Cryptography

Problem Set 1 Due: Friday, Feb 10

January 25, 2006

Solve as many of the problems below as you can. You should attempt at least three of them.

- 1. In using an *n*-bit block cipher for symmetric encryption, an alternative to cipher-block chaining with a random IV might be to use an *n*-bit counter *c* of the number of blocks that have previously been sent (over the entire course of Alice and Bob's communication) as follows: This counter *c* is maintained by both parties and starts off at 0^n . To encrypt the block indexed by *c*, M_c , Alice sends $C = E_K(M_c \oplus c)$ and then increments her copy of *c*. To decrypt, Bob computes $E_K^{-1}(C) \oplus c$ and then increments his copy of *c*. Show that such a scheme is insecure under a reasonable definition of security.
- 2. (Equivalence of one-way functions and collections of one-way functions)
 - (a) Show, given a one-way function, how to construct a collection of one-way functions.
 - (b) *Show, given a collection of one-way functions, how to construct a one-way function. (Hint: You may need the randomness in your sampling algorithms as part of your input.)
- 3. (Random Self-reduction) Suppose that you have a family of functions $\{f_i : D_i \to R_i\}_{i \in I\}}$ that satisfies the conditions below (i.e. is a collection of weak one-way homomorphisms on groups whose operations are polynomial-time computable and that have uniform sampling) then it is also a collection of (strong) one-way functions.
 - There is a sampling algorithm C_I that on input 1^n samples $i \in I \cap \{0, 1\}^n$.
 - There is a sampling algorithm S_D that on input *i* samples *x* uniformly from D_i .
 - There is a polynomial-time algorithm F that on input $i \in I$ and $x \in D_i$ computes $f_i(x)$.
 - (D_i, \bullet_i) and (R_i, \circ_i) are groups whose group operations \bullet_i and \circ_i and group inverses are polynomial-time computable.
 - f_i is a homomorphism from (D_i, \bullet_i) to (R_i, \circ_i) .
 - There is some c such that for all PPT A,

$$\epsilon(n) = \Pr[A(f_i(x), i) \in f_i^{-1}(f_i(x)) \mid i \leftarrow C_I(1^n); x \leftarrow S_D(i)]$$

satisfies $\epsilon(n) \leq 1 - 1/n^c$.

(Hint: Show how to take an algorithm that inverts f_i on a $1/n^c$ fraction of inputs in D_i and use the group properties to invert f_i almost surely on random elements of D_i .)

- 4. In this problem you will derive a weak version of the Prime Number Theorem that is sufficient for all cryptographic applications.
 - (a) Show that for any prime p, the largest power of p that divides n! is

$$\lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \dots + \lfloor \frac{n}{p^r} \rfloor$$

where r satisfies, $p^r \le n < p^{r+1}$.

- (b) Show that for any $m \ge 1$, $\lfloor \frac{2n}{m} \rfloor \le 2 \lfloor \frac{n}{m} \rfloor + 1$.
- (c) Use the results of parts (a) and (b) to show that for any prime p, the largest power p^r of p that divides $\binom{2n}{n}$ satisfies $p^r \leq 2n$.
- (d) Prove that for any integer $n \ge 1$, $\binom{2n}{n} \ge 2^n$. (It actually is $\Theta(2^{2n}/\sqrt{n})$.)
- (e) Use the lower bound on the size of $\binom{2n}{n}$ from part (d) and upper bound on each of its prime power factors from part (c) to prove that the number of distinct primes dividing $\binom{2n}{n}$ is at least $n/\log_2(2n)$.
- (f) Conclude that there are at least $n/\log_2(2n)$ primes less than 2n.
- 5. Prove that if f is a one-way function that is a permutation on every {0,1}ⁿ and B is a polynomial-time computable hard-core bit for f then the function G : {0,1}* → {0,1}* given by G(x) = f(x)B(x) is a pseudorandom generator.