(1k) every
element of K(1k) is in the domain of Ee we obtain another IND-CPA secure public-key scheme H
that is a hybrid of the two schemes as follows:

• The key generation algorithm G ′′ for the scheme is G from the public-key scheme.

• The encryption algorithm E ′′ encrypts M as follows: run K ← K(1k) and send C =
(Ee(K), E ′K(M)).

• To decrypt C = (CK , CM) compute K ← Dd(CK) and M ← D′
K(CM).

Theorem 4.1. Given an IND-CPA secure public-key encryption scheme and an IND-CPA secure
symmetric encryption the above hybrid scheme is IND-CPA secure.

Proof. LetM and A be PPT algorithms and consider

ε(k) = Pr[A(e, E ′′e (M0)) = 1 | (e, d)← G ′′(1k); (M0, M1)←M(e)].

−Pr[A(e, E ′′e (M1)) = 1 | (e, d)← G ′′(1k); (M0, M1)←M(e)].

Choose (e, d) ← G ′′(1k) = G(1k) and choose (M0, M1) by M(e). The encryptions E ′′e (M0)
and E ′′e (M1) involve independent choices of symmetric encryption keys. Let K0 ← K(1k) and
K1 ← K(1k). For a, b ∈ {0, 1}, letHab be the distribution of (Ee(Ka), EK0(M

b)). The probability
distributions that A is trying to distinguish areH00 andH01.
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Let pab be the probability that A(e,Hab) = 1 given (e, d) ← G(1k) and (M0, M1) ← M(e).
Thus

ε(k) = p00 − p01 = (p00 − p10) + (p10 − p11) + (p11 − p01).

Observe that forH00 andH10, A is comparing (Ee(K0), EK0(M
0)) versus (Ee(K1), EK0(M

0)). By
the IND-CPA security of the public-key system, p00 − p10 is negligible. (UsingM and K, given
e a PPT algorithmM′ can produce the pair (K0, K1) and a PPT A′ can create EK0(M

0) and send
(C, EK0(M

0)) to A. The value of p00 − p10 is precisely the advantage of A′.)
Similarly, for H11 and H01, A is comparing (Ee(K1), EK0(M

1)) versus (Ee(K0), EK0(M
1)).

Again, by the IND-CPA security of the public-key system, p11 − p10 is negligible.
Finally observe that forH10 andH11, A is comparing (Ee(K1), EK0(M

0)) versus (Ee(K1), EK0(M
1)).

By the IND-CPA security of the symmetric encryption scheme, p11 − p10 is negligible. The main
idea of this argument is that it allows one to decouple the public-key and symmetric encryption
schemes because K0 and K1 are statistically independent and thus Ee(K1) has no reltionship with
the symmetric key encryption.

We will consider more examples of public-key encryption schemes next class.

4.1 Malleability
It is quite clear that since the above schemes work using XOR with pseudorandom strings, the
above schemes are completely malleable: One can convert the encryption of M to an encryption
of M ′ by XOR-in the bits of M ⊕M ′ in suitable bit positionas in the ciphertext.

5 Stronger Security Definitions
We have defined IND-CPA security already for public-key encryption. The other three levels of
security to which we have restricted our consideration are NM-CPA, IND-CCA2, and NM-CCA2
security. Since any public-key security must involve access to the public encryption key, it is easy
to see that the CCA2 versions of security are at least as strong as the corresponding CPA security;
in fact by the above example, the CCA2 definitions are strictly stronger than IND-CPA security. In
fact IND-CCA2 security and NM-CCA2 security are equivalent so we will end up with only three
security notions of interest.

To give an idea of how one might define non-malleability formally, we give an example of a
different way of presenting security definitions, namely in terms of a PPT simulator that does not
have access to the relevant ciphertexts.

Definition 5.1. A public-key encryption system (G, E , D) is NM-CCA2 secure if and only if for all
PPT A, R, andM there is a PPT S (a simulator) such that

ε(k) = Pr[R(M, Dd(A
Dd(·)(e, Ee(M), s))) = 1 | (e, d)← G(1k); (M, s)←MDd(·)(e)]

−Pr[R(M, Dd(S(e, s))) = 1 | (e, d)← G(1k); (M, s)←MDd(·)(e)]

is a negligible function of k where the oracle Dd(·) may not be called on input Ee(M).
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The intuition is that R is the known relation that is supposed to be satisfied between the message
M and the message(s) corresponding to the ciphertext(s) that A produces; s is the state information
that is passed from the algorithmM that makes queries before M is chosen to the algorithm A.
What the NM-CCA2 security says is that seeing the encryption Ee(M) and all the future calls to
the decryption oracle do not help in finding a ciphertext of some M ′ that is related to M . For
NM-CPA security one simply removes the Dd(·) oracle from the above definition.

In general, NM security implies IND security since the relation R can be chosen to be equality.
In that case the distributionM(e) can choose M by choosing M0 or M1 with equal probability.

We will discuss more details of this definition later when we consider the Cramer-Shoup en-
cryption scheme which is based on the El Gamal scheme which we discuss next time.
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