
CSE 599b: Cryptography (Winter 2006)

Lecture 10: Secure Symmetric Encryption
3 February 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Parallel Computation of Pseudorandom Function Families
All the constructions we have shown so far are quite sequential. In order to derive pseudorandom
generators of output length m we composed one-way permutations m times; to build PRFFs on
length n strings from pseudorandom generators we composed generators n times. The total amount
of work is an issue but more important is the delay before values are produced. (Recall that DES
was particularly fast in hardware because it could be computed in small circuit depth, which is
equivalent to fast parallel time.)

In a series of papers Naor and Reingold showed a general method to achieve PRFFs and PRPFs
that can be computed in O(log2 n) parallel time (O(logn) depth of integer multiplication.) or even
O(log n) parallel time (complexity classes NC1 or TC0). (Some of the constructions involve
assumptions similar to those involved in Blum Squaring, which is a candidate one-way function
that requires only one modular multiplication.)

One of the primitives they introduce is the pseudo-random synthesizer which is a compression
function that has properties that make it a particularly useful form of pseudorandom generator:
S : {0, 1}2k → {0, 1}k is a synthesizer if and only if for two sequences x1, . . . , xk, y1, . . . , yk ←
Uk, the string of all S(xi, yj) is indistinguishable from a string from Uk3 . These synthesizers are
directly constructed based on hypothesized hard functions.

This leads to a parallel construction of PRFFs as follows: (Assume for simplicity that k is a
power of 2.) The key K is viewed as a length 2k2 string a0

1, a
1
1, . . . , a

0
k, a

1
k. The value of FK on

input x ∈ {0, 1}k is found by creating a binary tree circuit of height log2 k with the i-th leaf labeled
by axi

i and the value of of each node being the synthesizer S applied to its children.
Very recently, Applebaum, Ishai, and Kushilevitz have shown that one can do even better for

certain primitives. Namely they show that if PRNGs exist of the type that Naor and Reingold
propose then they can be converted to a PRNG from n bits to n + nε bits that operate in NC0, the
class of functions in which each output bit depends on only a constant number of input bits! This
is a very surprising result. The S-boxes in DES are natural example of this kind of computation
but it had been conjectured previously that there could be no provable security based on such weak
forms of computation.

(Note: These papers by Naor and Reingold and Applebaum, Ishai, and Kushilevitz would be
good candidates for presentations.)

1

2 Security Definitions for Cryptographic Systems
When we talk about security of cryptosystems there are two somewhat orthogonal aspects that
must be considered: The types of cryptographic attacks allowed and the kind of security against
these attacks.

2.1 Attacks
We describe the kind attacks allowed in the context of encryption but these general classifications
can be applied more broadly. For some of the following there is a goal of finding information about
a particular ciphertext which we call the ‘challenge ciphertext’.

1. Ciphertext-only (Passive Attack) The adversary has access to the ciphertext of some mes-
sages chosen from a known distribution.

2. Known Plaintext Attack (Passive Attack) The adversary has access to some (plaintext, cipertext)
pairs not of its choosing but from a known distribution.

• e.g., this attack was used as part of the British effort in breaking the Enigma machine
codes used by Germany during WWII. It was known that each day’s message began
with a weather report and the weather that actually occurred became known after the
fact.

3. Chosen Plaintext Attack (CPA) The adversary sees (plaintext, ciphertext) pairs where the
plaintexts are of its choosing. The most general form of this attack is adaptive, in which the
choice of each successive plaintext chosen may depend on the encryptions of the previous
plaintexts.

• The general idea is that the adversary can interact with the sender through other chan-
nels to cause the sender to send messages that will be useful to the adversary in de-
crypting other messages. E.g., during WWII, just prior to the battle of Midway the
U.S. used this kind of attack to learn of the Japanese plans to attack the island. The
U.S. had partially broken a Japanese code and suspected that a frequently mentioned
place name was Midway. They also knew that the Japanese had broken a U.S. code but
were not aware that the U.S. knew that the code was insecure. The U.S. sent a message
using the broken code that there was a water shortage on Midway and were able to
observe that the same reference was used as the Japanese reported the water shortage,
confirm that Midway was the location in imminent danger, and reinforce the island.

4. Chosen Ciphertext Attack (CCA) The adversary sees (plaintext, ciphertext) pairs where
the ciphertexts are of its choosing (but distinct from the challenge ciphertext). There are two
different forms of this attack:

(a) Known as CCA-Pre, CCA1, or Lunchtime Attacks: The adversary’s choices of cipher-
text are not allowed to be a function of the challenge ciphertext and thus can be thought
of as being made before receipt of the challenge ciphertext.

2

(b) Known as CCA-Post or CCA2: The adversary’s choices of ciphertexts may depend on
the challenge ciphertext.

• A simple form of these attacks occurs when the adversary sends additional messages
to the receiver and observes the receiver’s reactions. These can be modified forms of
ciphertexts it has seen, or simply fake ciphertexts. A more specific example occurs in
public-key identification in which parties prove their identity by decrypting challenge
texts known as nonces. Another situation where this might occur (motivating the name
Lunchtime Attacks) is if the adversary party can obtain access to decrypting machinery
for a short period of time while everyone else is at lunch.

These are not the only forms of attacks possible in cryptographic settings. There include:

• Hardware attacks, in which the encryption and decryption devices themselves or the connec-
tion between them and the sender or receiver are attacked.

• Timing attacks, in which the time it takes to do cryptographic operations is analyzed.

• Traffic analysis, in which the pattern and volume of traffic between parties is analyzed.

• Network attacks such as Man-in-the-middle attacks, in which the adversary impersonates
other parties and modifies the communications sent between parties.

• Exploiting insecure programming practices such as buffer over-runs, etc.

We cannot say anything useful about some of these attacks. Timing attacks can be easily avoided
by slowing each operation so that it independent of its input (although this may slow computation
somewhat). For us the most serious will be network attacks such as man-in-the-middle attacks.
These are important but we will model many of the ill effects of these attacks using the main
notions of attack defined above such as the CCA1 and CCA2 attacks.

2.2 Notions of security
1. Semantic Security (SS, SEM) [Goldwasser, Micali] Given any reasonable distribution (polynomial-

time samplable distribution) on plaintexts and any polynomial-time computable property of
plaintexts, the difference in probability of a PPT predicting the property of the plaintext M
before and after seeing its ciphertext is negligible.

Formally, to have a single algorithm used in the situations of ‘before’ and ‘after’ the algo-
rithm takes as input a ciphertext-length string which is given by an encryption of a random
plaintext M ′ in the ‘before’ case and an encryption of the plaintext M in the ‘after’ case.

2. Indistinguishability Security (IND) [Goldwasser, Micali] For any two messages M0, M1 of
the adversary’s choice, the adversary cannot distinguish between encryptions of M0 and
encryptions of M1 is non-negligible. (In the case of CPA attacks, the choices of M0 and M1

can depend on everything that the adversary has seen.) Goldwasser and Micali showed that
this much simpler definition is equivalent to Semantic Security.

3

3. Non-malleability (NM) Given ciphertext corresponding to plaintext M , the adversary cannot
output the ciphertext of any plaintext M ′ for which the adversary knows the relationship
between M and M ′ (but not necessarily either M or M ′).

We describe the kind of security using a notation that is a combination of the kind of security
with the kind of attacks under which it holds. We thus get combinations such as IND-CPA, SS-
CPA, or SEM-CPA, IND-CCA1, SS-CCA-Post, NM-CPA, etc.

Non-malleability is a more general property than semantic security. One way to compare them
is that in semantic security, given C = E(M) it is hard to find an M ′ that is related to M . In non-
malleability, given C = E(M) it is hard to find an E(M ′) where M ′ is related to M . In fact, the
first public-key cryptosystem shown to be IND-CPA (=SS-CPA) secure (also due to Goldwasser
and Micali) is highly malleable. It has the property that each bit of the message was encrypted as
a separate block of bits and these bits could be recombined and re-used.

3 Secure Symmetric Encryption
Definition 3.1. A symmetric encryption scheme is a triple (K, E , D) of PPT algorithms (D can be
taken to be deterministic) such that

• K(1k) produces a key k ∈ {0, 1}k; i.e. the keys are chosen according to a polynomial-time
samplable distribution.

• For each k, the encryption function E takes a key K from {0, 1}k output by K(1k) and maps
M ∈ {0, 1}`(k) to it encryption EK(M) = C ∈ {0, 1}`′(k). The encryption EK(M) may not
be unique given K. Moreover the encryption may be stateful, i.e. dependent on values from
the previous times it has been called.

• The decryption function D has the property that for any K output by K and C = EK(M),
D(K, C) = DK(C) = M .

We now define IND-CPA security of a symmetric encryption scheme formally. For conve-
nience we will consider PPT algorithms that call a subroutine (oracle) on a pair of inputs; we call
these pair oracle PPTs.

Definition 3.2. A symmetric encryption scheme (K, E , D) is IND-CPA secure if and only if for
every (pair oracle) PPT A, the function

ε(k) = Pr[AEK(Select(·,·,0))(1k) = 1 | K ← K(1k)]− Pr[AEK(Select(·,·,1))(1k) = 1 | K ← K(1k)],

is negligible where Select(M0, M1, b) = M b for b ∈ {0, 1}.

That is, A gets an oracle that produces an encryption of one of its two inputs but it does not
know which one. This formulation clearly allows A to receive encryptions of chosen plaintext M
by calling its oracle with the pair (M, M) and later call it on the pair (M0, M1) that it wants to
distinguish.

4

Just as in the case of the alternative versions of predictability in the hard-core bits definition we
obtain the following alternative property for all pair oracle PPT A that implies IND-CPA security:

Pr[AEK(Select(·,·,b))(1k) = b | K ← K(1k); b← U1] ≤ 1/2 + ε(k)/2

where ε is negligible.
We will use this definition to analyze some of the ways for converting our ideal block ciphers:

PRFFs and PRPFs to symmetric encryptions schemes.

3.1 Electronic Code Book (ECB)
With this method given a PRPF F , EK(M) = FK(M). This obviously fails IND-CPA security
by an algorithm A with ε(k) = 1 that calls its oracle on (M, M) and then (M, M ′) for M ′ 6= M ,
outputting 1 if the answer is different in the two cases.

3.2 XOR Cipher
LetF be a PRFF with length `(k). Define the symmetric encryption scheme CTRF to be a scheme
in which the K is defined based as for the PRFF, the i-th message Mi ∈ {0, 1}`(k) is encrypted by
Ci = Mi ⊕ FK(i) where i is represented by its k-bit encoding, and decrypted by computing
Ci ⊕ FK(i).

(This is very much like using the PRFF as a PRNG and using he result as a stream cipher in
place of a one-time pad.)

Theorem 3.3. If F is a PRFF of length `(k) = k then CTRF is IND-CPA secure.

Proof. Let A by any pair oracle PPT that using the alternative definition of IND-CPA security for
CTRF predicts the bit b with probability = 1/2 + ε(k)/2.

We define an oracle PPT B that distinguishes F from a random element of Func(k, k) as
follows:

On input 1k and oracle for f , B does the following:

1. Choose b← U1.

2. Simulate A on input 1k and whenever A makes its i-th call (M0
i , M1

i) to its oracle, calls the
oracle f on input i and return Ci = M b

i ⊕ f(i).

3. Output 1 if and only if A outputs b′ with b′ = b.

Observe that by construction

Pr[BFk(1k) = 1] = Pr[AEK(Select(·,·,b))(1k) = b | K ← K(1k); b← U1] ≥ 1/2 + ε(k)/2.

Furthermore if B’s oracle is chosen from Func(k, k) then each f(i) is chosen from the uniform
distribution Uk so Ci is also distributed as Uk, independent of whether b = 0 or b = 1. Therefore

5

the probability in step 3 of B, that A predicts b is precisely 1/2 so the advantage of B,

ε′(k) = Pr[BFk(1k) = 1]− Pr[BFunc(k,k)(1k) = 1]

= 1/2 + ε(k)/2− 1/2

= ε(k)/2.

Thus since ε′(k) must be negligible by the PRFF property of F , ε(k) must be negligible as required
for the IND-CPA security of CTRF .

3.3 Random XOR Cipher
Typically, in using symmetric encryption, a message consisting of a series of blocks are encrypted
at once and then later another message is sent, etc. In this context it is a little inconvenient for the
parties to remember the state in CTRF between messages.

A randomized version of the above XOR scheme resolves this problem. Instead of always
starting at index 0, at the beginning of each message the sender chooses a random integer R ∈
{0, 1}k, and uses it as the first value of the counter, sending EK(M1 . . . Mm) = (R,C1, . . . , Cm)
where Ci = Mi ⊕ FK(R + i).

This is easily seen to be IND-CPA secure using similar ideas to the above proof except that in
addition to the probability of ε(k)/2 of breaking the PRFF there is the chance that the regions of
where the function f is queried overlap. If there are a total of q(k) blocks sent for some polynomial
q, then the chance that each of the at most q(k) choices of R creates an overlap is at most q(k)/2k.
In the worst case B does not distinguish the possibilities for f in case of an overlap so the total
probability of breaking the PRFF is at least ε(k)/2− q(k)2/2k which is non-negligible if and only
if ε(k) is.

3.4 Cipher Block Chaining with Random IV
For a PRPF F of length ` and an initialization vector IV , define the symmetric encryption scheme
CBCU

F as follows: K is the key generation algorithm forF ; EK(M1 . . . Mm) is given by C0C1 . . . Cm

where C0 = IV ← U`(k), and Ci = FK(Ci−1 ⊕Mi). DK(C0C1 . . . Cm) = F−1
K (Ci) ⊕ Ci−1 for

i ≥ 1.

Theorem 3.4. If F is a PRPF with length `(k) at least kΩ(1), CBCU
F is IND-CPA secure.

Proof. Let A by any pair oracle PPT that using the alternative definition of IND-CPA security for
CBCU

F predicts the bit b with probability ≥ 1/2 + ε(k)/2.
As in our previous proof we define an oracle PPT B that on input 1k does the following:

1. Choose b← U1.

2. Simulate A on input 1k and whenever A makes a call (M0, M1) = (M0
1 M0

2 . . . M0
m, M1

1 M1
2 . . . M1

m)
to its oracle:

(a) Choose C0 = IV ← U`(k)

6

(b) For i = 1 to m compute Ci = f(Ci−1 ⊕M b
i) where f is B’s oracle.

(c) Return C0C1 . . . Cm which we write as CBCIV
f (M b) for convenience.

3. Output 1 if and only if A outputs b′ with b′ = b.

By construction, as in the previous proof,

Pr[BFk(1k) = 1] = Pr[AEK(Select(·,·,b))(1k) = b | K ← K(1k); b← U1] = 1/2 + ε(k)/2.

Furthermore, if B’s oracle f is chosen from Func(`(k), `(k)) then provided that over all the q(k)
blocks that appear in calls to the oracle f none of the potential parameters Ci−1 ⊕ M0

i nor the
Ci−1⊕M1

i repeats an earlier call then each Ci will be uniformly random from U`(k). Given distinct
arguments the output Ci are all independently chosen from U`(k) and thus the probability that there
exists a collision involving a block of an M0 or an M1 is at most 2

(
q(k)
2

)
/2`(k) ≤ q(k)2/2`(k).

Conditioned on there being are no collisions, A receives exactly the same distribution in its oracle
on both b = 0 and b = 1 so it has probability precisely 1/2 of guessing b in this case. Therefore

Pr[BFunc(`(k),`(k))(1k) = 1] ≤ 1/2 + q(k)2/2`(k).

It follows that B’s advantage,

ε′(k) = Pr[BFk(1k) = 1]− Pr[BFunc(k,k)(1k) = 1]

≥ 1/2 + ε(k)/2− (1/2 + q(k)2/2`(k))

≥ ε(k)/2− q(k)2/2`(k).

Since F is a PRPF, ε′(k) is negligible. The number of queries q(k) must be polynomial because of
the running time of A is polynomial in k and since `(k) is kΩ(1) so ε(k) ≤ ε′(k) + q(k)2/2`(k) is
negligible as required.

There is one important thing to notice about the above proof that is a bit subtle. Although
CBCIV

f only makes sense as part of a symmetric encryption scheme if the function f is a per-
mutation, it was OK to consider the behavior of the adversary A on the scheme even if f is not
a permutation. The reason is that the definition of IND-CPA security of an encryption scheme
(K, E , D) depends on the properties an adversary A can determine based on access only to K and
E . If we wanted to try to extend this kind of argument to IND-CCA1 or IND-CCA2 security we
would at least need to compare F to Perm(`(k), `(k)) rather than Func(`(k), `(k)).

3.5 IND-CCA2 and NM-CPA security
For now, we won’t formally define these notions of security but it is easy to see that the CTRF
scheme is not IND-CCA2 or NM-CPA secure even if F is a PRFF. The problem is the same as
that for a one-time pad: One can observe that flipping a bit in a ciphertext block is equivalent to
flipping the corresponding bit of the plaintext block.

The fact that CBCU
F is not IND-CCA2 or NM-CPA secure follows from the fact that by flipping

a bit of C0 = IV one obtains an encryption of a message whose first block M1 has its bit flipped.

7

(This is the only block where there is such a problem.) Doing something simple like applying FK

to the IV before doing the ⊕ doesn’t help either. The problem in that case is that one could tell if
M1 = 0`(k).

8

	Parallel Computation of Pseudorandom Function Families
	Security Definitions for Cryptographic Systems
	Attacks
	Notions of security

	Secure Symmetric Encryption
	Electronic Code Book (ECB)
	XOR Cipher
	Random XOR Cipher
	Cipher Block Chaining with Random IV
	IND-CCA2 and NM-CPA security

