CSE599 Lecture6: Neural networks

Click here to start

Table of Contents

Neural networks 
Networks types
History
McCulloch–Pitts “neuron”
Associative memories
wij for a single memory
Associative-memory example
Multiple memories
Hopfield networks
Learning networks
Perceptrons
Linear separability
Linear separability (con’t)
Perceptron learning
Multilayer perceptrons
Gradient-descent learning
Backpropagation of errors
Backpropagation of errors (con’t)
Other feedforward networks
Other feedforward networks (con’t)
Recurrent networks
Recurrent networks (con’t)
Unsupervised networks
Biology and neural networks
Author: Chris Diorio 

Email: diorio@cs.washington.edu 

Home Page: http://www.cs.washington.edu/education/courses/599/99sp/