
High-Throughput Bayesian Computing Machine with
Reconfigurable Hardware

Mingjie Lin, Ilia Lebedev, and John Wawrzynek
Department of Electrical Engineering and Computer Science

University of California at Berkeley, CA 94704
{mingjie.lin, ilial, johnw}@berkeley.edu

ABSTRACT

We use reconfigurable hardware to construct a high through-
put Bayesian computing machine (BCM) capable of evalu-
ating probabilistic networks with arbitrary DAG (directed
acyclic graph) topology. Our BCM achieves high throughput
by exploiting the FPGA’s distributed memories and abun-
dant hardware structures (such as long carry-chains and reg-
isters), which enables us to 1) develop an innovative mem-
ory allocation scheme based on a maximal matching algo-
rithm that completely avoids memory stalls, 2) optimize and
deeply pipeline the logic design of each processing node, and
3) schedule them optimally. The BCM architecture not only
can be applied to many important algorithms in artificial
intelligence, signal processing, and digital communications,
but also has high reusability, i.e., a new application needs
not change a BCM’s hardware design, only new task graph
processing and code compilation are necessary. Moreover,
the throughput of a BCM scales almost linearly with the
size of the FPGA on which it is implemented.

A Bayesian computing machine with 16 processing nodes
was implemented with a Virtex-5 FPGA (XCV5LX155T-2)
on a BEE3 (Berkeley Emulation Engine) platform. For a
wide variety of sample Bayesian problems, comparing run-
ning the same network evaluation algorithm on a 2.4 GHz
Core 2 Duo Intel processor and a GeForce 9400m using the
CUDA software package, the BCM demonstrates 80x and
15x speedups respectively, with a peak throughput of 20.4
GFLOPS (Giga Floating-Point Operations per Second).

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: [Special-Purpose
and Application-Based Systems]

General Terms

Algorithm, Experimentation, Measurement, Performance

Keywords

Reconfigurable Hardware, Bayesian Computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02 ...$10.00.

1. INTRODUCTION
We present a Bayesian computing machine (BCM), an

FPGA-based special-purpose processor, for computing the
many important algorithms in artificial intelligence and sig-
nal processing that can be represented as Bayesian prob-
abilistic networks. These algorithms include the forward
or backward algorithm, the Viterbi algorithm, the iterative
“turbo” decoding algorithm, Pearl’s belief propagation al-
gorithm, the Kalman filter, and certain fast Fourier trans-
form (FFT) algorithms. Reminiscent of many-core proces-
sor designs, the BCM architecture we present consists of
many processing nodes. However, unlike many-core archi-
tectures, the BCM achieves the maximum practically possi-
ble throughput from the logic fabric, allows more than 20 to
30 pipeline stages, and permits long-latency, low-bandwidth
memory while achieving zero memory stalls.

Although accelerating Bayesian network applications with
reconfigurable hardware is not a new idea, we believe our
work is novel in several aspects. In addition to being high
throughput, the BCM architecture is completely reusable
and therefore applicable in a wide range of Bayesian network
computing problems. More specifically, an implementation
of the BCM can be applied to Bayesian problems with dif-
ferent size and/or graph topology, and works equally well for
different kinds of applications. As long as the task graph of
the new application is a DAG, only revised task graph pro-
cessing and code compilation are needed while the FPGA
implementation of the BCM can remain the same. Fur-
thermore, the throughput of a BCM implementation scales
almost linearly with the size of FPGA on which it is imple-
mented, provided the CAM structure in the memory alloca-
tor scales with the number of processing nodes. As shown in
Section 6.2, this can be achieved by designing a processing
array structure that computes maximal matching efficiently
and allows pipelining easily.

The key technique we employ in the design of the BCM
to achieve high throughput is to deeply pipeline processing
nodes running in parallel. Typically in processor design,
aggressive pipelining diminishes performance return due to
hazards and memory misses. A major contribution of this
work is to develop various techniques to overcome these is-
sues. More specifically:

1. We developed an algorithm to efficiently schedule pipelined
processing nodes to avoid dependency from input data.
To our knowledge, this work is the first formulation of
optimal task scheduling where processors are pipelined
with constant precedence delay.



2. We developed an innovative memory allocation scheme
that exploits the deterministic pattern of incoming data
items, which completely removes memory stalls. In
particular, we have designed a processing array struc-
ture which allows efficient maximal matching and can
be easily pipelined.

3. In contrast to conventional direct-address memory, our
BCM uses a CAM-based approach to dynamically al-
locate memory and to perform fast queries. The CAM
structures allow both memory allocation and memory
scheduling.

1.1 Applications
Many important applications exist for the Bayesian graph-

ical model ([1], Chapter 8) and consequently can be greatly
accelerated by the BCM. We now describe two seemingly un-
related applications—early vision and DNA pyrosequencing—
in order to illustrate the wide applicability of the BCM ar-
chitecture.

The first application we consider is a group of early vi-
sion problems (such as stereo and image restoration), which
are vital for many machine vision applications. It has been
found recently that all those problems can be accurately
solved with the belief propagation framework [2]. A special
case of the sum-product algorithm, belief propagation [3]
is a message passing algorithm for performing inference on
graphical models, such as Bayesian networks and Markov
random fields, whose core is calculating the marginal dis-
tribution for each unobserved node, conditional on any ob-
served nodes. Although the belief propagation algorithm
is conceptually straightforward, software implementations
of this Bayesian inference algorithm for typical early vision
problems are often too slow for practical use even with so-
phisticated algorithmic techniques [2]. More concretely, as-
suming 30 frames/second and 1.2M pixels per image frame
for a typical early vision problem, [2] shows each pixel needs
to perform 16 floating point operations on average for each
inference iteration, which translates into the effective com-
puting requirement of 0.6 GFLOPS for real-time processing—
at least one order higher than a software implementation
running on a modern processor. In contrast, as shown in
Section 7, our BCM prototype can easily achieve effective
throughput of about 20 GFLOPS.

The second interesting application is DNA pyrosequencing—
a special case of the sequencing-by-synthesis process. As
in [4], non-idealities of a typical pyrosequencing run can
be modeled as a noisy switched linear system parameter-
ized by the unknown DNA sequence whose switching is per-
formed by the input test sequence. Due to long correlational
memory and stochastic non-idealities in the pyrosequencing
process, exact inference on the proposed dynamic Bayesian
learning network has been shown to be computationally pro-
hibitive in both run-time and memory usage for reasonable
problem sizes. In our group, for a base-calling length of 300,
one successful sequencing normally takes days to compute
on a Core 2 Duo Intel processor, while the BCM takes mere
hours.

1.2 Related Work
Recently [5], Bayesian probabilistic network has become a

popular tool for computational data analysis in a variety of
domains. The reported successful applications of Bayesian
probabilistic network include restoring images to emulate

early vision [2], analyzing DNA expression data [6], deducing
evolutionary trees from DNA sequences [7], inferring cellular
networks using probabilistic graphical models [8], and pro-
filing Bayesian motif families among massive gene sequence
data [9]. All these applications demand high computational
power due to enormous amount of raw data, sophisticated
mathematical modeling, and huge time complexity of the
underlying algorithms [10, 11]. As a result, several stud-
ies have been conducted to accelerate their execution. For
example, [12] presents a software/hardware co-design ap-
proach to learning protein transcriptional networks that is
scalable to very large networks and achieves orders magni-
tude speed-up over algorithms running on the Von Neumann
computing paradigm. More recently, in [13, 14], implemen-
tations of Bayesian networks based on direct hardware map-
ping are proposed. However, both of these works focus on
specific problems and encode the specific graph topology by
reconfiguring FPGA hardware, thus their derived algorithms
have limited generality. In this work, we build on the experi-
ence of others in applying hardware acceleration to Bayesian
network problems, but do so in a way that guarantees high
throughput on a wide variety of problems while focusing on
both code reusability and scalability.

The rest of the paper is organized as follows. After in-
troducing the Bayesian probabilistic network and its asso-
ciated computing model briefly in Section 2, we detail the
architecture of the BCM, its main components, and vari-
ous design decisions in Section 3. Sections 4 and 5 provide
detailed proofs and algorithms to optimally schedule pro-
cessing nodes and allocate memory for intermediate data in
the BCM, both of which are key to achieving high through-
put in our BCM. In Section 6, we illustrate a prototype of
the BCM with a Virtex-5 FPGA on a BEE3 board. Finally
in Section 7, we compare the BCM’s performance with both
a conventional PC solution and a GPU one with CUDA.

2. BAYESIAN GRAPH AND ITS COMPUT-

ING MODEL
A graphical model is a probabilistic model for which a

graph denotes the conditional independence structure be-
tween random variables. They are commonly used in proba-
bility theory and statistics—particularly Bayesian statistics
and machine learning.

If the network structure of the model is a directed acyclic
graph, the model represents a factorization of the joint prob-
ability of all random variables. More precisely, if the events
X1, . . ., Xn are independent, then the joint probability sat-
isfies

P [X1, . . . , Xn] =
n

Y

i=1

P [Xi|pai]

where pai is the set of parents of node Xi. In other words,
the joint distribution factors into a product of conditional
distributions. Any two nodes are conditionally independent
given the values of their parents. In general, any two sets of
nodes are conditionally independent given a third set if a cri-
terion called d-separation holds in the graph. Local indepen-
dence and global independence are equivalent in Bayesian
networks.

This type of graphical model is known as a directed graph-
ical model, Bayesian network, or belief network. Classic



machine learning models like hidden Markov models, neural
networks, and newer models such as variable-order Markov
models can be considered special cases of Bayesian networks.
Figure 1 illustrates a realistic dynamic Bayesian gene net-
work generated from apoptosis timecourse data in [15], where
dots represent transcripts (“nodes”) and arrows between the
dots represent potential cause and effect interactions be-
tween transcripts (“edges”).

Figure 1: A dynamic Bayesian gene network gener-
ated from apoptosis timecourse data.

Many practical problems, such as the forward/backward
algorithm, the Viterbi algorithm, and the Pearl’s belief prop-
agation algorithm for Bayesian networks, can be translated
into an “inference” formulation, which tries to compute the
posterior distribution of hidden nodes given observed nodes
in a graphical model, in particular the marginal distribu-
tion of each hidden node. Typically, a graphical model de-
fines a joint distribution p(x1:N). Assuming there is no ob-
served node, we can solve a wide range of problems under
the Bayesian framework by evaluating the marginal p(xn)
on node n, defined by

p(xn) =
X

x1

· · ·
X

xn1

X

xn+1

· · ·
X

xN

p(x1:N)

Unfortunately, because a typical Bayesian network nor-
mally has an exponential number of such terms, even with
speed-up techniques such as variable elimination, junction
tree, and the sum-product algorithm, we still face prohibitively
long evaluation time for any large-scale Bayesian network [11].
Refer to [1] for more detailed discussions on various algo-
rithms. This work aims to develop effective techniques for
evaluating large-scale Bayesian networks with high through-
put.

2.1 Computing Model
At the high level, the computing of Bayesian probabilis-

tic networks can be treated as an evaluation of a set of
task nodes constrained by a precedence graph, whereby each
Bayesian graph node corresponds to a node in the task
graph. In this work, we focus on a class of graphs called
polytrees. In graph theory, a polytree [3] or singly con-
nected network is a directed graph with at most one undi-
rected path between any two vertices. In other words, a
polytree is a directed acyclic graph (DAG) for which there

are no undirected cycles. Every directed tree is a polytree,
but not every polytree is a directed tree. Figure 2(a) shows
a polytree which is not a directed tree. Polytrees often are
encountered in Bayesian networks. In fact, some problems
can be solved for polytrees in polynomial time but take ex-
ponential time in general networks.

(a) (b)

Figure 2: Two directed graph examples. (a) Poly-
tree and DAG. (b) DAG.

3. BAYESIAN COMPUTING MACHINE
The architecture of our BCM is highly optimized for evalu-

ating Bayesian algorithms. Despite its conceptual similarity
to a modern multi-processor system or a many-core proces-
sor, our BCM has its unique structure shown in Figure 3.
More specifically:

• Each processing node only implements the minimum
hardware required for the necessary Bayesian compu-
tation. More specifically, it receives two input mes-
sages, performs the necessary computation, and then
sends an outgoing message. The exact computation
needed in each processing node depends on the Bayesian
algorithm considered and is defined by:

– sum-product algorithm: the outgoing message is
obtained by taking the product of both incoming
messages and multiplying it by the inverse of the
sum of all incoming messages received so far at
this processing node.

– max-sum algorithm: the outgoing message is ob-
tained by taking the maximum of both incoming
messages and multiplying it by the inverse of the
sum of all incoming messages received so far at
this processing node.

More details of both algorithms and their derivations
can be found in [1].

To increase throughput, each processing node is deeply
pipelined. Unlike in conventional parallel processors
implemented with ASIC technology, where the pipeline
stages seldom exceed 10 due to data dependencies, in
the BCM, we pipeline each processing node to 20∼30
in order to maximize the throughput. Furthermore, in-
stead of building sophisticated control circuitry to han-
dle data or instruction hazards, the BCM completely
avoids dependencies by pre-processing the computing
task graph as discussed in Section 4 and strategically
allocating memory for intermediate results during the
execution as discussed in Section 5.

• The memory of the BCM is physically distributed in
order to take advantage of the massively distributed



Processor

ProcessorProcessorProcessorProcessor

Switching Crossbar

Switching Crossbar

MemMemMemMemMemMemMem

Scheduler

S
ch

e
d
u
le

r

(a)

(b)

Figure 3: (a) Major components in a BCM and their
interconnection. (b) Diagram of pipeline stages in
processing node and memory allocator.

memory blocks in a modern FPGA. The communica-
tion between processors and memories is handled by
two separate crossbar switches as shown in Figure 3.
The number of distributed memory modules is at least
two times the number of processing nodes, and will be
more if each memory module runs slower than the pro-
cessing nodes as discussed in 5. Combined with pre-
processing of the computing task graph in the com-
pilation phase, our novel memory allocation scheme
can effectively avoid any data dependency and mem-
ory hazards.

• As for each processing node, the scheduler that con-
trols the two crossbars is also deeply pipelined to im-
prove the throughput. Given the fact that all informa-
tion needed for memory allocation of outgoing mes-
sages is available before its results, we can start com-
puting the schedule right after the first stage of the
processor. This situation is depicted in Figure 3(b).

3.1 Code Compilation and Execution
A user application is defined as a task graph, where each

node represents a unit of computation. The BCM considers
a DAG G (directed acyclic graph), which is a directed graph
with no directed cycles. Note that a polytree is a strict
subset of the DAG. The BCM accepts a DAG with arbitrary
topology and size. Each node can have larger-than-2 in-
degree and larger-than-1 out-degree. To save hardware, each
processing node of the BCM only accepts two inputs and one
output. Consequently, for a DAG G with arbitrary in-degree
and out-degree, we first transform it into a binary DAG G2

by adding intermediate nodes as illustrated in Figure 4(b).
For nodes with out-degree larger than 1, we replicate the
output result in memory, so downstream nodes can read
them without conflict.

Let G∗ be the resulted graph, where each node ni has in-
degree din ≤ 2 and out-degree dout = 1. Each node contains
information defined by a 2-tuple {i1, i2}, where {i1} and {i2}
are the indices of its two parents. Together with precedence
latency D, G∗ is fed to the schedule detailed in Section 4.

After scheduling, each node is assigned two values: t, the
starting time of its execution and pi, the index of its assigned
processing node.

4. OPTIMALLY SCHEDULING PROCESSORS
As in any parallel computing environment, efficient schedul-

ing of a task graph onto multiple processors is vital for
achieving high performance. In this work, we consider the
problem of scheduling constant-length jobs on N identical
parallel processors to minimize the makespan in the pres-
ence of precedence constraints, precedence delays, and com-
munication delays. We assume that each task needs execu-
tion on each pipeline stage and that each pipeline stage is
unit-length. This work only concerns the precedence con-
straints that can be described as a DAG. Because the struc-
ture of our Bayesian task graph in terms of its task execu-
tion times, task dependencies, as well as task communica-
tions and synchronization, is known a priori, our scheduling
can be accomplished statically at compile time. Although
in our BCM, all processing nodes reside on a single FPGA,
one can view them as independent processors, and apply
the previous research on multi-processor scheduling to this
compilation problem.

j j

(a) (b)

11

2

2

33
4

4

5 5
6

aa bb cc

dd ee f f gg

hh ii

Figure 5: Scheduled task graph. (a) D=1. (b) D=2.

More concretely, we will consider the problem of schedul-
ing L unit-length tasks on N identical parallel processing
nodes to minimize the makespan in the presence of prece-
dence constraints, precedence delays and communication de-
lays. Precedence constraints model dependencies between
the tasks; assuming a directed acyclic precedence graph G =
(V,E) on the tasks V. With each precedence-constrained
task pair (i, j) ∈ E, and pair of processing nodes (a, b), there
is an associated non-negative delay di,j,a,b bounded by a con-
stant D. An edge between tasks i and j means that if task
j depends on task i, then task j can not be executed until
at least di,j,a,b time units after task i finishes. To appreci-
ate the significance of precedence delay, consider the task
graph shown in Figure 2 as an example. If all precedence
delay di,j,a,b equals to constant 1, the schedule depicted in
Figure 5(a) is valid and the make-span is 5. In contrast, if
precedence delay increases to 2, the schedule in Figure 5(a)
becomes invalid because the separation time between task a

and d is not sufficient. On the other hand, the schedule in
Figure 5(b) is valid for precedence delay 2.

The objective of our static scheduling is to minimize the
schedule length and thus the overall execution time. It
is well known, however, that multiprocessor scheduling for
most precedence-constrained task graphs is an NP-complete
problem in its general form [16]. To make this problem
feasible, simplifying assumptions are often made regarding
the task graph structure representing the program and the



12

8

1

13

9

14 10

7

11

5

2

6

4

3

(a)

12

8

m1

1

13

9

14

10

7

11

5

2

6

4

3

(b)

Level 4

Level 3

Level 2

Level 1

12

8

13

9

14 11

7

510

6

2

4

3

m1

1

(c)

Figure 4: (a) A task graph. (b) Converted binary graph with node m1 inserted. (c) A scheduled task graph.

model for the parallel processor systems [17]. In this work,
we adopt a simple heuristic scheduling algorithm based on
Graham’s list-scheduling rule (LSA) [18], which guarantees
a 4-approximation ratio to the optimal solution. Note the
original scheduling algorithm in [18] applies only to non-
pipelined processors, while our algorithm listed as the fol-
lowing is a straightforward extension. To our knowledge, our
work is the first study to consider optimal task scheduling
for pipelined processors with constant precedence delay.

Algorithm 1 Task Scheduling Algorithm for BCM

Given task list {Ti|i = 1, 2, · · · , L} and Ti = 1, 2, · · · , L;
Initially every processing node pj, j = 1, 2, · · · , N , is
un-occupied, with completion time Γj = 0 for all j =
1, 2, · · · , N .
for k = 1 to L do

Let task j = Tk. Its starting time is Sj = max(max{Ci+
dij|(i, j) ∈ E}, min{Γh|h = 1, · · · , N}) and its comple-
tion time is Cj = Sj + pj.
Assign job j to a processing node h such that Γh ≤ Sj.
Update Γh = Cj.

end for

Various rules can be used in Step 5 in Algorithm 1 for the
choice of the assigned machine h. In this study, we choose
the processing node with largest completion time Γh (so as
to reduce the idle time between Γh and Sj). [18] has shown
that Algorithm 1 is a (4− 2

m
)-approximation algorithm, i.e.,

the performance is guaranteed to be no more than 4 times
worse than the optimum solution. The output of algorithm 1
is a schedule that assigns each job to a processor at certain
time slot.

5. HAZARD-FREE MEMORY ALLOCATION
During each time slot, each of the N processing nodes

produce a single result, which is written into one of the
M memory modules and later read by certain processing
nodes. Corresponding to the distributed RAM blocks in
modern FPGAs, we assume each memory module has sep-
arate write and read ports. In this study, we generalize
the memory read and write latency to be r clock cycles—a
bounded constant. The impact of memory latency is two-
fold: first, memory latency (> 1) translates into communica-
tion delay between processing nodes, which requires our task
scheduling to be intelligent enough to separate job batches
far enough to avoid memory stalls. This is discussed in Sec-
tion 4. Second, because each memory module has limited

bandwidth, no two processing nodes can write data into the
same memory module during the same clock cycle. Addi-
tionally, no more than one processing node can read from
a single memory module during the same clock cycle. In
the following, we first give the minimum number of memory
modules and devise a memory allocation scheme to avoid
read or write conflicts.

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

(a)

(b)

11

1

22

2

33

3

4

N N
M

Figure 6: (a) Diagram of connections between pro-
cessing nodes and memory blocks. (b) An example
of N = 3 and M = 4.

Figure 6(a) depicts the interconnects between N process-
ing nodes (processor) and M memory modules and Fig-
ure 6(b) illustrates a simple case where N = 3 and M = 4.
In both illustrations, the right and left sides of processors
only reflect a logic view; there is only one physical copy of all
processing nodes. When the results are computed and writ-
ten to the middle memory modules, each faces two kinds of
conflicts. During any particular clock cycle, outgoing data
cannot be written to the same memory module. We refer to
these as input conflicts. Since there are N processing nodes,
the maximum number of arrival conflicts an outgoing result
can have is (N−1). Output conflicts occur if multiple results
in the same memory memory are accessed simultaneously by
different processing nodes. Again because there are N pro-



cessing nodes, the cardinality of this set of conflicts is also
(N−1). Thus by the pigeon hole principle, a scheduler needs
only M ≥ (2N−1) memories to avoid any memory conflicts.

To completely eliminate memory stalls in a BCM, the
memory scheduler has to ensure that both input and output
conflicts can be resolved during any clock cycle. Input con-
flicts can be avoided if computed results from all processing
nodes can be written to distinct memories. Output conflicts
can be avoided if, during any clock cycle, all data items to
be consumed by all processing nodes come from different
memories.

Each output result pt,k from processing nodes can be in-
dexed as a 2-tuple (t, k), where t is the future clock cycle
when pt,k will be read out by the processing node nk, i.e.,
departure time. Both t and k values for each output result
from the scheduling of task graph during compilation stage.
Note that t and k values encode both topology of Bayesian
graph and inter-pipeline stage latency. For memory module
j, 1 ≤ j ≤ M , it is available to pt,k if and only if memory
module j doesn’t contain any saved result with the same
departure time k. For output result pt,k during clock cy-
cle i, we define the set of all available memory modules as
available memory set—AMS(pt,k, i).

We adopt the following memory allocation scheme:

Algorithm 2 Memory Allocation Algorithm for the BCM

For each output pt,k result to be written into memory, de-
termine its AMS(pt,k, i), i.e., memories that do not cur-
rently store output results with the same departure time.
Compute an allocation to memories which pairs each out-
put result pt,k with a distinct available memory within
AMS(pt,k, i).

Conceptually, the above memory allocation process can
be treated as finding a maximum matching for a bipartite
graph, which is illustrated by a simple example in Figure 7.
The available memory sets for the three processing node
(pi, i = 1, 2, 3) are {1, 3}, {1}, and {2, 3, 4}, respectively,
which can be converted into a bipartite graph depicted in
Figure 7(b). One valid memory allocation can be repre-
sented by the matching in Figure 7(c).

Processor

Processor Memory

(a) (b) (c)

AMS

{1, 3}

{1}

{2, 3, 4}

1
1

1
1

1
2

2

2

2
2

3

3

33

3

44

Figure 7: (a) Available memory set. (b) Bipartite
graph. (3) Maximum matching.

We now proceed to prove that the above memory allo-
cation algorithm (Algorithm 2) does yield a valid schedule.
If Algorithm 2 can be successfully executed during all clock
cycles, because at most one output result in a memory mod-
ule can have a specific departure time for a given processing
node to consume, and only one output result with a specific
departure time is ever written to a given memory, it should
be clear that during any clock cycle, every processing node is

able to read its intended input data from its corresponding
memory module, i.e., there is no output conflict.

To prove there is no input conflict, i.e., each processing
node, after its completion, can find at least one available
memory module to write its output data, we need to show
that there always exists a matching that pairs each newly
computed output data with a distinct compatible memory.
We prove this by induction. Let s be the induction step.

2 Induction Hypothesis: Initially, because all memory
modules are empty, our allocation scheme can obvi-
ously succeed. Assuming for step s and before, the
memory allocation scheme resolves all input and out-
put conflicts.

2 Induction step: During step s + 1, let t be the clock
cycle. Because we have N processing nodes, there can
be at most N − 1 output results already in the memo-
ries having departure time t. Consequently, there are
at least M − (N − 1) memories which do not have a
output data with departure time t. Because there are
M ≥ 2N − 1 memory modules, then at least N mem-
ories do not have an output data with departure time
t. Additionally, we need to prove the AMSs (available
memory sets) for all processing nodes are non-empty.
Without loss of generality, consider processing node j.
We use the contradiction method for the proof. Sup-
pose the AMS of j is empty, which means all memory
modules either contain output results with the same
departure time as the output data from processing
node j or are allocated for another processing node to
write its output data. Since at most N − 1 processing
nodes have been assigned to memory modules and at
most N − 1 output data will have the same departure
time t, the maximum number of unavailable memory
modules must be less than 2N−2, which means at least
M − (2N − 2) > 0 memory modules are available—a
contradiction.

The above proof not only establishes that Algorithm 2
can always produce a valid memory allocation void of read
and write conflicts, but also implies the optimal matching
needs not be maximum matching—a maximal matching is
sufficient. Since maximum matching has been shown to be
expensive to compute even for small size of bipartite graph,
this observation is vital to simplify the implementation of
our memory allocation scheme.

6. HARDWARE PROTOTYPING

6.1 Processing Node
One challenge of this study is performing floating-point

computations with FPGAs. Because FPGA floating-point
units are typically clocked 10 times slower than the equiva-
lent in contemporary processors, the BCM architecture has
to exploit both the massive parallelism found in FPGAs and
the fact that the precision can closely match the applica-
tion’s requirements in order to achieve the desired through-
put [19, 20, 21]. In this work, we adopt a parameterized
floating-point unit design capable of only addition and mul-
tiplication and choose single precision over double precision,
because it consumes a smaller fraction of the FPGA’s re-
sources and has smaller latency. Furthermore, we deeply



pipeline each processing node into 18 stages in order to max-
imize its throughput. Our implementation of the floating-
point unit is largely adopted from [19]. Figure 8 shows
the flow-graph of an abstract floating-point operator divided
into these steps.

P
re

p
a
ra

tio
nO
p
e
ra

tio
n N
o
rm

a
liz

a
tio

n

Signa Signb Expa Expb Fraca Fracb

Prepare

Sign

Prepare

Exp

Prepare

Frac

Operateon

Exp

Integer

Operator

Adapt

Sign

Adapt

Exp
Roundand

Normalize

Signout Signout Expout

Figure 8: Diagram of the floating-point operator in
BCM.

In this work, we concentrated on achieving the highest
possible throughput. Among many techniques, pipelining
allows a designer to trade the minimum clock period of a
circuit for latency in number of clock cycles. This technique
is especially attractive in the BCM, a feed-forward design
where no dependencies disrupt the flow of data, allowing an
unbounded number of pipeline stages without the need for
bypassing or stalls. Additionally, the BCM uses the special
memory allocation scheme described in Section 5 to prevent
any memory read and write misses. Both these features
are in sharp contrast to a general-purpose processor design,
where data dependency and conditional branches often cause
serious performance degradation in long pipelines.

One key aspect of pipeline design is balancing pipeline
stages in order to produce the lowest overall combinational
delay. Unlike conventional pipeline designs, we automate
the pipeline design of the BCM by exploiting sophisticated
FPGA tools that optimize pipeline stages by balancing the
logic between the registers separating the pipeline stages.
Specifically, we start with a bulk design of processing node
logic attached to a number of shift registers and then use
the Xilinx ISE tool suite to synthesize, place, and route with
strict timing constraints. This processing forces our origi-
nal logic design to be repartitioned and retimed to achieve
the best overall throughput. This approach enables a de-
signer to produce reusable functional blocks with a param-
eterized latency—an approach that increases the longevity
and usefulness of the block, and simplifies its integration
into latency-constrained systems, such as statically sched-
uled cores.

6.2 Memory Organization and Allocator
In contrast to conventional direct-address memory, our

BCM uses a CAM-based approach to dynamically allocate
memory and perform fast queries. CAM structures in the
BCM serve both for memory allocation and as part of mem-
ory scheduler. As illustrated in Figure 9, distributed mem-
ory blocks storing results from all processing nodes share
a common address space managed by a CAM structure.
Two kinds of memory resource in FPGA are utilized; stored
words in CAM and results memory are implemented with
LUT RAMs and block RAMs, respectively. Upon each write

to the main memory, a fast look-up is first performed in the
CAM structure in order to find any entry with the invalid
bit set. The match line address is then used to write the
resulted data to an available entry in main memory. Note
that each stored word entry in the CAM is directly mapped
to an entry in the main memory and therefore, memory ad-
dresses are not stored in the CAM. The motivation behind
this CAM-based indirect approach is two-fold: 1) since all
block RAMs share a common address space, the CAM struc-
ture permits balanced use among all processing nodes and
accommodates excessive usage by a few processing nodes
(this scheme resembles the virtual memory scheme typically
found in operating system), and 2) more importantly, the
CAM structure provides quick access to the global state of
memory allocation, which is crucial to the hazard-free mem-
ory allocation scheme discussed in Section 5.

(a)

(b)

Memory Bank

Stored Word 0

Stored Word 1

Stored Word 2

Stored Word 2n − 1

n
-b

it
A

d
d
re

ss

Search Word

Input Port Output Port Departure Time

Figure 9: (a) Indirect memory addressing by CAM.
(b) Data format of each CAM entry.

There are various ways to implement the CAM struc-
tures inside an FPGA. Our design is based on Virtex-specific
device features including fast dedicated carry chains, dis-
tributed RAM, built-in shift registers (SRL16E) and Virtex
Block SelectRAM + memory. We attempted three imple-
menting methods based on purely logic, LUT RAM, or block
RAM. The main advantage of using existing RAM structures
in FPGAs is its high density, because by implementing the
compare table in distributed RAM, the other logic in the
CLB (carry chain, muxes, flip-flops, etc.) is still available to
the designer. The other alternative is to use the logic fabric
to implement the CAM from scratch, which, although low
in density, offers the highest flexibility in pipelining. Results
of various implementation are listed in the following table.

Config. Structure Type Area Performance-MHz

(# of Pipeline Stages)

8K×32bit

BRAM32k <4% 315 (4)

LUT RAM <7% 422 (4)

CLB <14% 512 (9)

32K×32bit

BRAM32k <9% 292 (4)

LUT RAM <12% 398 (4)

CLB <24% 488 (10)

Table 1: Hardware usage of different implementa-
tions of CAM.

Our final implementation uses the distributed RAM (built



from Look-Up Tables or LUTs) for various look-up tables
and the block RAM or an external RAM component as the
packet memory buffers. A simple logic diagram is shown in
Figure 5.

Compare Enable

Data

MemAddress

LUT

LUT

LUT

LUT

RAM

RAM

RAM

C
a
rry

C
h
a
in

Figure 10: Logic diagram of implementing CAM
with Virtex-5 specific hardware structures.

Other important structures in the BCM are counters asso-
ciated with each processing node, which tracks the number
of results produced at that processing node, i.e., they are
incremented each time a result is computed by a processing
node and subsequently placed in the memory, and are decre-
mented each time a result is read from the main memory.
We find it convenient to have a counter curr_time, which is
initialized to 0, and is incremented by 1 at the start of each
new cycle. The curr_time counter is added to the queue
length of an output port to determine the departure time of
each arriving packet. If multiple packets arrive for the same
output, ties are broken according to input port IDs and each
packet is given a distinct departure time.

(a)

(b) (c)

0

0

0

0

0

0

00

0

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

MC

MCMC

MCMCMCMC

MCMCMCMC

MC

MC

MCMC

MC

MC

In

Out

InCol

OutCol

InRow OutRow

Figure 11: (a) n×m bit map. (b) Single array block,
OutRow = InRow ∨ Out, OutCol = InCol ∨ Out, and
Out = In∧InRow′∧InCol′. (c) Array architecture for
computing maximal matching.

Finally, we look at the implementation of the memory al-
locator. As discussed in Section 5, the core task of the BCM
memory allocation scheme is to compute maximal matching
in hardware, which essentially is a sequential greedy algo-
rithm. We designed a novel array-based structure as shown
in Figure 11 to accomplish this task. The input to this ar-
ray structure is a n × m bit map, where n and m denote
the number of processing nodes and the number of memory
modules, respectively. As shown in Figure 11(b) and (c), the

proposed array structure not only is regular but also can be
easily pipelined in order to achieve high throughput.

A prototype of the proposed BCM with 16 processing
nodes was implemented with a Virtex-5 FPGA (XCV5LX155T-
2) on a BEE3 (Berkeley Emulation Engine) platform. Each
processing node is pipelined to 18 stages. The placed and
routed prototype is shown in Figure 12(b). Various main
components are color-coded: The blue are the 16 processing
nodes, each of which is a single-precision floating point unit
pipelined with 18 stages; the yellow are the units for comput-
ing the maximal matching to allocate memory; the red are
two crossbars for communications between processing nodes
and result memory; the green is mostly connections between
control logic, processing nodes, and the main memory, most
of which are CAM structures plus a test harness.

(a) (b)
Memory Allocator

Memory BlocksProcessing Nodes

Figure 12: (a) Block diagram of the 16-node BCM
prototype. (b) FPGA layout after placement and
routing.

7. PERFORMANCE AND ANALYSIS
Reconfigurable computing platforms are often benchmarked

against software solutions running on general-purpose mi-
croprocessors. However, as Graphics Processing Units (GPUs)
have emerged as a powerful platform for the high-performance
computation of many scientific workloads [22], it becomes
more meaningful to compare the performance of our BCM
with that of a highly optimized GPU solutions because: both
are optimized for high-throughput data processing, and tar-
get easily parallelizable workloads with low data reuse and a
high compute-to-memory access ratio (arithmetic intensity).

We compare the performance of the BCM with two other
solutions: standard C code running on a 2.4 GHz Core 2
Duo Intel processor and CUDA code running on a NVIDIA
GeForce 9400M. The sum-product (or marginalize a product
of functions (MPF)) solver, often used for inference in very
large Bayesian networks, is chosen to be our target applica-
tion [23]. For all three solutions, namely, BCM, GPU-based,
and CPU-based, we run the identical MPF kernel source
code from [23]. The GPU version of the MPF kernel runs
on a NVIDIA GeForce 9400M graphics card, with 16 CUDA
Parallel Processor Cores and 54 GFLOPS peak computing
power. The CPU version is invoked on a single core of an



Intel Core 2 Duo 2.4 GHz CPU with 32KB L1 and 3 MB
L2 cache. Both the CPU and GPU versions are optimized
for caching. To avoid underflow, all computations are per-
formed in the log domain as follows: each input is replaced
with its logarithm before the computation; multiplications
are replaced by summations; summations require comput-
ing the exponent of each summand and the logarithm of the
result. As in [23], we used the log2f and exp2f functions for
logarithm and exponent computation with the same single
precision on BCM, CPU, and GPU. When comparing run
time, we report only the pure execution time, excluding the
time for data transfers between the CPU and the GPU, for
task graph processing, and for pipeline scheduling on CPU.
To evaluate the performance on real MPF instances, we used
Bayesian network instances generated from the real-life ge-
netic data by SuperLink [24] 1. In addition, we evaluate
some randomly generated Bayesian networks for reference.

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Problem Size (MFLOPS)

P
e
rf

o
rm

a
n
c
e

(G
F
L
O

P
S

/
se

c
.)

Red → BCM

Blue → GPU

Black → CPU

Figure 13: Performance comparison between BCM,
GPU-based, and CPU-based solutions for input
Bayesian graph with variable sizes.

Benchmark

Speed-Ups

BCM vs. GPU BCM vs. CPU

Min. Max. Avg. Min. Max. Avg.

Random NW 10.27 124.22 18.89 22.31 231.23 126.78

Bayesian NW 1.17 112.99 14.98 16.86 173.21 76.24

Table 2: Speed-ups achieved by the BCM over GPU-
based and CPU-based platforms.

The performance criterion we use for a single kernel invo-
cation is the number of floating-point operations per second,
measured in GFLOPS. In order to measure the size, or the
input complexity, of each benchmark instance, we only con-
sider the multiplications and summations required by the
algorithm. In order to accurately measure the run time, we
invoke the kernel on the same input until the accumulated
running time exceeds five seconds as in [23], and then derive
the time for a single invocation. Kernel invocation overhead
(∼10 µs) is ignored. The size of our benchmark designs vary
from 0.001 to 1000 MFLOP; each case is run 10 times. Fig-
ure 13 presents the performance for all three platforms. The
BCM demonstrates an average 80x and 15x speedup over

1Downloadable from http://bioinfo.cs.technion.ac.il/superlink/

CPU and GPU solutions, respectively. The peak through-
put of our BCM prototype is about 20.4 GFLOPS. Table 2
summarizes the speedups obtained in the our experiments
for both randomly generated and experimental networks.

7.1 Discussion

Centralized Share Memory

bandwidth = 2 × n × w

Array of n Processing Nodes

Figure 14: Functionally equivalent multiprocessor
to a BCM, where w denotes the bandwidth of each
memory module.

The BCM, as shown in Figure 3(a), can avoid memory
stalls and unnecessary pipeline bubbling by prior task graph
processing, pipeline scheduling, and hazard-free memory al-
location. This makes a BCM functionally equivalent to a
multiprocessor with a high-bandwidth (= 2 × n × w) cen-
tralized shared memory, which is infeasible for the current
IC device technology. Furthermore, assuming all pipeline
stages are busy, the throughput of a BCM can be readily
computed as fpipeline × 2 × n, where fpipeline denotes the
frequency of each pipeline stage, n is the number of pro-
cessing nodes, and 2 is the number of floating operations in
each processing node during each clock cycle. This scenario
is drastically different from the situation in general-purpose
processor or GPU, where the effective throughput for partic-
ular applications is often far below its potential peak value,
and is strongly influenced by branch prediction, cache man-
agement policy, and specific data access pattern, etc.. More
importantly, the throughput of a BCM is completely scalable
with the size of the FPGA, i.e., as the number of processing
nodes in an FPGA grows, the BCM’s throughput increases
proportionally. This is a significant advantage over a GPU,
which typically has only several sizes.

8. CONCLUSIONS
Conventional multi-processor architecture design aims at

general-purpose applications, and thus faces unpredictive
data patterns and non-deterministic memory access pat-
tern. In this work, we focused on applications based on
a Bayesian graphical model and commonly found in artifi-
cial intelligence, signal processing, and digital communica-
tions. Therefore, we can design and implement specialized
algorithms to avoid memory stalls and to optimally sched-
ule processing nodes. For the proposed Bayesian computing
machine (BCM), the role of the compiler is much more cru-
cial than it is for traditional processors. Specifically, the
processor scheduler and memory allocator for the BCM ob-
serve the data dependencies between the operations and ren-
der hardware schemes such as branch prediction or specula-
tive execution unnecessary. In the BCM architecture, it is
the compiler/scheduler that solely determines the quality of
the resulting code and therefore overall throughput is much
more predictive. This principle can be especially useful in



embedded system design, where the code is only compiled
once (making even lengthy compilation times acceptable),
but an optimal performance is required of the resulting sys-
tem.

Acknowledgments:

This work was funded by DARPA, contract number FA8650-
09-C-7907, the NIH, grant number 1R01CA130826-01, and
the Berkeley Wireless Research Center (BWRC). The au-
thors would like to thank Greg Gibeling and the Berkeley
GateLib project for implementations of various HDL mod-
ules.

9. REFERENCES

[1] C. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, August
2006.

[2] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient
belief propagation for early vision,” Int. J. Comput.
Vision, vol. 70, no. 1, pp. 41–54, 2006.

[3] J. Pearl, Probabilistic reasoning in intelligent systems:
networks of plausible inference. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1988.

[4] H. Eltoukhy and A. El Gamal, “Modeling and
base-calling for DNA sequencing-by-synthesis,” in
Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International
Conference on, vol. 2, pp. II–II, May 2006.

[5] E. Airoldi, “Getting started in probabilistic graphical
models,” PLoS Comput Biol, vol. 3, p. e252, 12 2007.

[6] N. Friedman, M. Linial, I. Nachman, and D. Peter,
“Using Bayesian networks to analyze expression data,”
Journal of Computational Biology, vol. 7, pp. 601–620,
August 2000.

[7] J. Felsenstein, “Evolutionary trees from DNA
sequences: a maximum likelihood approach.,” Journal
of Molecular Evolution, vol. 17, no. 6, pp. 368–376,
1981.

[8] N. Friedman, “Inferring cellular networks using
probabilistic graphical models,” Science, vol. 303,
pp. 799–805, Feb. 2004.

[9] E. Xing and R. Karp, “Motifprototyper: A Bayesian
profile model for motif families,” Proceedings of the
National Academy of Sciences of the United States of
America, vol. 101, pp. 10523–10528, July 2004.

[10] N. Friedman, I. Nachman, and D. Peer, “Learning
Bayesian network structure from massive datasets:
The ”sparse candidate” algorithm,” pp. 206–215, 1999.

[11] M. Neil, N. Fenton, and L. Nielson, “Building
large-scale Bayesian networks,” Knowl. Eng. Rev.,
vol. 15, no. 3, pp. 257–284, 2000.

[12] N. Asadi, T. Meng, and W. Wong, “Reconfigurable
computing for learning Bayesian networks,” in FPGA
’08: Proceedings of the 16th international
ACM/SIGDA symposium on Field programmable gate
arrays, (New York, NY, USA), pp. 203–211, ACM,
2008.

[13] Z. Kulesza and W. Tylman, “Implementation of
Bayesian network in FPGA circuit,” in Mixed Design
of Integrated Circuits and System, 2006. MIXDES

2006. Proceedings of the International Conference,
pp. 711–715, June 2006.

[14] I. Pournara, C. Bouganis, and G. Constantinides,
“FPGA-accelerated Bayesian learning for
reconstruction of gene regulatory networks,”
International Conference on Field Programmable Logic
and Applications, vol. 0, pp. 323–328, 2005.

[15] M. Affara, B. Dunmore, C. Savoie, S. Imoto,
Y. Tamada, H. Araki, D. S. Charnock-Jones,
S. Miyano, and C. Print, “Understanding endothelial
cell apoptosis: what can the transcriptome, glycome
and proteome reveal?,” Philosophical Transactions of
the Royal Society B: Biological Sciences, vol. 362,
no. 1484, pp. 1469–1487, 2007.

[16] M. R. Garey and D. S. Johnson, Computers and
Intractability; A Guide to the Theory of
NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[17] C. McCreary, A. A. Khan, J. Thompson, and
M. McArdle, “A comparison of heuristics for
scheduling DAGs on multiprocessors,” in in
Proceedings of the Eighth International Parallel
Processing Symposium, pp. 446–451, 1994.

[18] A. Munier, M. Queyranne, and A. Schulz,
“Approximation bounds for a general class of
precedence constrained parallel machine scheduling
problems,” in Integer Programming and Combinatorial
Optimization, volume 1412 of Lecture Notes in
Computer Science, pp. 367–382, Springer, 1998.

[19] G. Lienhart, A. Kugel, and R. Männer, “Using
floating-point arithmetic on FPGAs to accelerate
scientific N-Body simulations,” in FCCM ’02:
Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,
(Washington, DC, USA), p. 182, IEEE Computer
Society, 2002.

[20] R. Matousek, M. Tichý, Z. Pohl, J. Kadlec, C. Softley,
and N. Coleman, “Logarithmic number system and
floating-point arithmetics on FPGA,” in FPL ’02:
Proceedings of the Reconfigurable Computing Is Going
Mainstream, 12th International Conference on
Field-Programmable Logic and Applications, (London,
UK), pp. 627–636, Springer-Verlag, 2002.

[21] J. Detrey and F. de Dinechin, “A parameterizable
floating-point logarithm operator for FPGAs,” in
Signals, Systems and Computers, 2005. Conference
Record of the Thirty-Ninth Asilomar Conference on,
pp. 1186–1190, 28 - November 1, 2005.

[22] Owens, D. John, Luebke, David, Govindaraju, Naga,
Harris, Mark, Kruger, Jens, Lefohn, E. Aaron, Purcell,
and J. Timothy, “A survey of general-purpose
computation on graphics hardware,” Computer
Graphics Forum, vol. 26, pp. 80–113, March 2007.

[23] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and
J. D. Owens, “Efficient computation of sum-products
on gpus through software-managed cache,” in ICS ’08:
Proceedings of the 22nd annual international
conference on Supercomputing, (New York, NY, USA),
pp. 309–318, ACM, 2008.

[24] M. Fishelson and D. Geiger, “Exact genetic linkage
computations for general pedigrees,” Bioinformatics,
no. 18, pp. 189–198, 2002.


