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ABSTRACT
We propose a pipelined Dynamic Search Tree (pDST) on
FPGA which offers high throughput for lookup, insert and
delete operations as well as the capability to perform in-
place incremental updates. Based on the pipelined 2-3 tree
data structure, our pDST supports one lookup per clock cy-
cle and maintains tree balance under continual insert and
delete operations. A novel buffered update scheme together
with a bi-directional linear pipeline allows the pDST to per-
form one insert or delete operation per O (log N) cycles
(N being the tree capacity) without stalling the lookup

operations. Nodes at each pipeline stage are allocated and
freed by a free-node chaining mechanism which greatly sim-
plifies the memory management circuit.

Our prototype implementation of a 15-level, 32-bit key
dual-port pDST requires 192 blocks of 36 Kb BRAMs (64%)
and 12.8k LUTs (6.3%) on a Virtex 5 LX330 FPGA. The
circuit has a maximum capacity of 96k 32-bit keys and clock
rate of 135 MHz, supporting 242 million lookups and con-
currently 3.97 million inserts or deletes per second.

Categories and Subject Descriptors
B.5.1 [REGISTER-TRANSFER-LEVEL IMPLEMEN-
TATION]: Design—Styles; E.1 [DATA STRUCTURES]:
Trees

General Terms
Algorithms, Design, Performance

Keywords
2-3 tree; B-tree; pipelined tree; dynamic update; incremen-
tal update; in-place update; IP routing; OpenFlow
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1. INTRODUCTION
Search trees are classic data structures fundamental to

many application domains such as database, artificial intel-
ligence, and data mining. Recent applications include DNA
sequencing [7] and IP routing [3, 11, 10] where high through-
put, easy construction and maintenance, and compact size
of the data structure are required. A search tree attains its
optimal performance when it is balanced, where the depth of
the leaves are approximately equal.

A search tree can be either statically constructed or dy-
namically updated. The ability to perform dynamic updates
is critical to high-performance and future network applica-
tions.1 For example, an emerging class of network applica-
tions, such as those following the OpenFlow standard [1],
requires more dynamic and frequent flow management. It
was shown in [5] that total 2.8 million flows, over 90% of
which shorter than a few minutes, were collected in a net-
work trace during a 2-hour period. This corresponds to over
770 flow creations or teardowns per second. In [8] it was
estimated that each Google data center could serve 100s of
thousands of new flows per second. It would be very ex-
pensive, if at all feasible, to reconstruct an optimal search
structure thousands of times per minute for timely updates.

An even more critical requirement of a good dynamic
search tree (DST) is to continuously serve high throughput
search operations under concurrent tree updates. This is
especially true for network applications where the flow rate
(inversely proportional to the packet round-trip time) is al-
ways much less than the packet rate (inversely proportional
to the packet transmission time). For example, the 2-hour
trace collected in [5] contained a total number of 168 million
packets, 60 times higher than the number of flows.

To obtain optimal performance, a good DST also needs
to maintain its tree balance efficiently after any number of
update operations. Due to the structural changes needed
to balance the tree, the DST can only perform one update
(key insert or delete) operation at a time. On the other
hand, concurrent search (key lookup) operations should be
possible if the tree nodes visited by the multiple searches are
stored in different memory modules accessible in parallel.

Our goal in this study is to parallelize the common DST
operations (lookup, insert and delete) using a pipelined
dynamic search tree on FPGA:

1. We design a pipelined Dynamic Search Tree (pDST)
which accelerates the throughput of the lookup oper-

1Internet routing utilize prefix match. Various schemes have
been proposed to perform prefix match in a search tree [9,
10, 11]. Such schemes are out of the scope of this paper.



ations by O (log N) times, N being the size of the tree,
compared with a software implementation.

2. We map the pDST onto a highly modular bi-directional
linear pipeline (BLP) architecture on FPGA for stream-
lined lookup, insert and delete operations.

3. We modify the original 2-3 tree algorithms and engi-
neer the buffered update scheme to perform insert or
delete operations in the BLP without blocking other
lookup operations.

4. We devise the floating root and free-node chaining mech-
anisms to grow and shrink the pDST without complex
memory management.

5. We verify and evaluate our pDST design with a pro-
totype implementation on FPGA.

Section 2 gives the background of our pipelined Dynamic
Search Tree (pDST) design. The architecture of the pDST
is explained in Section 3, while the algorithm engineering
is detailed in Section 4. Section 5 evaluates our prototype
implementation on FPGA. Section 6 describes the related
work and Section 7 concludes the paper.

2. BACKGROUND
High throughput data queries and updates, as well as

compact and scalable data storage are crucial to many high-
performance applications. The search trees are an attractive
data structure which provide deterministic performance and
a rich set of operations [6].

A search tree is dynamic if it can be updated dynamically
and incrementally. There are three basic operations for a
dynamic search tree (DST): lookup, insert and delete.
The lookup operation searches the tree for a particular key.
The insert operation further adds the key into the tree if it
was not found. The delete operation removes an existing
key from the tree.

A DST offers optimal performance when it is balanced,
i.e., when all its leaf nodes have the same distance (or depth)
from the root. Various DSTs, such as the AVL tree, Red-
Black tree, 2-3 tree and B-tree, all maintain tree balance
under inserts and deletes using per-level node operations.
These node operations include tree rotation (for AVL and
Red-Black), node splitting and merging (for 2-3 tree and
B-tree). In software, these DSTs achieve O (log N) time
complexity per operation with a capacity of N keys.

2.1 Motivation
In this work, we focus on the design of a hardware search

tree architecture that is both dynamic and pipelined. Hard-
ware acceleration is critical for applications that demand
high performance. For example, it was reported in [4] that
the hardware accelerated switch architecture achieves over
30x the throughput of the software version. The highly par-
allel and flexible logic and memory resources on FPGA make
the platform an ideal choice for such designs.

We base the pipelined Dynamic Search Tree (pDST) ar-
chitecture on the 2-3 tree data structure for two reasons.
First, unlike AVL and Red-Black trees, there is no tree ro-
tation involved when updating a 2-3 tree. It is fairly easy
to perform tree rotations in software with centralized and
sequential memory accesses; on the other hand, it is very
difficult, if at all possible, to maintain the pipelined mem-
ory access in hardware after a sequence of tree rotations.
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Figure 1: Example of a simple 2-3 tree.

Second, each node in a 2-3 tree is small enough (with
one or two keys) so that node access and update are rel-
atively simple. In contrast, the simplest B-tree (the 2-3-4
tree) has up to 3 keys and 4 child addresses per node, in-
creasing memory bandwidth by 50% and circuit complexity
over 2x compared to the 2-3 tree.

2.2 Basics of 2-3 Tree Data Structure
The 2-3 tree data structure is a variant from the B-tree

family [6] and is shown related to the Left-Lean Red-Black
tree data structure [12]. A node in a 2-3 tree can be either
a half node (with 1 key and 2 child addresses) or a full node
(with 2 keys and 3 child addresses). Each key in the node
is sandwiched between two child addresses. Suppose keyA

is sandwiched between addrL on the left and addrM on the
right, then it is guaranteed that all keys stored in the subtree
under addrL are smaller than keyA, while all those under
addrM are greater. Figure 1 shows a simple 2-3 tree.

The lookup operation in a 2-3 tree is similar to that in a
basic binary search tree, except up to two key comparisons
are performed per node. The insert and delete opera-
tions are more complicated and (non-tail) recursive in na-
ture. The basic insert algorithm can be described as follows
(adapted from [12]):

(Key, Addr) ⇐ INSERT(Key k, Addr p)
if p is null then {traverse past a tree leaf}

return (k, null) {push key back to the leaf}
end if
if k is found in node[p] then

abort {k already exists in tree}
end if
Find child addr p’ to search for k recursively
(h, p’ ) ← INSERT(k, p’ ) {recursion}
if h is not null then {get a key from child}

if node[p] is full then
Got 3 keys and 4 addrs from h, p’ and node[p]
Create new node at address q
Put left key & two addrs in node[p]
Put right key & two addrs in node[q ]
Let m be the middle key
return (m, q) {push key & addr to parent}

else {node at addr p is half}
Add h and p’ into node[p]
return (null, null)

end if
end if

The delete operation is similar to but a bit more com-
plex than insert. We will not detail the delete algorithm
except the following major differences from insert:



1. While new keys are always inserted at the tree leaves,
existing keys can be deleted from any internal node.
When this happens, we must move the key’s successor
(which will always reside in a leaf node) to the (inter-
nal) node where the key is deleted from.

2. A node on the “delete path” can first conditionally
pull a key from its parent, then conditionally push a
key back to the parent, depending on whether the node
and its neighbor is full or half.

Both these cases increase the number of cases to handle
and the amount data to transfer for delete operations.

2.3 Challenges of pDST on FPGA
A balanced DST can perform each lookup, insert or

delete operation in O (log N) time, where N is the number
of keys stored in the tree. There is however a major differ-
ence between the search (lookup) and update (insert and
delete) operations: the search operations do not change
the tree structure and can be performed in parallel, while
the update operations can change the tree structure and
must be performed one at a time. Furthermore, to guaran-
tee consistency and correctness, no search can be performed
while the DST undergoes structural changes.

This posts a serious challenge to the pDST design in hard-
ware. With a straightforward implementation, when an up-
date operation trickles through the pipeline making struc-
tural changes to the DST, the entire pipeline needs to be
stalled for up to O (log N) cycles. This greatly reduces the
throughput performance and defeats the very purpose of
pipelining. The problem is aggravated by the fact that the
algorithms for both insert and delete in 2-3 tree are re-
cursive in nature. This implies that the structural changes
made by an update operation will even trickle through the
tree levels in the reverse (bottom-up) direction. While it
is possible to perform the structural changes on a copy of
the tree before committing them in a single transaction [2],
doing so requires a complex server-client system and defeats
the purpose of hardware acceleration.

A perhaps more serious challenge is memory management.
An arbitrary node per level can be allocated or freed by
each insert or delete operation. For both simplicity and
speed, the hardware circuit cannot afford a complex memory
management scheme. On the other hand, we want the pDST
to be able to utilize all available memory at every level.
Thus a cheap but effective memory allocation mechanism is
required for a practical pDST design on FPGA.

3. ARCHITECTURE DESIGN
We design a novel bi-directional linear pipeline (BLP) for

our pipelined Dynamic Search Tree (pDST). Based on this
architecture, we devise the floating root, free-node chaining,
and buffered update mechanisms to efficiently maintain the
balanced tree structure and perform non-blocking tree up-
dates.

3.1 Bi-directional Linear Pipeline
The high-level structure of the bi-directional linear pipeline

(BLP) is shown in Figure 2. The BLP really consists of
two pipelines of opposite directions: a forward (downward)
search pipeline and a backward (upward) update pipeline.
All commands to the pDST are initially sent to the first
stage (Stage 0) of BLP. Each command propagates through
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Figure 2: Overall structure of BLP.
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Figure 3: The pDST command format.

the search pipeline until reaching the last stage (Stage n),
where it outputs a return value and is optionally relayed to
the update pipeline towards the reverse direction.

3.1.1 Command Format and Processing
All commands follow the same linear flow throughout the

BLP. A command represents an operation (lookup, insert

or delete) together with the associated data (key and ad-
dress) and metadata (options). Figure 3 describes the com-
mand format. Each command is 54-bit wide, including 4
bits for the operation code, 32 bits for the key value, 15 bits
for the per-stage node address, and 3 bits of options.

Originally, each command is constructed externally with
one of the three operation codes (lookup, insert or delete)
and a key argument. All other fields are initialized to ze-
ros. The content of the command fields will be modified
from stage to stage throughout the BLP. The semantics of
the fields depend on the operation context. Table 1 and Ta-
ble 2 give an overview of the command field semantics under
various scenarios. Details of the usage of these fields are dis-
cussed in Section 4. In particular, the S bit overlaps with
the operation field and has the special meaning of “looking
for successor.” It is only set when a delete command finds
the key to delete in an internal node and needs to find the
key’s successor.

Note that the width of the command can be different from
that of Figure 3 if a different key length or tree capacity is
used. Our key and address fields are 32 bits and 15 bits
wide, respectively, because we had chosen a key length of 32
bits and a maximum tree height of 15 levels (excluding root).
Also in the proof-of-concept design, we did not associate any
output value with the keys.

3.1.2 Stage Architecture
All stages in BLP have a unified architecture whose sim-

plified version is shown in Figure 4. The “heart” of a stage is
the key comparator and the multiplexer control logic. These
two units define the processing and flow of each operation.

Table 1: Semantics of LOOKUP and INSERT fields
during search (S) and update (U).
Field lookup (S) insert (S) insert (U)

A Matched keyA Found keyA (unused)
B Matched keyB Found keyB (unused)
U (unused) Need to update
key Key to search Key to insert Key to parent
addr Next-stage node address Addr. to parent



Table 2: Semantics of DELETE fields during various cycles of search (S) and update (U).
Field delete (S1) delete (S2) delete (U1) delete (U2)

A Direction of (unused) Type of
B node’s neighbor (unused) (unused) processing
U Parent is key match Accept the successor Propagate changes
key Key to delete Key of parent Successor to deleted key Key to parent
addr Next-stage node addr. Child’s nbor. addr. (unused) Addr. to parent
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Figure 4: Architecture of a BLP stage.

The most complex part, however, is the switching fabric that
connects the various circuit elements.

Although conceptually the search and update pipelines are
separate, in practice they share accesses to most stage re-
sources including the local memory and the various registers.
This sharing is necessary to allow the insert and delete

commands to be performed in a buffered and non-blocking
(with respect to lookups) manner (see Section 3.3). The
lookup commands, on the other hand, are rather simple
and do not access all the stage resources other than the key
comparator and local memory.

Every stage performs the same processing for each com-
mand; the last stage (leaf level) also needs to optionally relay
a insert of delete command from the search pipeline to
the update pipeline:

Leaf-level operations for insert commands

• If the leaf node was a half node:

– Insert the key into the leaf node.

– Relay an empty command to the update pipeline.

• If the leaf node was a full node:

– Relay the insert key command with a null address
(see Algorithm 3) to the update pipeline.

Leaf-level operations for delete commands

• If the key to delete was found in an internal node:

– Remove the key’s successor from the leaf node.

– Relay a“send successor”command (see Algorithm 7)
with the successor key to the update pipeline.

– If the leaf node was half, then also relay a “chil-
dren merged” command (see Algorithm 8) to the
update pipeline.

• If the key to delete is found in a leaf node:

Table 3: Stage registers used by LOOKUP (L), IN-
SERT (N) and DELETE (D) commands.

Name Description Used by

depth Depth of the current stage L,N,D
cmdin s Input command, search pipeline L,N,D
cmdout s Output command, search pipeline L,N,D
cmdin u Input command, update pipeline N,D
cmdout u Output command, update pipeline N,D
mem[·] Stage-local memory access L,N,D
addrX Address reg. X for memory update N,D
addrY Address reg. Y for memory update N,D
nodeX Node reg. X for memory update N,D
nodeY Node reg. Y for memory update N,D
faddr Next free memory address N,D
dreg Direction register (left,middle,right) N,D
succ Wait for key successor (binary) D

– Remove the key-to-delete from the node.

– If the node was full, then an empty command is
relayed to the update pipeline.

– If the node was half, then a “children merged”
command (see Algorithm 8) is relayed to the up-
date pipeline.

These additional steps make the control logic of the last
stage slightly more complex. On the other hand, since the
leaf stage does not need to handle child address, its switching
fabric can be greatly simplified.

Table 3 lists all the stage registers, their description and
usage. The depth value is a special constant storing the
stage’s depth within the pipeline. It is coded in the state
machine to control the scheduling of memory accesses by the
insert and delete commands in the update pipeline. The
cmdin’s and cmdout ’s are 54-bit command buffers described
in Figure 3. Each stage has two sets of command buffers, one
for the search pipeline and the other for the update pipeline.

The addrX, addrY and faddr are 15-bit address registers.
The nodeX and nodeY are 128-bit node registers in the for-
mat of Figure 5. The dreg and succ registers are special flags
which support the insert and delete operations.

3.1.3 Floating Root
A 2-3 tree always adds and removes new nodes at the bot-

tom (leaf) of the tree, and propagates the required structural
changes, if any, towards the tree root. Thus the tree height
can be seen as growing and shrinking on the top (root) of
the tree. We design the BLP to populate from the bottom
(Stage n) up in a similar manner. This makes the root of
the pDST “floating” across the BLP pipeline amid contin-
ual insert and delete commands. Initially a single (root)
node containing one or two keys is placed at Stage n. At
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Figure 5: Format of the node data.

this point, all the Stages 0 through n-1 are inactive in that
their local memories do not hold any valid pDST node. An
inactive stage simply passes along any command and does
not do any processing.

The root will implicitly “float” from Stage i to Stage i-
1 when a key is popped up from Stage i along the update
pipeline to Stage i-1 due to some insert command. A spe-
cial root address register is updated with the stage number
and stage-local node address of the current root, right in
front of Stage 0. Similarly, the root can float from Stage i
to Stage i+1 when the last node at Stage i is freed due to
some delete command, which also updates the root address
register accordingly. The floating root mechanism guaran-
tees that all inactive stages are “above” the pDST root, i.e.,
they must be packed at the upper-most part of the BLP.

3.2 Memory Management
Figure 5 shows the data format of a single node in the

memory. A 128-bit memory interface is used to access all
four 32-bit words (W0 – W3) in one cycle. Each node con-
sists of 2 keys (keyA and keyB), 3 child addresses (addrL,
addrM and addrR), plus a “next free offset” (nfo) initialized
to 0. A 1-bit “type” flag (T) indicates whether the node is
full or half. The node update algorithms ensure that

1. keyA < keyB

2. addrL leads to keys less than keyA

3. addrR leads to keys greater than keyB

4. addrM leads to keys between keyA and keyB

If a node is full (T=1), then both keys and all 3 addresses
are used. Otherwise, only keyA, addrL and addrM are used.

The pDST hardware does not offer sophisticated memory
management which can greatly increase circuit complexity
and slow down memory access. Instead, a novel free-node
chaining mechanism is used to efficiently allocate and free
nodes as requested by the tree updates:

• Initially, the nodes are allocated in the stage local
memory in a linear fashion, starting from the lowest
address (0x1, since 0x0 is reserved for the invalid ad-
dress). The faddr stage register stores the next free
address to allocate.

• After a new node (nodeX ) is allocated at the address
pointed to by faddr, the value of faddr is updated with
(faddr +nodeX.nfo +1).

• When an existing node (nodeY ) at address addrY is to
be freed, nodeY.nfo is first set to (faddr – addrY – 1),
then faddr is updated with addrY.

Using the free-node chaining mechanism, each stage forms
an implicit chain of free nodes in its local memory headed by
the faddr register. The cost is only one extra address field
(nfo) per node. Furthermore, since the nfo field is only used
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Figure 6: BLP scheduling of the insert command.
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for “next free offset”when the node itself is unused, the field
can be overloaded with other purposes (such as key output)
when the node is used for key storage. While not exploited
in our proof-of-concept implementation, such application-
specific optimization could eliminate the only overhead re-
quired by the free-node chaining mechanism.

3.3 Buffered Update
We devise the buffered update mechanism allowing non-

blocking insert and delete commands (with respect to
lookups) by ensuring the following properties of the BLP:

1. At any time there is at most one insert or delete in
the entire pipeline.

2. Each stage (either the search or the update part) per-
forms at most one memory access per cycle.

3. Other than the command buffers, all other stage reg-
isters are accessed only by inserts and deletes.

The buffered update mechanism works as follows. An insert

(or delete) command first goes down the search pipeline
to collect node (and neighbor) information. The command
makes a memory read at every stage in the search (forward)
process, where the read data are stored in the stage registers.
At the leaf-level stage, the command is relayed to the update
pipeline, where it propagates any tree changes in the reverse
direction. The changes are made to the data buffered in the
stage registers without accessing the stage memory. After
the command propagates back to Stage 0, the entire search
pipeline is stalled for 2 (for delete) or 3 (for insert) cycles,
when the update pipeline commits the buffered changes to
the local memory at every stage.

Figure 6 and Figure 7 show the scheduling of insert (N)
and delete (D) concurrently with multiple lookups (L−3

to L8) on a hypothetical 3-level pDST. Every solid block,
divided into two halves by the dotted line, represents a stage-
cycle. The left half represents the search (forward) pipeline
and the right half the update (backward) pipeline. A shaded
half-block represents a memory read (green) or write (red)
at the stage. Italic font represents command propagation in
the reverse (backward) direction.

Note that it is possible for an insert or delete command
to modify some node currently accessed by a lookup. For



example in Figure 6, a node at Stage 2 can first be read by L5

in cycle 7, then modified by the insert command in cycle 8.
When this occurs, we simply mark the conflicting lookup

command (L5 in the example) as invalid and let it propagate
through the rest of the pipeline without further processing.
A higher level mechanism can be used to reschedule such a
lookup command.2

Each lookup or insert command occupies only one slot
in the search pipeline, while a delete command occupies
two. For each insert, a stage spends one memory-read cy-
cle in the search pipeline, plus one memory-read and two
memory-write cycles in the update pipeline. For each delete,
the stage spends two memory-read cycles in the search pipeline
and two memory-write cycles in the update pipeline. All 3
properties discussed in the beginning of the section are thus
observed.

In a pDST with k levels (where the corresponding BLP
spans from Stage 0 to Stage k), the maximum command rate
R per cycle for insert and delete can be calculated as

R{N,D} =
1

(2k + 3)
(1)

The command rate of lookup under the maximum in-

sert and delete rate will be

RL = 1− 4×R{N,D} =
(2k − 1)

(2k + 3)
(2)

The overall command rate of the pDST with the maximum
update capability is

R = R{N,D} + RL =
2k

2k + 3
(3)

Effectively, each lookup command takes one cycle per
stage, whereas each insert/delete takes 4. The overall
command rate is just slightly less than one per cycle log N

times higher than the original 2-3 tree software implemen-
tation where N is the tree capacity.

4. ALGORITHM ENGINEERING
We modify the original 2-3 tree algorithms for pDST so

that the lookup, insert and delete operations performed
in a pipelined and non-blocking fashion. Since each stage
in the BLP may spend multiple cycles on the insert and
delete commands, our algorithms incorporate the concept
of cycle. We start the cycle count (from 0) of a command
at the time it is received by Stage 0. In the search pipeline,
each command is always processed by Stage i in cycle i of the
command. In addition, during the stalls where the buffered
changes are committed by the update pipeline, the cycle
counts of the lookup commands in the search pipeline do
not increase.

4.1 The LOOKUP Command
Algorithm 1 describes the per-stage processing for the

lookup command. If the key has been found (line 3), then
the command is simply passed to the next stage. Otherwise,
a node is read from the address specified by the previous
stage (line 6) and compared with the key in the command.
The corresponding child address is then forwarded along the

2An alternative way is to write the tree updates to stage
memory using command bubbles that propagate through
the search pipeline. This however could increase circuit com-
plexity and lengthen the insert/delete latency.

Algorithm 1 Per-stage lookup processing, search pipeline.

1: BEGIN cycle depth

2: cmdout s ← cmdin s
3: if cmdin s.A = 1 or cmdin s.B = 1 then
4: goto line 28
5: end if
6: ntmp := mem[cmdin s.addr]
7: if ntmp.T = 0 then {current node is half}
8: if cmdin s.key < ntmp.keyA then
9: cmdout s.addr ← ntmp.addrL

10: else if cmdin s.key = ntmp.keyA then
11: cmdout s.A ← 1 {matching keyA}
12: else {cmdin s.key > ntmp.keyA}
13: cmdout s.addr ← ntmp.addrM
14: end if {finish compare half node}
15: else {ntmp.T = 1, current node is full}
16: if cmdin s.key < ntmp.keyA then
17: cmdout s.addr ← ntmp.addrL
18: else if cmdin s.key = ntmp.keyA then
19: cmdout s.A ← 1 {matching keyA}
20: else if cmdin s.key < ntmp.keyB then
21: cmdout s.addr ← ntmp.addrM
22: else if cmdin s.key = ntmp.keyB then
23: cmdout s.B ← 1 {matching keyB}
24: else {cmdin s.key > ntmp.keyB}
25: cmdout s.addr ← ntmp.addrR
26: end if {finish compare full node}
27: end if
28: END cycle depth

command (cmdout s) to the next stage. Note that ntmp
is defined (in line 6) merely as a variable representing the
memory output, not a physical register.

While the lookup algorithm is fairly simple and straight-
forward, it serves as the backbone for both insert and delete

in the search pipeline. Specifically, determining the type of
the node (line 7 and 15) and finding the child address for
the next stage are fundamental to the pDST traversal.

4.2 The INSERT Command
The insert algorithm for the search pipeline (Algorithm 2)

follows the same structure as lookup, except that the node
address and node data are now stored in the stage registers
(Algorithm 2 line 6 and 7) to be used for the update process-
ing later. In addition, the direction towards which the child
address is found is also recorded (see the descriptions in Al-
gorithm 2 line 9 and line 11). This “child direction” (dreg)
helps saving a comparison during the tree update (Algo-
rithm 3) when a key is popped up from the child level.

Algorithm 3 describes the processing performed at each
stage to propagate an insert command through the update
pipeline. For simplicity and due to space limitation, we do
not separately detail the processing performed by the leaf
level, whose differences from the internal levels have been
explained in Section 3.1.2.

An insert command in the update pipeline can either
contain a valid {key, address} pair to the upper level, or
contain nothing and be ignored (Algorithm 3 line 3). When
a {key, address} pair is received, it is either added to a half
node (Algorithm 3 lines 6 to 10), or induces a node split in a
full node and sends another {key, address} pair to the next
upper level (Algorithm 3 lines 11 to 25).



Algorithm 2 Per-stage insert processing, search pipeline.

1: BEGIN cycle depth

2: cmdout s ← cmdin s
3: if cmdin s.A = 1 or cmdin s.B = 1 then
4: goto line 13
5: end if
6: addrX ← cmdin s.addr
7: nodeX ← mem[cmdin s.addr]
8: if nodeX.T = 0 then {current node is half}
9: (Similar to Algorithm 1 lines 8 to 14, except dreg is

set to left or middle dep. on the comparison)
10: else {nodeX.T = 1, current node is full}
11: (Similar to Algorithm 1 lines 16 to 26, except dreg is

set to left, middle or right dep. on the comparison)
12: end if
13: END cycle depth

Algorithm 3 Per-stage insert proc., update pipeline 1/2.

1: BEGIN cycle (31-depth)
2: cmdout u ← cmdin u
3: if cmdin u.U = 0 then
4: goto line 27
5: end if
6: if nodeX.T = 0 then
7: addrY ← null {not to create new node}
8: (depending on the value of dreg, shuffle cmdin u.key

& cmdin u.addr into nodeX )
9: nodeX.T ← 1 {nodeX become full}

10: cmdout u.U ← 0 {pop no key to parent}
11: else {nodeX.T = 1}
12: addrY ← faddr {create new node at faddr}
13: cmdout u.addr ← faddr
14: (split nodeX to nodeY with proper child addrs)
15: nodeX.T ← 0, nodeY.T ← 0
16: if dreg = left then
17: cmdout u.key ← nodeX.keyA
18: nodeX.keyA ← cmdin u.key
19: else if dreg = middle then
20: cmdout u.key ← cmdin u.key
21: else {dreg = right}
22: cmdout u.key ← nodeY.keyA
23: nodeY.keyA ← cmdin u.key
24: end if
25: cmdout u.U← 1 {pop key,addr to parent}
26: end if
27: END cycle (31-depth)

Algorithm 4 Per-stage insert proc. update pipeline 2/2.

1: BEGIN cycle 32
2: mem[addrX ] ← nodeX
3: if addrY = null then
4: goto line 12
5: end if
6: END cycle 32
7: BEGIN cycles 33
8: faddr ← addrY +1+mem[addrY ].nfo
9: END cycle 33

10: BEGIN cycles 34
11: mem[addrY ] ← nodeY
12: END cycles 34

The node splitting is done similar to the original 2-3 tree,
where the full node together with the incoming {key, ad-
dress} pair would produce two half nodes and an extra (mid-
dle) key. The dreg register assists the hardware to determine
where the incoming {key, address} should go and how to
split the nodes (Algorithm 3 lines 16, 19 and 21). Due to
space limitation, we do not detail all operations that are
similar to the “half node” cases.

For the pDST of 15 levels, it is guaranteed that after 32
cycles the insert command would have propagated back to
Stage 0. At this time all the changes to the pDST have been
stored in the stage registers at the respective stages. In cycle
32 through 34, all stages will temporarily stall the search
pipeline processing (of lookup commands) to commit the
changes required by the insert to memory.

Up to two memory writes per stage are needed to commit
the changes: one for the node on the “insert path,” (Algo-
rithm 3 line 2), and optionally another for the node newly
created (Algorithm 3 line 11). The new node to be allocated
needs to be first read from memory to get its “next free off-
set” (nfo) field (Algorithm 3 line 8). This is required by the
free-node chaining mechanism to update the faddr register.

4.3 The DELETE Command
The delete operation is considerably more complicated

than both lookup and insert for reasons similar to that
described in Section 2.2. In the search pipeline alone, each
delete operation requires two command words to be issued
back-to-back in two cycles (see also the scheduling of the
delete command in Figure 7).

Algorithm 5 Per-stage delete proc., search pipeline 1/2.

1: BEGIN cycle depth

2: cmdout s ← cmdin s
3: cmdout s.U ← 0 {assume no key match}
4: succ ← cmdin s.U {parent key match?}
5: addrX ←cmdin s.addr
6: nodeX ← mem[cmdin s.addr]
7: if nodeX.T = 0 then
8: if cmdin s.key = nodeX.keyA then
9: cmdout s.S ← 1 {find key successor}

10: cmdout s.U ← 1
11: else
12: cmdout s.addr ← (child address)
13: cmdout s.dir ← (child’s nbor. direction)
14: addrY ← (child’s nbor. address)
15: end if {finish compare half node}
16: dreg ← cmdin s.dir {nodeX ’s nbor. dir.}
17: else {nodeX.T = 1}
18: (similar to lines 8 to 15, except compare both

nodeX.keyA and nodeX.keyB)
19: if cmdin s.key < nodeX.keyB then
20: dreg ← left {pull nodeX.keyA to child}
21: else {cmdin s.key ≥ nodeX.keyB}
22: dreg ← right {pull nodeX.keyB to child}
23: end if
24: end if
25: END cycle depth

From a high-level point of view, two command words are
required because the delete operation requires the knowl-
edge of both the node on the delete path and the node’s
neighbor in order to update the node structures. These up-



Algorithm 6 Per-stage delete proc., search pipeline 2/2.

1: BEGIN cycle (depth+1)
2: cmdout s.addr ← addrY {send child’s nbor.}
3: if nodeX.T = 0 then {current node is half}
4: cmdout s.key ← nodeX.keyA
5: if succ = 0 then
6: nodeX.keyA ← cmdin s.key
7: end if
8: addrY ← cmdin s.addr {neighbor address}
9: nodeY ← mem[addrY ] {neighbor node}

10: else {nodeX.T = 1, current node is full}
11: if dreg = left then {move keyA}
12: cmdout s.key ← nodeX.keyA
13: else {dreg = right, move keyB}
14: cmdout s.key ← nodeX.keyB
15: end if
16: addrY ← null {no neighbor access}
17: end if
18: END cycle (depth+1)

dates could be: (1) remove a key from the current node only,
(2) move a parent key to replace a key in the current node
and send a neighbor’s key to the parent, or (3) move a par-
ent key to replace a key in the current node before merging
with the node’s neighbor.

The first command word (Algorithm 5) is responsible of
comparing the keys in the current node with the key to
delete. In the process, it will find and optionally store
four pieces of information: (1) whether the key-to-delete is
found in the current node, where the key successor must be
searched; (2) the child node’s address on the delete path; (3)
the child’s neighbor address and direction; and (4) the value
of a key which will be potentially pulled to the child stage.
Note that all four pieces of information can be obtained by
one memory read (line 6) and no more than two key com-
parisons. If the current node is a half node, then it will also
remember its neighbor’s direction (in dreg) passed from its
parent (line 16); otherwise (if the current node is full), it will
store the “side” of the potentially pulled key (lines 20 and
22), which will be retrieved and carried to the child stage by
the second command word.

The second command word (Algorithm 6) will optionally
carry the child’s neighbor address (line 2) and the potentially
pulled key (line 4, 12 or 14) found by the first command word
to the child stage. At the child stage, the neighbor will
be read from stage memory to nodeY while the potentially
pulled key stored in nodeX if and only if nodeX is a half
node (lines 9 and 6, respectively). This is to prepare for
the possible scenario where the (half) nodeX needs to pull
a key from its parent and merge with its neighbor later (see
discussion near the end of Section 2.2).

In addition, a complication arises in Algorithm 5 when
the key to delete is found in an internal node. When this
occurs, the command is marked with the “find successor”
flag and the immediate next stage is notified (Algorithm 5
lines 9 and 10). The notification of the parent key match,
when received (Algorithm 5 line 4), informs the stage not to
accept the deleted key (i.e., succ = 1 and Algorithm 6 line 6
will be skipped).

The delete operation also requires two back-to-back com-
mand words for the update process, whose algorithms are de-

Algorithm 7 Per-stage delete proc., update pipeline 1/2.

1: BEGIN cycle (31-depth)
2: cmdout u ← cmdin u
3: if cmdin u.U = 1 & nodeX.T = 0 & nodeY.T = 0 then
4: cmdout u.U← 1 {change beyond parent}
5: else
6: cmdout u.U← 0 {change stops at parent}
7: end if
8: if succ = 1 then {node is waiting for successor}
9: if cmdin u.U = 0 | nodeX.T = 1 then

10: cmdout u.S← 1 {successor to parent}
11: else {pull successor from parent}
12: nodeX.keyA ← cmdin u.key
13: end if
14: end if
15: if cmdin u.S = 1 then {accept successor}
16: cmdout u.S ← 0
17: (insert cmdin u.key to nodeX )
18: dreg ← middle {update with successor}
19: end if {}
20: END cycle (31-depth)

scribed in 2 parts. Algorithm 7 describes the per-stage pro-
cessing of the first command word. Depending on whether a
successor is found (see discussion in Section 3.1.2), the first
delete command word carries the successor to either the
internal node where the key was deleted (line 15 to 19), or
the node’s child which would “pull” the successor from the
parent (line 12).

Algorithm 8 describes the processing of the second com-
mand word of delete in the update pipeline, as well as the
final two memory write cycles. Although the algorithm is
long, its concept is quite simple. Each stage in the update
pipeline is met with one of three scenarios:

1. The child node and its neighbor merged and pulled a
key from the current node (Algorithm 8 line 4).

2. The child’s neighbor was full and sent up a key to the
current node (Algorithm 8 line 19).

3. No change was propagated from the child stage to the
current stage (Algorithm 8 line 26).

If case 3. above was the case, then nothing more needs to be
done by this and all upper stages. If case 2. above was the
case, then the key sent from the child level is added to the
current node on the delete path, and no more processing
needs to be performed by the upper stages.

Case 1. is further divided into three sub-cases:

1. The current node on the delete path was full (line 5).
The node loses a key to its child and becomes a half
node. No further processing propagates to the upper
stages.

2. The node on the delete path was half, but its neigh-
bor was full (line 8). The node loses a key to its child
and obtains a key from its parent. The neighbor sends
a key to the parent and becomes a half node.

3. Both the node on the delete path and its neighbor
are half (line 12). The node loses a key to its child
and merges the key it obtains from its parent with the
neighbor.



After the second command word propagates back to Stage 0
(at cycle 32), both search and update pipelines will be stalled
for two cycles (cycle 33 and cycle 34) where the buffered
changes of the delete operation are committed to the local
memory at every stage. The steps are similar to those for
the insert command, except here the reverse direction of
the free-node chaining mechanism is performed, and there
is no need to read the “next free offset” field of the node
(nodeY.nfo) since it has been obtained with nodeY during
the search pipeline processing.

Algorithm 8 Per-stage delete proc., update pipeline 2/2.

1: BEGIN cycle (32-depth)
2: cmdout u ← cmdin u
3: cmdout u.[A,B] ← [0,0]
4: if cmdin u.A = 1 then {children merged}
5: if nodeX.T = 1 then {current node is full}
6: (depending on dreg, remove either keyA or keyB

from nodeX )
7: nodeX.T ← 0 {changed node to half}
8: else if nodeY.T = 1 then {node half, nbor. full}
9: cmdout u.B ← 1 {send neighbor key}

10: (depending on dreg, put either keyA or keyB of
nodeY into cmdout u.key)

11: nodeY.T ← 0 {change nbor. to half}
12: else {node & nbor. are half}
13: cmdout u.A ← 1 {nodes merged}
14: cmdout u.addr ← addrX
15: (depending on dreg, merge nodeY to the left or right

side of nodeX )
16: nodeX.T ← 1 {change node to full}
17: nodeY.T ← 1 {free neighbor}
18: end if
19: else if cmdin u.B = 1 then {key from child’s nbor.}
20: if nodeX.T = 0 or dreg = left then
21: nodeX.keyA ← cmdin u.key
22: else {nodeX.T = 1 and dreg = right}
23: nodeX.keyB ← cmdin u.key
24: end if
25: addrY ← null {no neighbor access}
26: else {no update}
27: if dreg 6= middle then {not write successor}
28: addrX ← null

29: end if
30: addrY ← null {not access neighbor}
31: end if
32: END cycle (32-depth)
33:
34: BEGIN cycle 33
35: if addrX 6= null then
36: mem[addrX ] ← nodeX
37: end if
38: END cycle 33
39: BEGIN cycle 34
40: if addrY 6= null then
41: if nodeY.T = 1 then {free nodeY }
42: nodeY.nfo ← faddr-addrY -1
43: faddr ← addrY
44: end if
45: mem[addrY ] ← nodeY
46: end if
47: END cycle 34

5. IMPLEMENTATION & EVALUATION
We implemented a single stage of the bi-directional linear

pipeline (BLP) in VHDL and verified its functional correct-
ness against the algorithms described in Section 4. The stage
was duplicated 15 times, plus a specially designed leaf stage
circuit, to form the 15-level pipelined Dynamic Search Tree
(pDST). We target our implementation on the Xilinx Virtex
5 LX330 FPGA. Table 4, 5, and 6 show the resource usage
of the 15-level pDST prototype.

The stage circuit was written in behavioral VHDL. The
complexity of the circuit is comparable to a simple pipelined
SIMD processor with only 3 instructions (lookup, insert,
and delete). The circuit has a rather long 7.4 ns clock pe-
riod, or a 135 MHz clock rate, due mainly to the complex
delete processing and the lack of hand-tuned optimization
in our prototype implementation. However, by pipelining
along the tree depth and utilizing a separate memory for
each tree level, the pDST can achieve an effective latency
of one search per cycle. To utilize the dual-port capability
of the on-chip memory, the BLP includes a second search-
only pipeline. The added complexity was small since it only
supports the lookup commands. The resulting dual-ported
BLP achieves a lookup throughput of 242 Mop/s plus
an insert or delete throughput of 3.97 Mop/s. This
level of performance (∼4.1 ns per lookup and ∼250 ns per
insert/delete) is unparalleled by any software-based im-
plementations currently available.

As shown in Table 4, the stage circuit is physically divided
into 4 parts:

CMP The key comparator matching two pairs of 32-
bit values in parallel and use the result to select
one of the three 15-bit address inputs.

BUF The stage registers including their respective in-
put multiplexers.

CTRL The state machine and cycle counters control-
ling the multiplexers and the insert and delete

schedules.

MISC The total LUT usage minus the sum of the previ-
ous 3 parts. They include the memory address-
ing logic, the pipeline registers (for command
buffering), and the switching fabric, etc.

Because each BRAM block consists of at least 1024 address-
able words (either 18-bit or 36-bit wide depending on the
configuration), we implemented the first 9 stages in LUT-
based distributed memory (distRAM), as shown in Table 5.
We assign 2i nodes to level i of the pDST, 0 ≤ i ≤ 15. Since
a node at level i may have up to 3 children at level i+1, not
all the capacity of our pDST prototype can be utilized. The
maximum wastage in our implementation can be estimated
as

215 ×
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1

2j
−

10
X

k=0

1

3k

!

≈ 215 × (2− 1.5) ≈ 16k nodes

Thus our pDST prototype would have a maximum capac-
ity of 48k nodes or about 96k 32-bit keys. In practice, the
optimal size ratio between consecutive pDST levels should
be somewhere between 2 to 3, depending on the dynamics
of the tree growth. We note that because the size of a bal-
anced tree increases exponentially with respect to the tree



Table 4: XC5VLX330 6-LUTs for circuit logic
Func. CMP BUF CTRL MISC Total

# LUTs 2741 4176 798 5394 12.8k (6.3%)

Table 5: XC5VLX330 6-LUTs for key storage
Stage 4 5 6 7 8 9 Total

# nodes 16 32 64 128 256 512 510
# LUTs 44 48 96 200 416 864 1668 (0.8%)

Table 6: XC5VLX330 RAMB36s for key storage
Stage 10 11 12 13 14 15 Total

# nodes 1k 2k 4k 8k 16k 32k 65024
# blocks 4 8 16 32 64 96 224 (78%)

height, the capacity of the pDST can be increased dramat-
ically with only a few stages of external memory accesses,
subject to the pin limitation of the FPGA.

The last stage (Stage 15) uses less BRAM than twice of the
previous stage because the leaf nodes do not need to store
the child addresses. This allows us to reduce the width of the
memory from 144 bits (4×36 bit BRAM blocks) down to 108
bits (3×36 bit BRAM blocks). To enable the true dual-port
capability, we assign BRAM widths in multiples of 36 bits.
This incurs additional memory wastage whose optimization
is not considered in our prototype implementation.

6. RELATED WORK
Dynamic search tree (DST) data structures have been

known for a long time [6]. Some application-specific vari-
ation of the classical DSTs were proposed recently for the
IP routing application [11, 3]. Both are software-based ap-
proaches, with [11] focusing on update performance and [3]
on memory efficiency.

A distributed B-tree implemented over multiple servers
and clients was implemented in [2]. It allows parallel search
and update operations by maintaining a lazy copy of the
(partial) tree at each client, which first calculates the changes
locally then commits them in a single transaction. It also
supports load balancing and hot-plugging of the servers.

Hardware-based binary search tree for IP lookup was pro-
posed in [9]. To the best of our knowledge, however, our
pDST is the first work that addresses both pipelining and
dynamic updates efficiently in hardware.

7. CONCLUSION AND FUTURE WORK
Our pipelined Dynamic Search Tree (pDST) achieves both

high update throughput and pipelined search performance.
The pDST insert and delete algorithms pipeline the 2-3
tree in a linear fashion while observing no more than one
memory access per stage at any time.

The pDST is mapped to a bi-directional linear pipeline
(BLP) where we employ the novel techniques of floating
root, free-node chaining, and buffered update. Our pro-
totype implementation shows that the BLP architecture is
practical for FPGA implementations and can further benefit
from application-specific optimization.

With proper modifications, the pDST architecture can be
adapted for various high-performance applications such as
packet flow processing, pattern matching, DNA sequencing
and data mining.
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