
COMPUTER 42

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

In recent years, several computational resource types
have matured to the point that they can materially benefit
high-performance applications. These resources include
multicore general-purpose processors, reconfigurable
hardware, graphics processors, digital signal processors,
and other application-specific processors. In many cases,
the performance gains associated with these specialized
computational resources are quite significant, and perfor-
mance improvements of one to two orders of magnitude
have been reported.3,4

Systems built out of these resources are architecturally
diverse, and while constructing hardware prototypes that
include diverse compute resources is straightforward, ap-
plication development for such systems is quite difficult
for several reasons:

•	 In most cases, each compute resource has its own lan-
guage, development environment and tools, runtime
environment, and debugging aids.

•	 The intellectual task of describing the computation is
often quite different for each compute resource. For
example, developers typically use task-level threads
to program general-purpose processors and chip
multiprocessors, while they program reconfigurable
hardware at the register transfer level.

T
he recognition and subsequent exploitation of
streaming data semantics in applications can
dramatically simplify the development pro-
cess. Using the streaming data paradigm, the
expression of available parallelism is clarified,

the opportunities to inadvertently introduce races and
synchronization errors are fewer, and ensuring correct
execution is therefore easier. Brook1 and StreamIt2 are
examples of languages that support the direct expression
of streaming data semantics. Computation blocks, called
kernels in Brook and filters in StreamIt, communicate via
explicitly defined edges that move data between blocks
in a fixed topology specified at compile time. While not
every application is amenable to streaming data formula-
tion, a large number of applications fall into this class.

Auto-Pipe, an application development
environment for streaming applications
executing on architecturally diverse com-
puting platforms, supports the flexible
mapping and automatic delivery of appli-
cation components between computational
resources.

Roger D. Chamberlain, Mark A. Franklin, Eric J. Tyson, James H. Buckley, Jeremy Buhler, Greg
Galloway, Saurabh Gayen, Michael Hall, and E.F. Berkley Shands, Washington University in St. Louis

Naveen Singla, Exegy Inc.

AUTO-PIPE:
STREAMING
APPLICATIONS ON
ARCHITECTURALLY
DIVERSE SYSTEMS

?

Compute
platform 1

Compute
platform 2

Application
stage 1

Application
stage 2

Application
stage 3

43MARCH 2010

•	 homogeneous, multicore, general-purpose processors
(GPPs)—for example, x86 processors;

•	 heterogeneous multicore processors, which provide
processors of varying capability within a single chip—
for example, the IBM Cell processor and network
processors;

•	 graphics processing units (GPUs); traditionally aimed
at visual rendering, these processors are now being
used for a wide variety of purposes;

•	 reconfigurable hardware in the form of field-program-
mable gate arrays (FPGAs); and

•	 digital signal processors (DSPs) or other application-
specific instruction processors (ASIPs)—processors
for which the instruction set or architecture has been
optimized for an individual application or class of
applications.

Figure 2 shows an example of an architecturally diverse
system constructed using dual-core AMD Opterons, an

•	 Delivering data between these disparate environ-
ments is a significant task in its own right.

The result is that, while substantial performance gains
are achievable using diverse systems, these gains are only
achievable with enormous effort. Our aim is to simplify
the development and deployment of streaming applica-
tions onto diverse systems. This includes representation
of such applications and the available compute resources,
mapping of application components onto the resources,
providing a mechanism for evaluation of application
performance, and, finally, deployment onto the diverse
system and application execution.

To tackle these design issues, we constructed
Auto-Pipe,5 a development environment for streaming ap-
plications executing on architecturally diverse computing
platforms. Our approach involves the use of a coordina-
tion language to specify streaming data communications
between compute blocks combined with native languages
and toolsets for the development of the compute blocks
themselves. The environment supports evaluating appli-
cation performance early in the design cycle, mapping of
compute blocks to computational resources, and provid-
ing direct support for block-to-block communication both
within and between computational resources.

Given the decomposition of an application into a set of
interconnected compute blocks (for example, application
pipeline stages) and the existence of implementations (po-
tentially for more than one type of compute platform) of
each compute block, Figure 1 illustrates one of the design
questions that the development environment intends to
address. Across the top of the figure is an application that
consists of three pipelined computational stages (1 to
3). These stages might represent, for example, applica-
tion modules expressed both in C and in VHDL. Across
the bottom of the figure is a pair of computing resources
(compute platforms 1 and 2). The figure illustrates a pair
of candidate mappings, with application stage 2 mapped
either to platform 1 or 2.

While the figure illustrates a particular design question,
a full design problem presents many such questions. For
example, what technology should be used for compute
platform 1 (for example, processor core or reconfigurable
logic)? How does this choice impact the mapping ques-
tion for application stage 2? The Auto-Pipe application
development environment helps developers answer these
questions, while keeping them cognizant of the perfor-
mance implications of their design decisions.

ARCHITECTURALLY DIVERSE SYSTEMS
Architecturally diverse (or hybrid) computing systems

incorporate two or more distinct computational resource
types (or platforms) including the following:

Figure 1. Mapping an application to an architecture. The
application’s three pipelined stages are mapped to two
compute platforms. Application stage 1 is mapped to com-
pute platform 1, application stage 3 is mapped to compute
platform 2, and there is a question as to whether application
stage 2 should be mapped to compute platform 1 or 2.

FPGA GPU

DRAM

DRAM

DRAM

DRAM

SRAM

HT

HT HT

PCIePCI-X

CMP CMP
GPP GPP GPP GPP

Figure 2. Example of an architecturally diverse system
architecture. Two chip multiprocessors (CMPs) are
interconnected with a HyperTransport (HT) link. Additional
HT links are used to connect to an FPGA through a PCI-X
bus and a graphics processing unit (GPU) via a PCIe bus.
In this system, the memory attached to the two CMPs is
cache-coherent and shared across the four GPP cores, while
the memories attached to the FPGA and the GPU each form
separate address spaces.

COVER FE ATURE

COMPUTER 44

the same interface and streaming data semantics, thus
ensuring correctness regardless of the block-to-resource
mapping. Each supported language has a specific API and
syntax for specifying the particular data streaming inter-
face employed by the block, such as input ports (including
data type), output ports, and configuration parameters.

Coordination languages
Coordination languages have been developed in several

contexts. Edward A. Lee argued that coordination lan-
guages represent a better mechanism for reasoning about
concurrency than traditional thread-based approaches.6
Both Brook1 and StreamIt2 are languages tailored to
streaming applications for homogeneous compute plat-
forms where coordination is inherent in the language
definition. Explicit coordination languages have been used
in directing execution of software modules and in enhanc-
ing software reusability.7

David Gelernter and Nicholas Carriero discussed the in-
herent separation between computation and coordination
(they used the term “synchronization”) and the advantages
associated with explicitly separating the two.8 This separa-
tion is present in their Linda language.9

Our X language follows these ideas in many ways in that
it permits representation of algorithms in terms of coordi-
nation of blocks that communicate with each other where
the computation language associated with the blocks is
separate and may be one of a host of languages. However,
in the case of X, these blocks may be mapped onto diverse
compute resources.

X language benefits
There are several benefits to authoring applications

using this approach. First, it is possible to build a library
of blocks that can be (re-)used to enable application de-
velopment either entirely (or at least primarily) in the
coordination language without requiring implementa-
tion of individual blocks. This is analogous to the use of
numerical libraries such as BLAS for authoring scientific
applications. Base solvers are typically not recoded, but
application developers call them from the appropriate
libraries. This also follows the rationale behind much of
the work in the software-only domain referenced above.

Second, X provides the underlying structure so that the
application developer doesn’t need to code data move-
ment and synchronization between blocks. The X language
permits specification of data movement between blocks
at a high level, thus relieving the application program-
mer from tedious coding requirements. The X runtime
infrastructure automatically delivers block A’s output to
block B’s input. This delivery is independent of whether
block A and block B are deployed on a common resource
or distinct resources, independent of whether block A and
block B have a common memory subsystem or must use

off-the-shelf graphics card, and an FPGA card. This is but
one example out of many ways in which such a system
can be constructed.

While constructing this type of system is fairly straight-
forward, it is difficult to develop applications that can
effectively exploit its capabilities. Distinct computational
resource types typically have their own languages for de-
scribing applications. For example:

•	 multicore processors—C/C++ with thread-based or
message-passing parallelism for homogeneous cores,
specialized constructs (often including native assem-
bly language) for heterogeneous cores;

•	 GPUs—stream programming languages such as Brook
or APIs such as CUDA;

•	 FPGAs—hardware description languages such as Ver-
ilog, VHDL, and SystemC; and

•	 DSPs and ASIPs—C/C++ and assembly language.

Associated with each of these languages is a distinct
toolset that includes compilers (or synthesizers), runtime
environments, and debugging aids. Note that there is
little support in these languages and toolsets for enabling
data delivery between different types of computational
resources. Auto-Pipe’s focus is on enabling designers to
develop high-performance applications that run correctly
despite the above limitations.

AUTHORING STREAMING APPLICATIONS
ON DIVERSE SYSTEMS

There are many possible approaches to the problem
of expressing applications deployed on architecturally
diverse systems. While it is possible to express applications
using a single language, such an approach would likely be
awkward, make inefficient use of each platform’s unique
resources, and lack the robustness and user base of the
language types that have succeeded in their respective
fields (for example, procedural languages on processors
or structural HDLs on FPGAs).

Our approach is to take advantage of these relatively
efficient, robust, and well-entrenched languages by de-
signing a coordination language called X that is capable
of connecting task kernels—written in traditional lan-
guages—in a data streaming manner. Each kernel or
block may have several platform-specific implementa-
tions (for example, ANSI C, CUDA, VHDL, and so forth). All
implementations of a given block are required to provide

Explicit coordination languages have
been used in directing execution of
software modules and in enhancing
software reusability.

45MARCH 2010

the physical architecture of the diverse system being
considered as well as the data types (integer, floating,
and so on) being communicated. A library of classes of
computational resources and the interconnect resources
that transmit data between devices is provided. Users
can then describe their architecturally diverse systems
(not shown here), both real and hypothetical, in terms
of instances of the resource classes. After specifying an
application as a set of connected blocks, their implemen-
tations, and their interconnections, the user specifies
the deployment/mapping by noting the placement of
each block on a computational resource (last two lines
of Figure 4).

other data delivery mechanisms (for example, a network),
and independent of whether block A and block B are even
executing on the same type of computing component.

Third, with explicit knowledge of the algorithm decom-
position known to the system, expressing the mapping of
blocks to compute resources for deployment and execution
proceeds naturally.

Fourth, reasoning about the correctness of streaming
applications is fairly straightforward, thus diminishing the
chances of programming errors (either design or imple-
mentation errors) that are difficult to detect and debug.
Contrast this with the complexity of correcting a synchro-
nization error due to a missing lock in a shared-memory
program.

Example streaming application
Figure 3 illustrates the use of the X coordination lan-

guage with an example streaming application. The figure
defines a compound block Top constructed from basic
blocks of type Generate, Multiply, Square, and Output.
Figure 4 shows the X code that describes Top. Associated
with each basic block is a set of block implementations.
The definition of Top comprises two main portions: The
first specifies the computational blocks to be used, while
the second specifies the connections between the blocks.
Each block references an implementation that supports
block execution on a computational resource type and is
coded in the language appropriate for that resource (note
that certain languages may
execute on multiple resource
types). While this example
uses simple functions such
as multiply and square as
basic blocks, blocks are more
typically course-grained com-
putations such as filters, FFTs,
matching, and so on.

The Top portion of the X
code also describes application
block communications. Edges
(->) in the application descrip-
tion convey the delivery of a
data stream from an output
port on an upstream block to
an input port on a downstream
block. At the application level,
these can be considered to be
strongly typed FIFO channels
that preserve order between
data elements. A directed
acyclic graph can formally
represent the overall topology.

The X language also pro-
vides for specification of

// algorithm description

block Top { // instantiate block types

Generate gen1, gen2; // data generation blocks

Multiply mul; // multiply block

Square sqr; // square block

Output out; // output block

e1: gen1 -> mul.a; // gen1’s output connected to input port “a” of mul

e2: gen2 -> mul.b; // gen2’s output connected to input port “b” of mul

e3: mul -> sqr; // output of mul connected to input of sqr

e4: sqr -> out; // output of sqr connected to input of out

};

// application mapping

map proc[1] = {gen1, gen2, mul}; // gen1, gen2, and mul mapped to proc[1]

map proc[2] = {sqr, out}; // sqr and out are mapped to proc[2]

Figure 4. Example X description. Each of the blocks within Top is instantiated, and then
their interconnections are specified. Data types of input ports, output ports, and stream
edges are given in the definitions of the block types (not shown in the figure). Blocks
gen1, gen2, and mul are mapped to one processor and the remaining blocks to a second
processor.

Output

outout
e1

e2

e4

Generate Top

gen1gen1

Block
Edge

Multiply

mul
a

b
mul

a

bGenerate

gen2gen2

Square

sqrsqr

Edge label Block identi�er

Figure 3. Example X application showing streaming data
coordination. Block identifiers are shown within the blocks,
and block types are shown above the blocks. Optional edge
labels are shown next to the edges.

COVER FE ATURE

COMPUTER 46

multiple timestamp files (T1, T2, T3) for every intercon-
nect. Interconnect models are used on all interdevice
communications to simulate data transmission. These
communication models may be as simple as a fixed
delay model, or may be arbitrarily complex, trace-driven,
discrete-event simulation models developed from first
principals or through use of the trace data. By maintain-
ing these time stamps, X-Sim provides a time trace of all
data transfers that occur between computational devices.

Multiple blocks may be mapped to the same computa-
tional resource. However, by default, time stamps are only
kept for the data entering and exiting blocks that connect
to distinct computational resources.

An analysis component obtains basic and advanced
performance measurements using the time stamps. Basic
measurements include the mean and variance of service
time distributions associated with devices. The user can
aggregate these measurements to determine through-
put and latency figures for the individual devices and the
system as a whole.

As with any simulation, it is often impractical to execute
voluminous data sets in the simulator. This is particularly
true when saving complete traces of data streams between
blocks. As a result, it is incumbent upon the user to judi-
ciously choose an appropriate input data subset that is
reasonably characteristic of the overall input data set.

APPLICATION DEPLOYMENT
Once the developer is satisfied with the simulation re-

sults, the X-Dep tool is then used to deploy the application
on the target hardware. Key features of X-Dep are

•	 physical instantiation of the X blocks onto the compu-
tational resources to which they have been assigned
via the mapping,

•	 instantiation of FIFO buffers on X block interconnec-
tion ports, and

•	 providing communications support between X blocks
that are assigned to distinct resources.

In effect, X-Dep transforms the X language description
of the application, machine description, and mapping into
a physical system executing the user’s program. It does this
by providing wrappers for each block that are tailored to
the specifics of how the block is mapped. The generated
wrapper provides the input data to each input port, accepts
output from the output ports, and moves data as required
across interconnect resources for delivery between blocks.

If two X blocks are mapped to the same processor core,
the generated interconnection code directly invokes the
downstream block upon data output from an upstream
block. When two X blocks are mapped to distinct pro-
cessor cores, the interblock communication mechanism
depends upon the underlying infrastructure available. If

X-Com and X-Dep
The X-Com compiler parses the X language descriptions

of applications, diverse systems, and their mapping to create
a set of source files that can be compiled for each device in
the system. These source files, compiled with their respec-
tive platform-specific tools (for example, C compiler, HDL
synthesizer, and so on), fully implement the entire applica-
tion as a distributed set of executables (for example, one
program per processor, one bit file per FPGA). The X-Dep
tool further automates this step by generating a compilation
and deployment script to perform the final linking steps and
deploy the application to the physical hardware devices or
simulations (or emulations) of devices.

PERFORMANCE MODELING
Given an application description in the X language, a

set of block implementations on various computational
resources, and a mapping of blocks to resources, applica-
tion developers can use our X-Sim federated simulation
environment10 to verify functional correctness of the
application and estimate performance on the specified
computational resources. X-Sim provides an environment
that seamlessly combines multiple simulators into one
federated execution to simulate applications expressed in
X. The X-Sim infrastructure is open-ended to allow sup-
port for a range of individual simulators, from low-level,
discrete-event, and cycle-accurate simulators to rough
estimates from analytic models.

Figure 5 shows how an application with four blocks (A,
B, C, D) distributed across two devices looks when simu-
lated with X-Sim. Directed arrows depict the data flow,
with interdevice communication captured and stored in
trace data files, and intradevice edges determined using
the simulated native communication methods (wires in
an FPGA, function calls on a processor core).

To profile application performance, X-Sim keeps
track of the data values and when the data enters and
exits individual block-level simulators. X-Sim maintains

B
C

D

T1 T2 T3
A T1

T1

Interconnect
modelDevice 1 Device 2

Figure 5. Data flow within an X-Sim simulation. Block A is
mapped to device 1, while blocks B, C, and D are mapped
to device 2. Time stamps labeled T1 keep track of when
the application block outputs data from a device onto an
interconnect. T2 time stamps indicate when the data has been
transmitted across the interconnect and is available to the
receiving device. T3 time stamps record the time at which the
application block on the receiving device consumes the data.

47MARCH 2010

processes drive the underlying models for pricing financial
instruments, a distribution for the value of the portfolio
is obtained at the end of the specified time. The standard
Black-Scholes model for price dynamics of financial instru-
ments (for example, stocks) is used.11

The Monte Carlo approach to VAR calculation involves
simulation of the portfolio’s value at the end of the specified
time.12 The differences between the value of the starting
portfolio and the simulated future portfolios provide esti-
mates of the profit and loss (P&L) over the specified time.
The VAR then is simply the appropriate value of the sorted
P&L estimates.

Simulating the values of the components of a portfolio
under the Black-Scholes model requires generating cor-
related Gaussian random numbers and propagating them
forward under the model. The VAR can then be calculated
from the resulting distribution. Figure 6 shows the func-
tional pipeline for this simulation.

The pipeline stages are as follows:

•	 Stage 1: Uni form pseudora ndom number
generation—the Mersenne twister13 is used to gener-
ate random numbers that are uniformly distributed
between 0 and MAXINT (232 - 1).

•	 Stage 2: The uniformly distributed random numbers
are transformed into a Gaussian (normal) distribution
with µ = 0 and s2 = 1.

•	 Stage 3: The vector of independent normally distrib-
uted random numbers is transformed into a vector of
correlated random numbers reflecting the correla-
tions between individual financial instruments (for
example, stocks) in the portfolio. This is accomplished
by multiplying the vector by a lower triangular matrix.
This lower triangular matrix is obtained by the Cho-
lesky factorization of the specified correlation matrix.

•	 Stage 4: The correlated Gaussian random numbers
are used to generate random walks according to the
Black-Scholes model. The portfolio’s values and the
P&L values are also calculated in this stage.

•	 Stage 5: The P&L values are aggregated and sorted to
obtain the VAR.

With the exception of stage 5, each of these stages can
be executed in a data-parallel manner. While the Auto-Pipe
development environment does not yet directly support
mapping of blocks to a GPU, we deployed this application

the two cores have a common memory subsystem (as is
the case if they are on the same chip), the Auto-Pipe run-
time system uses a shared memory buffer to move data
from the upstream block’s output port to the downstream
block’s input port. If the two cores do not have common
memory (for example, if they are connected via a local-
area network), the runtime system invokes socket-level
interprocess communication.

For X blocks that are mapped to an FPGA, there exist
generated wrappers that reside both on the FPGA itself
and the processor to which the FPGA is physically at-
tached. For FPGA-to-FPGA communication, a simple FIFO
is instantiated on the FPGA. For FPGA-to-processor com-
munication, the FPGA is positioned on the PCI-X bus. Data
destined for input ports on blocks mapped to the FPGA are
moved across the PCI-X bus via a DMA transfer to physical
FIFOs on the FPGA directly wired to the input ports of the
X block’s implementation. Correspondingly, data from
output ports is moved across the PCI-X bus via DMA back
into processor memory, where the C wrapper invokes the
downstream block.

While the above describes the deployment of an ap-
plication to target hardware, the X-Dep tool also has
responsibility for deploying the application to the X-Sim
simulation environment. In this case, the generated wrap-
pers use the file system to manage the data into and out of
ports, reading data from trace files for input ports and writ-
ing data to trace files from output ports. These wrappers
also create the time stamp files. In the simulator, the actual
block execution is dependent on the type of computational
resource being modeled. For FPGAs, we use the Modelsim
simulator, and for processors we use direct execution on
an individual representative processor core.

COMPUTATIONAL FINANCE APPLICATION
To demonstrate the mapping, performance evaluation,

and execution of applications in the Auto-Pipe environ-
ment, we present a computational finance application that
expands the compute platforms to include graphics en-
gines. Since the Auto-Pipe environment is currently being
expanded to include graphics engines, we developed this
application using a combination of Auto-Pipe and CUDA.

An important application in computational finance is
the calculation of value at risk (VAR). The VAR is an indi-
cator of the risk associated with a portfolio of financial
instruments. It is defined as the maximum loss that is not
exceeded with a given probability over a specified period
of time. The probability is specified as a confidence level.
The two confidence levels frequently used in practice are
95 percent and 99 percent. For example, a VAR of $10,000
at the 95 percent confidence level indicates that the prob-
ability that the losses will exceed $10,000 is less than 0.05.

The application calculates the VAR by estimating a port-
folio’s value at the end of a specified time. Since stochastic

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
$

Figure 6. Computation pipeline for financial Monte Carlo
simulation.

COVER FE ATURE

COMPUTER 48

to a set of processor cores, an FPGA, and a GPU using a
combination of Auto-Pipe and CUDA. Figure 7 illustrates
the highest performing mapping.

We considered a portfolio of 1,024 stocks and nomi-
nal values for the parameters in the Black-Scholes model.
These parameters are uniquely available from the data
stream provided by an Exegy XTP ticker plant (www.exegy.
com). Obtaining a single value of the portfolio at the end
of the specified time requires 1,024 random walks, one
for each stock. This then constitutes a “trial” for the Monte
Carlo simulation. We simulated the portfolio 220 times,
resulting in 230 random walks.

System performance is measured in terms of random
walks per second. On an individual processor, the Monte
Carlo simulation can execute 450,000 walks/s. Executing
the configuration of Figure 7, the Monte Carlo simulation
executed 81 million walks/s. This represents a speedup of
180×. To our knowledge, this was the first use of both GPUs
and FPGAs in the acceleration of an individual application.

While the Auto-Pipe development environment does
not yet directly support mapping of algorithm blocks to
the GPU, we are currently using the lessons learned in this
application development to expand Auto-Pipe to explicitly
include graphics engines as deployment targets.

A
rchitecturally diverse systems can improve
streaming application performance by orders
of magnitude, albeit with enormous program-
mer effort. To simplify the programming
of such systems, we have constructed the

Auto-Pipe application development environment, which
supports the flexible mapping of application components
onto computational resources and the automatic delivery
of data between these computational resources. An impor-

tant component of this development environment is the
emphasis placed on performance assessment and evalu-
ation. The major purpose for deploying applications on
diverse systems is to exploit the achievable performance
gains. Our goal is to enable the application developer to
observe the performance implications of design choices
and to reduce application development time.

In addition to the computational finance applica-
tion, Auto-Pipe has been used to implement applications
ranging from cryptography5 to astrophysics.14 Auto-Pipe
currently supports applications deployed on chip multi-
processors and FPGAs, and we are expanding its scope
to include graphics engines. In addition, a block library is
under development. In the future, we plan to investigate
the incorporation of analog computation (for example,
via field-programmable analog arrays15) into the applica-
tion.

Acknowledgments
This research has been supported in part by National Science
Foundation grants CCF-0427794, CNS-0720667, CNS-0751212,
CNS-0905368, and DGE-0538541. M.A. Franklin and R.D.
Chamberlain are principals in Exegy Inc. The authors also
thank Nvidia for its support.

References
 1. I. Buck et al., “Brook for GPUs: Stream Computing on

Graphics Hardware,” ACM Trans. Graphics, Aug. 2004, pp.
777-786.

 2. W. Thies, M. Karczmarek, and S.P. Amarasinghe,
“StreamIt: A Language for Streaming Applications,” Proc.
11th Int’l Conf. Compiler Construction, Springer-Verlag,
2001, pp. 179-196.

 3. T. El-Ghazawi et al., “The Promise of High-Performance
Reconfigurable Computing,” Computer, Feb. 2008, pp.
69-76.

 4. J.D. Owens et al., “A Survey of General-Purpose Computa-
tion on Graphics Hardware,” Computer Graphics Forum,
vol. 26, no. 1, 2007, pp. 80-113.

 5. M.A. Franklin et al., “Auto-Pipe and the X Language: A
Pipeline Design Tool and Description Language,” Proc. Int’l
Parallel and Distributed Processing Symp., IEEE CS Press,
2006, pp. 1-10.

 6. E.A. Lee, “The Problem with Threads,” Computer, May
2006, pp. 33-42.

 7. R. Prieto-Diaz and J.M. Neighbors, “Module Interconnec-
tion Languages,” J. Systems and Software, Nov. 1986, pp.
307-334.

 8. D. Gelernter and N. Carriero, “Coordination Languages and
Their Significance,” Comm. ACM, Feb. 1992, pp. 97-107.

 9. N. Carrier and D. Gelernter, “Linda in Context,” Comm.
ACM, Apr. 1989, pp. 444-458.

 10. S. Gayen et al., “A Federated Simulation Environment for
Hybrid Systems,” Proc. 21st Int’l Workshop Principles of
Advanced and Distributed Simulation, ACM Press, 2007,
pp. 198-207.

 11. P. Glasserman, Monte Carlo Methods in Financial Engineer-
ing, Springer, 2004.

Stage 1 Stage 2

Stage 3

Stage 4
$

Stage 3 Stage 4
$

Stage 4
$

Stage 5

FPGA FPGA

Stage 1 Stage 2
GPU GPU GPU GPU

CPU CPU

CPU

Stage 3

… …

Figure 7. Financial Monte Carlo simulation deployed on
eight Opteron processor cores, a Xilinx Virtex-4 FPGA, and
an Nvidia GTX 260 GPU. The FPGA and CPU portions of the
implementation are in Auto-Pipe, and the GPU portion is
coded using CUDA.

Silver Bullet Security Podcast
In-depth inter v iews w i th secur i t y gurus . Hos ted by Gar y McGraw.

w w w.computer.org /secur i t y /podcasts
Sponsored by

49MARCH 2010

in physics from the University of Chicago. Contact him at
buckley@wustl.edu.

Jeremy Buhler is an associate professor in the Department
of Computer Science and Engineering at Washington Uni-
versity in St. Louis. He received a PhD in computer science
from the University of Washington-Seattle. Contact him at
jbuhler@wustl.edu.

Greg Galloway is an MS candidate in the Department of
Computer Science and Engineering at Washington Univer-
sity in St. Louis. He received a BS in electrical engineering
from Washington University. Contact him at ggalloway@
wustl.edu.

Saurabh Gayen is a chipset validation engineer at Intel. He
received an MS in computer engineering from Washington
University in St. Louis, where he contributed to this re-
search. Contact him at saurabh.gayen@intel.com.

Michael Hall is a PhD candidate in the Department of Com-
puter Science and Engineering at Washington University in
St. Louis. He received an MS in electrical engineering from
Southern Illinois University-Edwardsville. Contact him at
mhall24@wustl.edu.

E.F. Berkley Shands is a senior research associate in the
Department of Computer Science and Engineering at
Washington University in St. Louis. He received an MS in
computer science from Washington University. Contact him
at berkley@wustl.edu.

Naveen Singla is a quantitative analyst at Exegy Inc. He
received a DSc in electrical engineering from Washington
University in St. Louis. Contact him at nsingla@exegy.com.

 12. N. Singla et al., “Financial Monte Carlo Simulation on
Architecturally Diverse Systems,” Proc. Workshop High-
Performance Computational Finance, IEEE CS Press, Nov.
2008, pp. 1-7.

 13. M. Matsumoto and T. Nishimura, “Mersenne Twister:
A 623-Dimensionally Equidistributed Uniform Pseudo-
Random Number Generator,” ACM Trans. Modeling and
Computer Simulation, Jan. 1998, pp. 3-30.

 14. E.J. Tyson et al., “Acceleration of Atmospheric Cherenkov
Telescope Signal Processing to Real-Time Speed with the
Auto-Pipe Design System,” Nuclear Instruments and Meth-
ods in Physics Research A, Oct. 2008, pp. 474-479.

 15. P. Hasler and T.S. Lande, “Overview of Floating-Gate De-
vices, Circuits, and Systems,” IEEE Trans. Circuits and Systems
II, Analog and Digital Signal Processing, Jan. 2001, pp. 1-3.

Roger D. Chamberlain is an associate professor in the
Department of Computer Science and Engineering at
Washington University in St. Louis. He received a DSc in
computer science from Washington University. Contact
him at roger@wustl.edu.

Mark A. Franklin is the Urbauer Professor of Engineering
in the Department of Computer Science and Engineering
at Washington University in St. Louis. He received a PhD
in electrical engineering from Carnegie Mellon University.
Contact him at jbf@wustl.edu.

Eric J. Tyson is a PhD candidate in the Department of
Computer Science and Engineering at Washington Uni-
versity in St. Louis. He is currently employed as an ASIC
design engineer at Nvidia. He received an MS in computer
engineering from Washington University. Contact him at
etyson@wustl.edu.

James H. Buckley is a professor in the Department of Phys-
ics at Washington University in St. Louis. He received a PhD

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

