
1

Rethinking FPGA Computing with a Many-Core Approach
John Wawrzynek, Mingjie Lin, Ilia Lebedev, Shaoyi Cheng, Daniel Burke

Department of Electrical Engineering and Computer Science, University of California, Berkeley

Abstract— While ASIC design and manufacturing costs are
soaring with each new technology node, the computing power and
logic capacity of modern FPGAs steadily advances. Therefore,
high-performance computing with FPGA-based system becomes
increasingly attractive and viable. Unfortunately, truly unleashing
the computing potential of FPGAs often stipulates cumbersome
HDL programming and laborious manual optimization. To cir-
cumvent such challenges, we propose a Many-core Approach to
Reconfigurable Computing (MARC) that (i) allows programmers
to easily express parallelism through a high-level programming
language, (ii) supports coarse-grain multithreading and dataflow-
style fine-grain threading while permitting bit-level resource
control, and (iii) greatly reduces the effort required to re-
purpose the hardware system for different algorithms or different
applications.

Leveraging a many-core architectural template, sophisticated
logic synthesizing techniques, and state-of-art compiler opti-
mization technology, a MARC system enables efficient high-
performance computing for applications expressed with im-
perative programming languages such as C/C++ by exploiting
abundant special FPGA resources such as distributed block
memories and DSP blocks to implement complete single-chip
high efficiency many-core microarchitectures.

To quantitatively validate the proposed MARC system, we
implemented a MARC prototype machine consisting of one
control processing core and 32 arithmetic processing cores
using a Virtex-5 (XCV5LX155T-2) FPGA. For a well-known
general-purpose Bayesian computing problem, we compare the
throughput and runtime of this MARC machine, with fully syn-
thesized application-specific processing cores, against a manually
optimized FPGA implementation—BCM (Bayesian Computing
Machine) [1]. As the problem sizes range from 10

3 to 10
6,

this MARC machine achieve 8.13 GFLOPS in throughput on
average, which is 43% of that of BCM but with much less
design/implementation effort and much greater portability and
retargetability. More importantly, we developed a simple analyt-
ical performance model to explain the performance discrepancy
between the MARC machine and the hand-optimized BCM
FPGA implementation [1].

I. INTRODUCTION

FPGA computing can achieve hardware efficiency much
closer to ASIC solutions than many alternative processor-based
computing systems. Specifically, the computing elements
within modern FPGAs, due to their implementation flexibility,
possess huge potential to extract application-specific paral-
lelism, therefore often enabling power-efficient computation
in ways not possible on traditional multiprocessor systems.
Consequently, an FPGA-based computing system frequently
results in orders-of-magnitude higher overall performance than
that of CPU- or even GPU-based platforms [2], [1]. Today, the
advantages of FPGA-based computing become increasingly
pronounced because ASIC design and manufacturing costs
have sky-rocketed with each new technology node. As a result,
embedded and high-performance computing research faces
new opportunities to accelerate energy-efficient computation
with FPGA-based programmable hardware platforms, but not

without significant challenges.
One significant barrier preventing a wider adoption of

FPGA computing is its lack of a coherent computational
abstraction. As a result, fully realizing FPGA’s performance
and efficiency potential often requires cumbersome HDL pro-

gramming and laborious manual optimizations. Specifically,
programming FPGAs demands skills and techniques well
outside the application-oriented expertise of many developers,
thus forcing them to step beyond their traditional program-
ming abstractions and embrace hardware design concepts,
such as clock management, state machines, pipelining, and
device-specific memory management. Furthermore, because
memory access is the main performance bottleneck in many
applications, complex ad hoc memory architectures are often
designed and used, complicating the reuse and maintenance
of the resulted implementation. Therefore, it is imperative
to create new design methodologies to reduce the cost of
generating reconfigurable/customized hardware solutions for
FPGAs, making them a more practical computing platform.

A. Landscape of FPGA Computing

Differing greatly in computing efficiency, hardware flexi-
bility, and ease of use, various platforms exist to accomplish
computing tasks. From general-purpose processors to ASICs,
as the hardware flexibility of these computing devices de-
creases, their computing performance or efficiency improves
significantly (Fig. 1). Similarly, constraining the usage model
of reconfigurable devices will also likely result in performance
degradation compared with fully customizable solutions. In-
terestingly, there is a sizable design space (the gray area
in Fig. 1), between hand optimized FPGA solutions and
general-purpose processors, that warrants being systematically
explored.

GPP

GPU

HDL

FPGA

DSP

ASIC

MARC

F
le

x
ib

il
it

y

PerformanceLow

L
o
w

High

H
ig

h FPGA-based Computing

Fig. 1. Landscape of modern computing: flexibility vs. performance.

Manually
Optimized

FPGA Solution

C-to-Gates:
AutoESL
Synfora

Many-Core
Template

Customization

Hardware

Software

Synthesis

Compiler
+

Applications (Problem Statements, Algorithms, C, C++ code, ...)

Computing Machine (Performance, Energy Efficiency, ...)

Fig. 2. Three methodologies to accomplish FPGA computing.

Within FPGA-based computing (Fig. 2), there are
three promising approaches: manually optimized application-
specific solutions, C-to-gates approaches, and architectural-
template-based design (which is the subject of this paper). The
overwhelming majority of previous work in FPGA comput-
ing takes the first approach, focusing on manually-optimized
ad hoc solutions [2]. Such approaches, although frequently
achieving impressive performance, require significant hard-
ware design effort and domain-specific knowledge, therefore

2

limiting their scalability, portability, and applicability.

The second approach, C-to-Gates, partly addresses these
issues by providing application developers with a more fa-
miliar C-style language [3] in place of hardware description
languages (HDLs) and relies on sophisticated CAD tools to
efficiently map the application to a hardware platform. Re-
cently, C-to-Gates research made significant progress and has
resulted in numerous commercial solutions, notably AutoESL
and Synfora. Unfortunately, almost all of these technologies,
to our experience, require significant portions of existing
applications to be rewritten, and usually with a different
programming model in mind. Nevertheless, we believe that
the C-to-gates approach holds great potential and in fact is
quite complementary with our proposed MARC approach.

The MARC approach (the third route in Fig. 2) seeks to
capture the strengths of the FPGA platform using a many-core
architectural template without resorting to cumbersome HDL
programming and time-consuming manual optimization. This
methodology leverages computer architecture research, as well
as modern compilers and C-to-Gates synthesis, to efficiently
design structured high-performance many-core computer sys-
tems customized with application-specific knowledge. We hy-
pothesize that this disciplined approach to FPGA computing
with architectural constraints may win overwhelmingly in
preserving hardware portability, reducing design effort, and
possibly improving energy efficiency, despite its potential per-
formance degradation relative to optimized FPGA solutions.
In a larger perspective, we believe MARC to be a first step
towards finding the right computational abstraction to charac-
terize a wide range of reconfigurable devices, expose a uniform
view to the programmer, and represent the computation in
a manner that diverse hardware implementations can exploit
efficiently.

B. Objectives

Our key objectives of this paper consist of (1) rethinking
the design methodology of reconfigurable computing, (2) ex-
ploring ways to reduce hardware inefficiency between ASIC-
and FPGA-based computing platforms, and (3) assessing the
feasibility of creating an efficient, customized reconfigurable
computing machine that incorporates ASIC-like efficiency but
with much reduced design effort. To make our study concrete
and evaluate our proposed MARC strategy quantitatively, we
benchmark the performance of running a general-purpose
Bayesian computing software on a MARC machine against
that of a fully customized FPGA solution [1]. We choose
general-purpose Bayesian computing because it captures many
important algorithms in artificial intelligence and signal pro-
cessing [4] and is thus widely applicable. Moreover, the algo-
rithm contains a rich set of computational structures ranging
from highly data parallel algorithms (individual node scoring)
to control intensive ones (control graph propagation), making
it a solid design driver for MARC.

II. BAYESIAN COMPUTING PROBLEM

A. Bayesian Graph Model

A Bayesian belief network is a probabilistic graphical model
that represents a set of random variables and their conditional
dependences via a directed acyclic graph (DAG). There exist
efficient algorithms to perform inference and learning in
Bayesian networks. Many important algorithms in artificial in-

telligence and signal processing can be expressed as operations
over Bayesian probabilistic networks. The most prominent
Bayesian learning algorithms include: the forward or backward
algorithm, the Viterbi algorithm, the iterative “turbo” decoding
algorithm, Pearl’s belief propagation algorithm, the Kalman
filter, and certain fast Fourier transform (FFT) algorithms.

Many important applications exist for the Bayesian graphi-
cal model ([4], Chapter 8) and consequently can be greatly ac-
celerated by FPGA computing. Notable examples include early
vision and DNA pyro-sequencing. Such problems can be opti-
mally solved by by evaluating the marginal p(xn) on node n,
defined by p(xn) =

∑
x1

· · ·

∑
xn−1

∑
xn+1

· · ·

∑
xN

p(x1:N)
under the Bayesian framework. Unfortunately, a typical
Bayesian network normally has an exponential number of
such terms. As a result, even with speed-up techniques such
as variable elimination, junction tree, and the sum-product
algorithm, we still face prohibitively long evaluation time for
any large-scale Bayesian network. Refer to [1] for more
detailed discussions on various algorithms. This work focus
on using FPGA-based computing to accelerate large-scale
Bayesian networks evaluation for high throughput.

III. MANY-CORE BAYESIAN COMPUTING

A. Many-Core Template

P/LP/LP/L P/LP/L

Mem MemMemMemMemMemMemMem

S
ch

ed
u
ler

A-CoreA-CoreA-Core A-CoreC-Core

Interconnect Network

Fig. 3. Key components in a MARC machine. P/L—Private and local
memory, C-Core—Control Processing Core, A-Core—Arithmetic Processing
Core.

The overall architecture of a MARC system (Fig. 3) resem-
bles a scalable many-core processor architecture consisting
of a single C-Core (Control Processing Core) and multiple
A-Cores (Arithmetic Processing Cores). Unlike embedded
processor cores commonly found in modern FPGAs, although
both C-Cores and A-Cores in MARC can be implemented
as general-purpose RISC processor cores with a conventional
five-stage pipeline [5], A-Cores can alternatively be syn-
thesized as application-specific datapaths. Furthermore, the
processing cores in MARC are completely parameterized with
variable bit-width, reconfigurable multi-threading, and even
aggregate/fused instructions. For example, in order to hide
global memory access latency, improve processing node uti-
lization, and increase the overall system throughput, a MARC
system can employ fine-grained multithreading by injecting
latency (via shift registers) and automatically retiming each
core. Moreover, each processing core inside a MARC machine
not only has a dedicated local memory accessible by its
corresponding threads, but also can access a global, shared
memory space implemented using block memories and off-
chip DRAM (Fig. 3), accessible by all processing cores
through the interconnect network.

B. Application-Specific Processing Core

The CAD flow of a MARC system consists of two sep-
arate tracks: 1) the compilation of application source code
and 2) the high-level synthesis flow to generate customized
datapaths or A-Cores specific to the target application. Both
tracks are depicted in Fig. 4 and denoted by white and
gray blocks respectively. Along the software track, the source

3

App. Source Code

LLVM-gcc

SSA

Profiling

Tree-Structured IR

Back-End
Code Generation

Executable Code

Extract
Computing Kernels

Super-Instructions

MIPS C-Core

Kernel SSA

Compiler Optimization

CDFG Graphs

Auto-Clustering

Module Selection

Customized A-Core

MARC Machine

Fig. 4. CAD flow of executable code compilation and synthesizing
application-specific processing cores.

code of target application in C/C++ is first compiled through
llvm-gcc to generate ASTs (Abstract Syntax Trees)—a tree
representation of the abstract syntactic structure of source
code. Using a software interpreter, the llvm compiler calls
a Call Graph Execution Profiler gprof [6] with -gf option
to readily identify the most computationally intensive kernels
by counting the number of pseudo-clock cycles in different
code blocks. These code blocks are then promoted into super-
instructions that encode all primitive operations contained in
each code block. The rest of ASTs are then converted into a
intermediate representation (IR)—a kind of abstract machine
language that expresses the target-machine operations without
committing to too much machine-specific detail. Unlike in
the original llvm compiler framework [7] where single static
assignment (SSA) is used as the intermediate representation
(IR) before machine code generation, our modified MARC
compiler uses the tree IR as suggested by [8], which proves to
be more amenable to FPGA hardware mapping. Finally, both
tree IRs and generated super-instructions are merged into a
coherent binary file ready to be executed on a MARC machine.

Along the hardware track, SSA representations of kernels
first go through generic compiler optimizations in llvm,
such as dead code removal and constant propagation. The
resulting SSA stream is then translated into a data structure
called Control/Data Flow Graph (CDFG). Prior to hardware
synthesis, the resulting CDFG needs to pass a two-step pro-
cedure: an auto clustering procedure that coalesces a group of
neighboring nodes (typically in the form of subtrees) into a
new node according to area and performance guidelines, and
physically mapping the CDFG to the hardware components
in a hardware library. Both steps proceed simultaneously and
their underlying optimization is based on the well-known
simulated annealing algorithm.

1) Control/Data Flow Graph (CDFG)

As in any synthesis system, the choice of intermediate
data structure is essential. We chose mixed control/data flow
graph (CDFG) [9] to represent the core algorithm as a flow
graph with nodes connected with data or control edges. The
nodes represent data operations, while the edges represent
data precedences between those nodes. Unlike the task graph
used in BCM [1], CDFG contains control edges to enforce
extra precedence rules between nodes. Besides representing
standard arithmetic operations as various operation nodes, the
CDFG permits control-flow structures such as loops and if-
then-else blocks often found in imperative languages. By in-
troducing these control structures, CDFG can readily represent
a hierarchical graph whose subgraphs represent the bodies
of loops or conditionals. These subgraphs can subsequently
contract into a single node at the next hierarchy level. Such
hierarchical representation proves to be compact, descriptive,

and efficient to store and manipulate the flow graphs. To
illustrate the flexibility and effectiveness of the CDFG data
structure, Fig. 5(a) depicts a small code snippet containing
a if branch and a while loop. Fig. 5(b) and (c) show the
CDFG before and after node combining respectively.

(a)

$1 $2

$4

$8 0

× +

+

+−

−

> 0

(b)

$1

$2

$4

$6$7 $8

if-else

while-loop

(c)

Fig. 5. (a) Source code snippet and resulting SSA. (b) Generated CDFG.
(c) New CDFG with nodes after coalescing.

2) Auto-Clustering and Module Selection

Given a CDFG compiled from an target application, our next
task is to choose hardware modules that minimize hardware
cost, meet timing and throughput constraints, and accurately
map the target application to the synthesized hardware. The
difficulty of this selection is mainly due to the fact that
when synthesizing reconfigurable hardware, there is a strong
trade-off between hardware usage and computing performance.
For example, in many repetitive operations such as for and
while loops, the degree of hardware unrolling can signifi-
cantly affect the overall performance. It is also well known
that performing operations sequentially without intermediate
registers can reduce the critical path delay. Therefore two
operators connected through a register or memory should often
be merged into a new operator. Moreover, pipelining functional
units often incurs extra hardware overhead but can obtain
noticeable performance benefits. Finally, in order to achieve
high throughput, the pipelining has to be balanced with other
components during module selection so that the available clock
period can be used efficiently.

The synthesis procedure in our MARC framework is es-
sentially a graph matching problem reminiscent of technology
mapping with standard cells. It differs from a typical C-to-
gates approach where compiled code IR (Intermediate Repre-
sentation) is directly mapped to elementary gates. The key to
the success of our arithmetic core synthesis is an extensive li-
brary of hardware components with diverse granularity ranging
from primitive logic operators to algorithematic units such as
floating point adders and multipliers. This work adopted two
sets of library modules from the work of [10] and [11].

Given the number of parameters to consider, hardware
module selection during synthesizing application specific A-
Cores is clearly a NP-hard problem. It becomes even more
complicated when considering timing constraints and func-
tional units that use time multiplexing. To solve this multi-
dimensional non-linear global optimization problem, we de-
cided to use the well-known simulated annealing algorithm—a
generic probabilistic meta-heuristic. The initial solution starts
with all operations implemented on the cheapest available
hardware and with full pipelining. Our synthesis engine then

4

clusters operations in a way that favors structures with high
reusability, while simultaneously meeting correct timing con-
straints. During clustering, the synthesis engine may swap in
more expensive, but faster, hardware for operations on the
critical path. More implementation details of this technique
can be found in [12]. Finally, the customized cores have the
original function arguments converted into inputs. In addition,
a simple set of control signals is created for cores to be started
and to signal the completion of the execution.

C. Scheduling Super-Instructions on A-Cores

Scheduling super-instructions for the A-Cores on a MARC
machine introduces new challenges absent from scheduling
normal instructions in a microprocessor. Unlike a conventional
microprocessor using registers to temporarily store interme-
diate computing results, a MARC machine, as discussed in
Section III-D, possess no register at all. Instead, all private and
local memory for both A-Cores and C-Core are implemented
with Block RAM inside an FPGA device. As a result, each
time two A-Cores need to communicate with data, they have
to go through global memory. Moreover, intermediate data
in a circuit can be transmitted by wire between modules,
but only if the signal will not last multiple cycles or be
transferred between multiple super instructions. In a MARC
machine, different iterations of a loop behave like separate
super instructions. This becomes an issue especially when
implementing modulo scheduling. Finally, in a MARC ma-
chine, the cost metric of scheduling includes the number of
A-Cores, local and private memory capacity, and the extra cost
due to accessing global memory or exchanging data between
two processing cores through the interconnect network. To our
knowledge, there are no existing scheduling algorithms that
can consider all these three cost components simultaneously.
As a result, optimally scheduling super-instructions becomes
almost infeasible.

Given limited hardware resources in a MARC machine, to
maximize the overall throughput, the scheduler in MARC must
determine which operations should be time-multiplexed, i.e.,
assigned to a single A-Core and executed sequentially, and
which operations should be space-multiplexed, i.e., assigned
to different A-Cores and executed in parallel. Obviously, if
two super-instructions have data- or control-dependency, they
can not start in the same cycle. It is desirable to assign two
super-instructions with data dependency to the same A-Core,
so that the intermediate results can be temporarily stored in
local or private memory. If this is not possible, the start of
these super-instructions must be separated by multiple cycles.
Such delay may have an undesirable ripple effect and cause
further delay for other subsequent super-instructions to start.
Moreover, multiple accesses to the same block RAM must be
spread out as constrained by data dependencies and memory
communication bandwidth.

Given the above challenges in scheduling super-instructions,
our modified llvm compiler uses two heuristic schemes
for scheduling operations. Non-loop super-instructions are
scheduled by a list-scheduling algorithm based on Gra-
ham’s list-scheduling rule (LSA) [13], which guarantees a
4-approximation ratio to the optimal solution. For looping
super-instructions and calculating the Initiation Interval (II) for
pipelining the loop, we adopt the iterative modulo scheduling
algorithm [14].

D. Memory Organization

Threads executing a kernel in a MARC machine can access
three distinct memory regions: private memory, local memory,
and global memory. Global memory permits read and write
access to all threads within executing kernels on all processing
cores. Local memory is a section of the address space shared
by the threads within a computing core. This memory region
can be used to allocate variables that are shared by all threads
spawned from the same computing kernel. Finally, private

memory is a memory region that is dedicated to a thread.
Variables defined in one thread’s private memory are not
visible to another thread, even when they belong to the same
executing kernel.

Physically, the private memory regions in a MARC system
are implemented with LUT RAMs in an FPGA device, while
local memory and part of global memory regions reside in
the BRAMs. To allow a larger memory space, we also allow
external memory to be used as part of the global memory
region. To increase the number of global memory ports, we
use both ports of each BRAM blocks separately, exposing
each BRAM as two smaller single-port memories. Obviously,
the achievable aggregate memory access bandwidth inside an
FPGA is often far below its peak value, and the available
amount of on-chip memory is small, even in comparison with
a modern GPU. Nevertheless, the memory access mechanism
in an FPGA is completely controlled by the user. This enables
the MARC machine to consider application-specific access
patterns in order to achieve high memory bandwidth.

IV. HARDWARE PROTOTYPING

We implemented two prototypes of the MARC machine
with a Virtex-5 FPGA (XCV5LX155T-2). MARC-I imple-
mented both C-Core and 32 A-Cores as MIPS cores that
support a subset of the MIPS ISA based on the Plasma
CPU [15]. For hardware efficiency, A-Cores only support
single-precision floating-point arithmetic operations, while the
C-Core supports additional branching instructions. When im-
plementing the MARC-II, we kept the design of C-Core intact,
but implemented its A-Cores as automatically synthesized
data-paths. The procedure by which the cores were generated
is described in Section III-B. Each A-Core or C-core in the
MARC-I and MARC-II machines are four-way multi-threaded
to saturate the long cycles in the dataflow graph resulting from
the target application and maintain a high throughput.

As in any computing system, memory access pattern sig-
nificantly impact the overall performance of a MARC system.
In the current MARC implementation, private or local mem-
ory accesses take exactly one cycle, while global memory
accesses typically involve network dependent latency. The
discrepancy between local and global memory accesses, we
believe, provides ample opportunities for memory optimization
and performance improvements such as caching, especially
considering the hardware flexibility of MARC system mani-
fested by application-specific processing core and customized
interconnect network, which becomes pronounced when lo-
cal memory accesses constitute the majority of all memory
accesses as in our Bayesian computing problems.

Gigabit Ethernet is used to implement the communication
link between the host and the MARC device; the avail-
able bandwidth may not be sufficient for larger applications,
especially when using multiple MARC devices, where a

5

higher-bandwidth interface would be appropriate. To improve
hardware utilization, we take advantage of the light-weight
Ethernet interface design from the Plasma CPU [15]. Between
processing cores and memory blocks, we leverage the GateLib
project [16] from Berkeley to implement the crossbar switch
and its associated arbiter. Because our design of the host-
MARC interface is built using a latency-insensitive handshake,
the physical transport can be readily replaced with other faster
links such as PCI-E.

The hand optimized BCM implementation [1] is shown in
Fig. 6(a), while the placed and routed MARC-II prototype
in Fig. 6(b). Various main components in both platforms are
color-coded. As shown in Fig. 6(a), constrained by long CAD
tool run-time (about 20 hours), the hardware usage of our
MARC implementation is approximately 90%, while the hand
optimization BCM system in Fig. 6(b) utilizes about 68% of
total chip resources.

16 Nodes

Slices: 17650, DSP Blk: 42, B. RAM: 4646

1 C-Core + 32 A-Cores

Slices: 20560, DSP Blk: 76, B. RAM: 5928

(a) (b)

Fig. 6. Layout of (a) 16-node BCM and (b) 32-node MARC machine.

V. PERFORMANCE COMPARISON

The number of floating point operations per second
(GFLOPS) is used as the comparison metric for performance.
We chose the sum-product (or marginalize a product of func-
tions (MPF)) solver, often used for inference in very large
Bayesian networks, as our benchmark application [17]. For
MARC-I, MARC-II, BCM, GPU-based, and CPU-based, we
run the identical MPF kernel source code from [17], while
the GPU version of the MPF kernel runs on a NVIDIA
GeForce 9400M graphics card, with 16 CUDA Parallel Pro-
cessor Cores and 54 GFLOPS peak computing throughput.
The CPU version is invoked on a single core of an Intel Core
2 Duo 2.4 GHz CPU with 32KB L1 and 3 MB L2 cache.
Both the CPU and GPU versions are optimized for caching.
When comparing run time, we report only the pure execution
time, excluding the time for data transfers between the CPU
and the GPU, for task graph processing, and for pipeline
scheduling on CPU. To evaluate the performance on real MPF
instances, we used Bayesian network instances generated from
the real-life genetic data by SuperLink [18] 1 (Bayesian NWs).
In addition, we evaluate some randomly generated Bayesian
networks (Random NWs) for reference. In order to measure
the size, or the input complexity, of each benchmark instance,
we only consider the multiplications and summations required
by the algorithm. In order to accurately measure the run time,
we invoke the kernel on the same input until the accumulated
running time exceeds five seconds as in [17], and then derive
the time for a single invocation. Kernel invocation overhead
(∼10 µs) is ignored. The size of our benchmark designs vary
from 0.001 to 1000 MFLOP; each case is run 10 times.

Table 7(a) presents the performance of all five platforms
in GFLOPS for both randomly generated and experimental

1Downloadable from http://bioinfo.cs.technion.ac.il/superlink/

networks. As in [1], the BCM demonstrates an average 80x
and 15x speedup over CPU and GPU solutions, respectively.
The peak throughput of our BCM prototype is about 20.4
GFLOPS. Relative to GPU, MARC-I and MARC-II achieve on
average 15x and 36x speedups respectively. More interestingly,
we compare the performance of two MARC machines, with-
out and with application-specific processing cores (MARC-I
and MARC-II) respectively, against the manually optimized
BCM FPGA solution [1]. We found that with synthesized
application-specific A-Cores, MARC-II can achieve about
43% of BCM’s throughput, whileas MARC-I can only achieve
only about 15%. This discrepancy in throughput clearly shows
the importance of application-specific core customization.

Platforms

Benchmarks

Random NWs Bayesian NWs

Min. Max. Avg. Min. Max. Avg.

MARC-I 1.12 5.55 2.56 0.69 4.28 3.28

MARC-II 2.92 16.66 7.83 1.61 12.4 8.13

BCM 11.25 29.23 18.23 5.78 20.4 17.31

GPU 1.09 0.23 0.96 4.94 0.18 1.15

CPU 0.50 0.12 0.14 0.34 0.11 0.22

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

MARC-I

MARC-II

BCM

GPU

CPU

T
h
ro

u
g
h
p
u
t

S
p
ee

d
u
p

1
5
.4

1
7
.2 3
6
.2 5
4
.3 7

6
.4

1
2
6
.1

5
.2 6
.7

1
.0

1
.0

Random NWs
Bayesian NWs

(b)

Fig. 7. (a) Throughput achieved by all five platforms. (b) Speed-ups over
CPU-based solutions achieved by MARC-I, MARC-II, BCM, and GPU-based
for input Bayesian graph with variable sizes.

VI. RESULTS ANALYSIS AND MODELING

This section presents an analytical performance model
to understand BCM and MARC’s performance discrepancy.
More importantly, we hope such analysis can provide some
insights about how to further improve the performance of
MARC computing machine. We define f as the running clock
frequency, n as the number of functional units, k as the number
of elementary operators within each processing core, and µ
as the IPC (Instruction per Clock Cycle) as defined in [5],
respectively. Note that µ is often much less than 1 due to
memory access stall, and can be computed as µ = 1

1+m
,

where m is the average memory latency amortized over each
instruction. Finally, the throughput of a computing machine
can be calculated as T = f × n× k × µ = f × n× k ×

1

1+m
.

To differentiate BCM and MARC in their notations, we use
subscripts B and M to denote them respectively.

The BCM [1] (Figure 8(a)) can avoid memory stalls and
unnecessary pipeline bubbling by prior task graph processing,
pipeline scheduling, and hazard-free memory allocation, which
makes a BCM functionally equivalent to a multiprocessor with
a high-bandwidth (= 2 × n × w) centralized shared memory.
This memory bandwidth is infeasible for the current IC device
technology. Furthermore, assuming all pipeline stages are busy
and without any memory access hazards, the throughput of a
BCM can be readily computed as TB = fB ×nB × kB ×µB .
µB equals 2 because each operation core in BCM contains
one floating point adder and one floating point multiplier.
This scenario is drastically different from the MARC machine.

6

Although a BCM machine’s throughput can still be computed
as TM = fM ×nM ×kM ×µM , the µM value is far less than
1 and is measured to be 0.29 in our experiments, meaning
that on average, each instruct needs to wait for about 2.4
clock cycles before its execution. Finally, to calculate the
relative performance between BCM and MARC-II, TM

TB

=
fM×nM×kM×µM

fB×nB×kB×µB

= 107×3×32×0.23
150×2×16×1

= 62%, a bit larger than
our measured performance data 43%. Our results have also
shown that both BCM and MARC machines far out-perform
the GPU solutions despite its formidable peak floating-point
performance. We believe this is because the effective through-
put for particular applications on a GPU is often far below
its potential peak value, and is strongly influenced by branch
prediction, cache management policy, and specific data access
pattern, etc..

Centralized Share Memory

bandwidth = 2 × n × w

Array of n Processing Nodes/Operators without ISA

(a)

MemMemMemMemMem

bandwidth = 2 × w

Array of n Customized Processing Core with ISA

(b)

f (MHz) n k µ m

BCM 150 16 2 1 1

MARC-I 74 12 2 + 1 0.36 1.8

MARC-II 107 32 2 + 1 0.29 2.4

(c)

Fig. 8. Abstract computing machine models for (a) BCM and (b) MARC.
(c) Parameter values of BCM and MARC for throughput modeling.

Using the same strategy, we now explain why MARC-
I can only achieve about 1/3 of MARC-II’s performance.

Again, we estimate the throughput of MARC-I.
TM−I

TM−II

=
fM−I×nM−I×kM−I×µM−I

fM−II×nM−II×kM−II×µM−II

= 74×3×12×0.36
107×3×32×0.29

= 32%. From

this analysis, it is clear that two factors contribute to the perfor-
mance gain of MARC-II relative to MARC-I. First, because
the A-Cores in MARC-II are much more hardware efficient
than that of MARC-I, MARC-II has a much larger number of
processing cores n. Secondly, because A-Cores in MARC-I
are full-blown MIPS cores, there frequency f is about 30%
lower than the frequency of A-Cores in MARC-II. As for
lower µ value in MARC-I than that in MARC-II, we suspect
it is because 1) smaller number of processing cores make
instruction scheduling more optimal, 2) the construction of
super-instructions inside MARC-II removes some temporary
storage needed for intermediate results, therefore reduces the
memory access bandwidth.

VII. CONCLUSION

Between optimized application-specific FPGA solutions and
processor-based portable implementations, there exists a siz-
able and largely unexplored design space that holds the key
to mitigating laborious HDL programming and relieving chal-
lenging hand-optimization. MARC offers a promising method-
ology that helps explore this design space. By combining a
many-core architectural template, sophisticated logic synthe-
sizing techniques, high-level imperative programming model,

and state-of-art compiler technology [7], the MARC system
can enable a user to harness the benefits of an FPGA platform
without much of the required hardware design expertise. While
we acknowledge fully that architectural constraints and high-
level software abstractions can potentially erode the achievable
performance of a reconfigurable computing system, our results
show that such tradeoff is quite effective in the Bayesian
computing domain: a MARC system achieves much of the
performance exhibited by a manually optimized ad hoc imple-
mentation [1], but with a dramatic reduction in development
effort and a significantly improved portability. Although the
applicability of MARC to other problems, especially applica-
tions featuring little explicit parallelism and complex memory
access patterns, remains to be investigated. we believe that
MARC, the many-core approach to reconfigurable computing,
introduces a new frontier to strive for energy-efficient high-
performance reconfigurable computing.

REFERENCES

[1] M. Lin, I. Lebedev, and J. Wawrzynek, “High-throughput bayesian
computing machine with reconfigurable hardware,” in FPGA ’10: Pro-
ceedings of the 18th annual ACM/SIGDA international symposium on
Field programmable gate arrays, (New York, NY, USA), pp. 73–82,
ACM, 2010.

[2] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation. Morgan Kaufmann, November
2007.

[3] Wikipedia, “C-to-HDL.” http://en.wikipedia.org/wiki/C_
to_HDL, Nov. 2009.

[4] C. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, August 2006.

[5] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann, 2 sub ed., August
1997.

[6] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, 1982.

[7] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimiza-
tion,” Master’s thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[8] A. W. Appel and M. Ginsburg, Modern Compiler Implementation in C.
Cambridge University Press, December 1997.

[9] S. Amellal and B. Kaminska, “Scheduling of a control data flow graph,”
pp. 1666 –1669 vol.3, may. 1993.

[10] G. Lienhart, A. Kugel, and R. Manner, “Rapid development of high
performance floating-point pipelines for scientific simulation,” Parallel
and Distributed Processing Symposium, International, vol. 0, p. 182,
2006.

[11] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, and M. Gokhale,
“Trident: an FPGA compiler framework for floating-point algorithms,”
International Conference on Field Programmable Logic and Applica-
tions, vol. 0, pp. 317–322, 2005.

[12] S. Note, F. Catthoor, G. Goossens, and H. De Man, “Combined hardware
selection and pipelining in high performance data-path design,” pp. 328
–331, sep. 1990.

[13] A. Munier, M. Queyranne, and A. Schulz, “Approximation bounds for
a general class of precedence constrained parallel machine scheduling
problems,” in Integer Programming and Combinatorial Optimization,
volume 1412 of Lecture Notes in Computer Science, pp. 367–382,
Springer, 1998.

[14] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in In Proceedings of the 27th Annual International
Symposium on Microarchitecture, pp. 63–74, 1994.

[15] S. Rhoads, “The Plasma CPU,” Sept. 2010.
[16] G. e. a. Gibeling, “Gatelib: A library for hardware and software

research,” tech. rep., 2010.
[17] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. D. Owens, “Ef-

ficient computation of sum-products on gpus through software-managed
cache,” in ICS ’08: Proceedings of the 22nd annual international
conference on Supercomputing, (New York, NY, USA), pp. 309–318,
ACM, 2008.

[18] M. Fishelson and D. Geiger, “Exact genetic linkage computations for
general pedigrees,” Bioinformatics, no. 18, pp. 189–198, 2002.

