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In recent years, several computational resource types 
have matured to the point that they can materially benefit 
high-performance applications. These resources include 
multicore general-purpose processors, reconfigurable 
hardware, graphics processors, digital signal processors, 
and other application-specific processors. In many cases, 
the performance gains associated with these specialized 
computational resources are quite significant, and perfor-
mance improvements of one to two orders of magnitude 
have been reported.3,4 

Systems built out of these resources are architecturally 
diverse, and while constructing hardware prototypes that 
include diverse compute resources is straightforward, ap-
plication development for such systems is quite difficult 
for several reasons: 

•	 In most cases, each compute resource has its own lan-
guage, development environment and tools, runtime 
environment, and debugging aids. 

•	 The intellectual task of describing the computation is 
often quite different for each compute resource. For 
example, developers typically use task-level threads 
to program general-purpose processors and chip 
multiprocessors, while they program reconfigurable 
hardware at the register transfer level. 

T
he recognition and subsequent exploitation of 
streaming data semantics in applications can 
dramatically simplify the development pro-
cess. Using the streaming data paradigm, the 
expression of available parallelism is clarified, 

the opportunities to inadvertently introduce races and 
synchronization errors are fewer, and ensuring correct 
execution is therefore easier. Brook1 and StreamIt2 are 
examples of languages that support the direct expression 
of streaming data semantics. Computation blocks, called 
kernels in Brook and filters in StreamIt, communicate via 
explicitly defined edges that move data between blocks 
in a fixed topology specified at compile time. While not 
every application is amenable to streaming data formula-
tion, a large number of applications fall into this class. 

Auto-Pipe, an application development 
environment for streaming applications 
executing on architecturally diverse com-
puting platforms, supports the flexible 
mapping and automatic delivery of appli-
cation components between computational 
resources.
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•	 homogeneous, multicore, general-purpose processors 
(GPPs)—for example, x86 processors; 

•	 heterogeneous multicore processors, which provide 
processors of varying capability within a single chip—
for example, the IBM Cell processor and network 
processors; 

•	 graphics processing units (GPUs); traditionally aimed 
at visual rendering, these processors are now being 
used for a wide variety of purposes; 

•	 reconfigurable hardware in the form of field-program-
mable gate arrays (FPGAs); and 

•	 digital signal processors (DSPs) or other application-
specific instruction processors (ASIPs)—processors 
for which the instruction set or architecture has been 
optimized for an individual application or class of 
applications. 

Figure 2 shows an example of an architecturally diverse 
system constructed using dual-core AMD Opterons, an 

•	 Delivering data between these disparate environ-
ments is a significant task in its own right.

The result is that, while substantial performance gains 
are achievable using diverse systems, these gains are only 
achievable with enormous effort. Our aim is to simplify 
the development and deployment of streaming applica-
tions onto diverse systems. This includes representation 
of such applications and the available compute resources, 
mapping of application components onto the resources, 
providing a mechanism for evaluation of application 
performance, and, finally, deployment onto the diverse 
system and application execution. 

To tackle these design issues, we constructed 
Auto-Pipe,5 a development environment for streaming ap-
plications executing on architecturally diverse computing 
platforms. Our approach involves the use of a coordina-
tion language to specify streaming data communications 
between compute blocks combined with native languages 
and toolsets for the development of the compute blocks 
themselves. The environment supports evaluating appli-
cation performance early in the design cycle, mapping of 
compute blocks to computational resources, and provid-
ing direct support for block-to-block communication both 
within and between computational resources. 

Given the decomposition of an application into a set of 
interconnected compute blocks (for example, application 
pipeline stages) and the existence of implementations (po-
tentially for more than one type of compute platform) of 
each compute block, Figure 1 illustrates one of the design 
questions that the development environment intends to 
address. Across the top of the figure is an application that 
consists of three pipelined computational stages (1 to 
3). These stages might represent, for example, applica-
tion modules expressed both in C and in VHDL. Across 
the bottom of the figure is a pair of computing resources 
(compute platforms 1 and 2). The figure illustrates a pair 
of candidate mappings, with application stage 2 mapped 
either to platform 1 or 2. 

While the figure illustrates a particular design question, 
a full design problem presents many such questions. For 
example, what technology should be used for compute 
platform 1 (for example, processor core or reconfigurable 
logic)? How does this choice impact the mapping ques-
tion for application stage 2? The Auto-Pipe application 
development environment helps developers answer these 
questions, while keeping them cognizant of the perfor-
mance implications of their design decisions. 

ARCHITECTURALLY DIVERSE SYSTEMS 
Architecturally diverse (or hybrid) computing systems 

incorporate two or more distinct computational resource 
types (or platforms) including the following: 

Figure 1. Mapping an application to an architecture. The 
application’s three pipelined stages are mapped to two 
compute platforms. Application stage 1 is mapped to com-
pute platform 1, application stage 3 is mapped to compute 
platform 2, and there is a question as to whether application 
stage 2 should be mapped to compute platform 1 or 2. 
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Figure 2. Example of an architecturally diverse system 
architecture. Two chip multiprocessors (CMPs) are 
interconnected with a HyperTransport (HT) link. Additional 
HT links are used to connect to an FPGA through a PCI-X 
bus and a graphics processing unit (GPU) via a PCIe bus. 
In this system, the memory attached to the two CMPs is 
cache-coherent and shared across the four GPP cores, while 
the memories attached to the FPGA and the GPU each form 
separate address spaces. 
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the same interface and streaming data semantics, thus 
ensuring correctness regardless of the block-to-resource 
mapping. Each supported language has a specific API and 
syntax for specifying the particular data streaming inter-
face employed by the block, such as input ports (including 
data type), output ports, and configuration parameters. 

Coordination languages
Coordination languages have been developed in several 

contexts. Edward A. Lee argued that coordination lan-
guages represent a better mechanism for reasoning about 
concurrency than traditional thread-based approaches.6 
Both Brook1 and StreamIt2 are languages tailored to 
streaming applications for homogeneous compute plat-
forms where coordination is inherent in the language 
definition. Explicit coordination languages have been used 
in directing execution of software modules and in enhanc-
ing software reusability.7 

David Gelernter and Nicholas Carriero discussed the in-
herent separation between computation and coordination 
(they used the term “synchronization”) and the advantages 
associated with explicitly separating the two.8 This separa-
tion is present in their Linda language.9 

Our X language follows these ideas in many ways in that 
it permits representation of algorithms in terms of coordi-
nation of blocks that communicate with each other where 
the computation language associated with the blocks is 
separate and may be one of a host of languages. However, 
in the case of X, these blocks may be mapped onto diverse 
compute resources. 

X language benefits
There are several benefits to authoring applications 

using this approach. First, it is possible to build a library 
of blocks that can be (re-)used to enable application de-
velopment either entirely (or at least primarily) in the 
coordination language without requiring implementa-
tion of individual blocks. This is analogous to the use of 
numerical libraries such as BLAS for authoring scientific 
applications. Base solvers are typically not recoded, but 
application developers call them from the appropriate 
libraries. This also follows the rationale behind much of 
the work in the software-only domain referenced above. 

Second, X provides the underlying structure so that the 
application developer doesn’t need to code data move-
ment and synchronization between blocks. The X language 
permits specification of data movement between blocks 
at a high level, thus relieving the application program-
mer from tedious coding requirements. The X runtime 
infrastructure automatically delivers block A’s output to 
block B’s input. This delivery is independent of whether 
block A and block B are deployed on a common resource 
or distinct resources, independent of whether block A and 
block B have a common memory subsystem or must use 

off-the-shelf graphics card, and an FPGA card. This is but 
one example out of many ways in which such a system 
can be constructed. 

While constructing this type of system is fairly straight-
forward, it is difficult to develop applications that can 
effectively exploit its capabilities. Distinct computational 
resource types typically have their own languages for de-
scribing applications. For example: 

•	 multicore processors—C/C++ with thread-based or 
message-passing parallelism for homogeneous cores, 
specialized constructs (often including native assem-
bly language) for heterogeneous cores; 

•	 GPUs—stream programming languages such as Brook 
or APIs such as CUDA; 

•	 FPGAs—hardware description languages such as Ver-
ilog, VHDL, and SystemC; and 

•	 DSPs and ASIPs—C/C++ and assembly language. 

Associated with each of these languages is a distinct 
toolset that includes compilers (or synthesizers), runtime 
environments, and debugging aids. Note that there is 
little support in these languages and toolsets for enabling 
data delivery between different types of computational 
resources. Auto-Pipe’s focus is on enabling designers to 
develop high-performance applications that run correctly 
despite the above limitations. 

AUTHORING STREAMING APPLICATIONS  
ON DIVERSE SYSTEMS 

There are many possible approaches to the problem 
of expressing applications deployed on architecturally 
diverse systems. While it is possible to express applications 
using a single language, such an approach would likely be 
awkward, make inefficient use of each platform’s unique 
resources, and lack the robustness and user base of the 
language types that have succeeded in their respective 
fields (for example, procedural languages on processors 
or structural HDLs on FPGAs). 

Our approach is to take advantage of these relatively 
efficient, robust, and well-entrenched languages by de-
signing a coordination language called X that is capable 
of connecting task kernels—written in traditional lan-
guages—in a data streaming manner. Each kernel or 
block may have several platform-specific implementa-
tions (for example, ANSI C, CUDA, VHDL, and so forth). All 
implementations of a given block are required to provide 

Explicit coordination languages have 
been used in directing execution of 
software modules and in enhancing 
software reusability.
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the physical architecture of the diverse system being 
considered as well as the data types (integer, floating, 
and so on) being communicated. A library of classes of 
computational resources and the interconnect resources 
that transmit data between devices is provided. Users 
can then describe their architecturally diverse systems 
(not shown here), both real and hypothetical, in terms 
of instances of the resource classes. After specifying an 
application as a set of connected blocks, their implemen-
tations, and their interconnections, the user specifies 
the deployment/mapping by noting the placement of 
each block on a computational resource (last two lines 
of Figure 4). 

other data delivery mechanisms (for example, a network), 
and independent of whether block A and block B are even 
executing on the same type of computing component. 

Third, with explicit knowledge of the algorithm decom-
position known to the system, expressing the mapping of 
blocks to compute resources for deployment and execution 
proceeds naturally. 

Fourth, reasoning about the correctness of streaming 
applications is fairly straightforward, thus diminishing the 
chances of programming errors (either design or imple-
mentation errors) that are difficult to detect and debug. 
Contrast this with the complexity of correcting a synchro-
nization error due to a missing lock in a shared-memory 
program. 

Example streaming application
Figure 3 illustrates the use of the X coordination lan-

guage with an example streaming application. The figure 
defines a compound block Top constructed from basic 
blocks of type Generate, Multiply, Square, and Output. 
Figure 4 shows the X code that describes Top. Associated 
with each basic block is a set of block implementations. 
The definition of Top comprises two main portions: The 
first specifies the computational blocks to be used, while 
the second specifies the connections between the blocks. 
Each block references an implementation that supports 
block execution on a computational resource type and is 
coded in the language appropriate for that resource (note 
that certain languages may 
execute on multiple resource 
types). While this example 
uses simple functions such 
as multiply and square as 
basic blocks, blocks are more 
typically course-grained com-
putations such as filters, FFTs, 
matching, and so on. 

The Top portion of the X 
code also describes application 
block communications. Edges 
(->) in the application descrip-
tion convey the delivery of a 
data stream from an output 
port on an upstream block to 
an input port on a downstream 
block. At the application level, 
these can be considered to be 
strongly typed FIFO channels 
that preserve order between 
data elements. A directed 
acyclic graph can formally 
represent the overall topology. 

The X language also pro-
vides for specification of 

// algorithm description 

block Top {    // instantiate block types 

Generate gen1, gen2; // data generation blocks 

Multiply mul;   // multiply block 

Square sqr;   // square block 

Output out;   // output block 

e1: gen1 -> mul.a;  // gen1’s output connected to input port “a” of mul 

e2: gen2 -> mul.b;  // gen2’s output connected to input port “b” of mul 

e3: mul -> sqr;   // output of mul connected to input of sqr 

e4: sqr -> out;   // output of sqr connected to input of out 

}; 

// application mapping 

map proc[1] = {gen1, gen2, mul}; // gen1, gen2, and mul mapped to proc[1]

map proc[2] = {sqr, out};  // sqr and out are mapped to proc[2] 

Figure 4. Example X description. Each of the blocks within Top is instantiated, and then 
their interconnections are specified. Data types of input ports, output ports, and stream 
edges are given in the definitions of the block types (not shown in the figure). Blocks 
gen1, gen2, and mul are mapped to one processor and the remaining blocks to a second 
processor. 
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Figure 3. Example X application showing streaming data 
coordination. Block identifiers are shown within the blocks, 
and block types are shown above the blocks. Optional edge 
labels are shown next to the edges. 
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multiple timestamp files (T1, T2, T3) for every intercon-
nect. Interconnect models are used on all interdevice 
communications to simulate data transmission. These 
communication models may be as simple as a fixed 
delay model, or may be arbitrarily complex, trace-driven, 
discrete-event simulation models developed from first 
principals or through use of the trace data. By maintain-
ing these time stamps, X-Sim provides a time trace of all 
data transfers that occur between computational devices. 

Multiple blocks may be mapped to the same computa-
tional resource. However, by default, time stamps are only 
kept for the data entering and exiting blocks that connect 
to distinct computational resources. 

An analysis component obtains basic and advanced 
performance measurements using the time stamps. Basic 
measurements include the mean and variance of service 
time distributions associated with devices. The user can 
aggregate these measurements to determine through-
put and latency figures for the individual devices and the 
system as a whole. 

As with any simulation, it is often impractical to execute 
voluminous data sets in the simulator. This is particularly 
true when saving complete traces of data streams between 
blocks. As a result, it is incumbent upon the user to judi-
ciously choose an appropriate input data subset that is 
reasonably characteristic of the overall input data set. 

APPLICATION DEPLOYMENT 
Once the developer is satisfied with the simulation re-

sults, the X-Dep tool is then used to deploy the application 
on the target hardware. Key features of X-Dep are 

•	 physical instantiation of the X blocks onto the compu-
tational resources to which they have been assigned 
via the mapping, 

•	 instantiation of FIFO buffers on X block interconnec-
tion ports, and 

•	 providing communications support between X blocks 
that are assigned to distinct resources. 

In effect, X-Dep transforms the X language description 
of the application, machine description, and mapping into 
a physical system executing the user’s program. It does this 
by providing wrappers for each block that are tailored to 
the specifics of how the block is mapped. The generated 
wrapper provides the input data to each input port, accepts 
output from the output ports, and moves data as required 
across interconnect resources for delivery between blocks. 

If two X blocks are mapped to the same processor core, 
the generated interconnection code directly invokes the 
downstream block upon data output from an upstream 
block. When two X blocks are mapped to distinct pro-
cessor cores, the interblock communication mechanism 
depends upon the underlying infrastructure available. If 

X-Com and X-Dep 
The X-Com compiler parses the X language descriptions 

of applications, diverse systems, and their mapping to create 
a set of source files that can be compiled for each device in 
the system. These source files, compiled with their respec-
tive platform-specific tools (for example, C compiler, HDL 
synthesizer, and so on), fully implement the entire applica-
tion as a distributed set of executables (for example, one 
program per processor, one bit file per FPGA). The X-Dep 
tool further automates this step by generating a compilation 
and deployment script to perform the final linking steps and 
deploy the application to the physical hardware devices or 
simulations (or emulations) of devices. 

PERFORMANCE MODELING 
Given an application description in the X language, a 

set of block implementations on various computational 
resources, and a mapping of blocks to resources, applica-
tion developers can use our X-Sim federated simulation 
environment10 to verify functional correctness of the 
application and estimate performance on the specified 
computational resources. X-Sim provides an environment 
that seamlessly combines multiple simulators into one 
federated execution to simulate applications expressed in 
X. The X-Sim infrastructure is open-ended to allow sup-
port for a range of individual simulators, from low-level, 
discrete-event, and cycle-accurate simulators to rough 
estimates from analytic models. 

Figure 5 shows how an application with four blocks (A, 
B, C, D) distributed across two devices looks when simu-
lated with X-Sim. Directed arrows depict the data flow, 
with interdevice communication captured and stored in 
trace data files, and intradevice edges determined using 
the simulated native communication methods (wires in 
an FPGA, function calls on a processor core). 

To profile application performance, X-Sim keeps 
track of the data values and when the data enters and 
exits individual block-level simulators. X-Sim maintains 

B
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Interconnect
modelDevice 1 Device 2

Figure 5. Data flow within an X-Sim simulation. Block A is 
mapped to device 1, while blocks B, C, and D are mapped 
to device 2. Time stamps labeled T1 keep track of when 
the application block outputs data from a device onto an 
interconnect. T2 time stamps indicate when the data has been 
transmitted across the interconnect and is available to the 
receiving device. T3 time stamps record the time at which the 
application block on the receiving device consumes the data. 
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processes drive the underlying models for pricing financial 
instruments, a distribution for the value of the portfolio 
is obtained at the end of the specified time. The standard 
Black-Scholes model for price dynamics of financial instru-
ments (for example, stocks) is used.11

The Monte Carlo approach to VAR calculation involves 
simulation of the portfolio’s value at the end of the specified 
time.12 The differences between the value of the starting 
portfolio and the simulated future portfolios provide esti-
mates of the profit and loss (P&L) over the specified time. 
The VAR then is simply the appropriate value of the sorted 
P&L estimates. 

Simulating the values of the components of a portfolio 
under the Black-Scholes model requires generating cor-
related Gaussian random numbers and propagating them 
forward under the model. The VAR can then be calculated 
from the resulting distribution. Figure 6 shows the func-
tional pipeline for this simulation. 

The pipeline stages are as follows: 

•	 Stage 1:  Uni form pseudora ndom number 
generation—the Mersenne twister13 is used to gener-
ate random numbers that are uniformly distributed 
between 0 and MAXINT (232 - 1). 

•	 Stage 2: The uniformly distributed random numbers 
are transformed into a Gaussian (normal) distribution 
with µ = 0 and s2 = 1. 

•	 Stage 3: The vector of independent normally distrib-
uted random numbers is transformed into a vector of 
correlated random numbers reflecting the correla-
tions between individual financial instruments (for 
example, stocks) in the portfolio. This is accomplished 
by multiplying the vector by a lower triangular matrix. 
This lower triangular matrix is obtained by the Cho-
lesky factorization of the specified correlation matrix. 

•	 Stage 4: The correlated Gaussian random numbers 
are used to generate random walks according to the 
Black-Scholes model. The portfolio’s values and the 
P&L values are also calculated in this stage. 

•	 Stage 5: The P&L values are aggregated and sorted to 
obtain the VAR. 

With the exception of stage 5, each of these stages can 
be executed in a data-parallel manner. While the Auto-Pipe 
development environment does not yet directly support 
mapping of blocks to a GPU, we deployed this application 

the two cores have a common memory subsystem (as is 
the case if they are on the same chip), the Auto-Pipe run-
time system uses a shared memory buffer to move data 
from the upstream block’s output port to the downstream 
block’s input port. If the two cores do not have common 
memory (for example, if they are connected via a local-
area network), the runtime system invokes socket-level 
interprocess communication. 

For X blocks that are mapped to an FPGA, there exist 
generated wrappers that reside both on the FPGA itself 
and the processor to which the FPGA is physically at-
tached. For FPGA-to-FPGA communication, a simple FIFO 
is instantiated on the FPGA. For FPGA-to-processor com-
munication, the FPGA is positioned on the PCI-X bus. Data 
destined for input ports on blocks mapped to the FPGA are 
moved across the PCI-X bus via a DMA transfer to physical 
FIFOs on the FPGA directly wired to the input ports of the 
X block’s implementation. Correspondingly, data from 
output ports is moved across the PCI-X bus via DMA back 
into processor memory, where the C wrapper invokes the 
downstream block. 

While the above describes the deployment of an ap-
plication to target hardware, the X-Dep tool also has 
responsibility for deploying the application to the X-Sim 
simulation environment. In this case, the generated wrap-
pers use the file system to manage the data into and out of 
ports, reading data from trace files for input ports and writ-
ing data to trace files from output ports. These wrappers 
also create the time stamp files. In the simulator, the actual 
block execution is dependent on the type of computational 
resource being modeled. For FPGAs, we use the Modelsim 
simulator, and for processors we use direct execution on 
an individual representative processor core. 

COMPUTATIONAL FINANCE APPLICATION 
To demonstrate the mapping, performance evaluation, 

and execution of applications in the Auto-Pipe environ-
ment, we present a computational finance application that 
expands the compute platforms to include graphics en-
gines. Since the Auto-Pipe environment is currently being 
expanded to include graphics engines, we developed this 
application using a combination of Auto-Pipe and CUDA. 

An important application in computational finance is 
the calculation of value at risk (VAR). The VAR is an indi-
cator of the risk associated with a portfolio of financial 
instruments. It is defined as the maximum loss that is not 
exceeded with a given probability over a specified period 
of time. The probability is specified as a confidence level. 
The two confidence levels frequently used in practice are 
95 percent and 99 percent. For example, a VAR of $10,000 
at the 95 percent confidence level indicates that the prob-
ability that the losses will exceed $10,000 is less than 0.05. 

The application calculates the VAR by estimating a port-
folio’s value at the end of a specified time. Since stochastic 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
$

Figure 6. Computation pipeline for financial Monte Carlo 
simulation.
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to a set of processor cores, an FPGA, and a GPU using a 
combination of Auto-Pipe and CUDA. Figure 7 illustrates 
the highest performing mapping. 

We considered a portfolio of 1,024 stocks and nomi-
nal values for the parameters in the Black-Scholes model. 
These parameters are uniquely available from the data 
stream provided by an Exegy XTP ticker plant (www.exegy.
com). Obtaining a single value of the portfolio at the end 
of the specified time requires 1,024 random walks, one 
for each stock. This then constitutes a “trial” for the Monte 
Carlo simulation. We simulated the portfolio 220 times, 
resulting in 230 random walks. 

System performance is measured in terms of random 
walks per second. On an individual processor, the Monte 
Carlo simulation can execute 450,000 walks/s. Executing 
the configuration of Figure 7, the Monte Carlo simulation 
executed 81 million walks/s. This represents a speedup of 
180×. To our knowledge, this was the first use of both GPUs 
and FPGAs in the acceleration of an individual application. 

While the Auto-Pipe development environment does 
not yet directly support mapping of algorithm blocks to 
the GPU, we are currently using the lessons learned in this 
application development to expand Auto-Pipe to explicitly 
include graphics engines as deployment targets. 

A
rchitecturally diverse systems can improve 
streaming application performance by orders 
of magnitude, albeit with enormous program-
mer effort. To simplify the programming 
of such systems, we have constructed the 

Auto-Pipe application development environment, which 
supports the flexible mapping of application components 
onto computational resources and the automatic delivery 
of data between these computational resources. An impor-

tant component of this development environment is the 
emphasis placed on performance assessment and evalu-
ation. The major purpose for deploying applications on 
diverse systems is to exploit the achievable performance 
gains. Our goal is to enable the application developer to 
observe the performance implications of design choices 
and to reduce application development time. 

In addition to the computational finance applica-
tion, Auto-Pipe has been used to implement applications 
ranging from cryptography5 to astrophysics.14 Auto-Pipe 
currently supports applications deployed on chip multi-
processors and FPGAs, and we are expanding its scope 
to include graphics engines. In addition, a block library is 
under development. In the future, we plan to investigate 
the incorporation of analog computation (for example, 
via field-programmable analog arrays15) into the applica-
tion. 
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