
Trading Quality for Compile Time: Ultra-Fast Placement for FPGAs _ 
Yaska Sankar and Jonathan Rose 

Department of Electrical and Computer Engineering 

University of Toronto 

Toronto, ON, Canada M5S 3G4 

(yaska, jayar} @eecg.toronto.edu 

Abstract 

The demand for high-speed FPGA compilation tools has occurred 
for three reasons: first, as FPGA device capacity has grown, the 
computation time devoted to placement and routing has grown 
more dramatically than the compute power of the available com- 
puters. Second, there exists a subset of users who are willing to 
accept a reduction in the quality’ of result in exchange for a high- 
speed compilation. Third, high-speed compile has been a long- 
standing desire of users of FPGA-based custom computing 
machines, since their compile time requirements are ideally closer 
to those of regular computers. 

This paper focuses on the placement phase of the compile process, 
and presents an ultra-fast placement algon’thm targeted to FPGAs. 
The algorithm is based on a combination of multiple-level, bottom- 
up clustering and hierarchical simulated annealing. It provides 
superior area results over a known high-quality placement tool on a 
set of large benchmark circuits, when both are restricted to a short 
run time. For example, it can generate a placement for a lOO,OOO- 
gate circuit in 10 seconds on a 300 MHz Sun UltraSPARC worksta- 
tion tha: is only 33% worse than a high-quality placement that 
takes 524 seconds using a pure simulated annealing implementa- 
tion. In addition, operating in its fastest mode, this tool can provide 
an accurate estimate of the wirelength achievable with good quality 
placement. This can be used, in conjunction with a routing predic- 
tot to very quickly determine the routability of a given circuit on a 
given FPGA device. 

1. Introduction 

One of the reasons the use of FPGAs and CPLDs has risen 
dramatically is because they provide quick manufacturing 
turnaround times [Brow92]. This advantage has been reduced, 
however, as the capacities of the programmable devices grow, 
because the compilation times for large circuits are growing more 
rapidly than the available computer power. This adversely impacts 
FPGA hardware designers (who must wait longer), emulation 
system users (who must compile hundreds of FPGAs at a time), and 
FPGA-based custom computing machine users, who really want 
compilation times similar to those of a microprocessor. 

The placement and routing times for large FPGAs (those with more 
than 5000 LUT/flip-flop pairs) can last many hours of a day with no 
guarantee of successful completion. For example, an 8383 LUT 

(approximately 100,000 gates) circuit requires almost 1.2 hours for 
placement and routing using the Xilinx Ml (version 4.12) tools on a 
300 MHz Sun UltraSPARC [Swar98b]. With million-gate capacity 
FPGAs on the horizon, these prohibitively long compile times may 
nullify the time-to-market advantage of FPGAs. We contend that 
there is a subset of designers who are willing to trade quality for 
speed of compilation. 

In this paper, we focus on the placement phase of the FPGA 
compile process, and present an ultra-fast placement tool that aims 
to minimize area. Although a timing-driven placement tool is likely 
also important, we believe that area-based minimization is a 
prudent first step. 

It is instructive to describe the scenario in which fast compile would 
be used: a user has designed a circuit and chosen a target FPGA of a 
specific size. If the user explicitly states a compile time restriction, 
then the tool provides a prediction as to whether the circuit will 
successfully route or not in the given time. Swartz et al. [Swar98a] 
provide a method for making the “fit/no-fit” prediction, given a 
placement and the total wirelength. Our work provides both a fast 
way of obtaining the placement and a very fast way of measuring 
the wirelength. A different scenario is that the user is supplied with 
an area-compile time trade-off curve, and selects the point 
appropriate to his goals. In this case there must be sufficient space 
in the FPGA. 

Those users willing to sacrifice area of the circuit mapped to the 
FPGA for compile time (and can do so via a tunable “knob” on the 
CAD tools), can accommodate the increased area in several ways 
depending upon the field of application: hardware designers can 
reduce the complexity of a single design by partitioning the circuit 
onto multiple FPGAs, or can select an FPGA with greater logic 
capacity. They can also eliminate part of the circuit by reducing the 
amount of parallelism in the hardware. 

1.1 Background 
There exists a great deal of previous work on VLSI placement 
algorithms that can be applied to FPGAs [Hana72] [Dun1851 
[Sech88] [Sun951 [Klei91] [Shah91]. These algorithms endeavour 
to minimize the wiring area occupied by a circuit, and succeed to 
varying degrees. However, few of these algorithms have as their 
primary goal the minimization of run time. Gehring and Ludwig 
[Gehr98] describe a fast placement tool for the Xilinx XC6200 
FPGA architecture that converts an HDL specification into an 
FPGA programming bitstream. Their constructive placement 
algorithm operates only on a hierarchical description of a circuit 
with regular sub-circuits. It takes user-specified position hints and 
proceeds in a bottom-up fashion to place the inner-most subcircuits, 
and then recursively places the larger structures and expression 

’ We define quality as the wiring area required by the circuit or the 
speed at which the circuit can operate when mapped to the FPGA. 
Greater wirelength will require the use of a larger FPGA or the use 
of more resources on a given FPGA than is otherwise necessary. 

157 



trees. The placement algorithm is of linear complexity and is fast - 
a circuit of 11,748 CLBs was placed in 33.5 seconds on a 166 MHz 
Pentium, with the Xilinx XC6264 as the target device. 

Callahan et al. [Cal1981 combine fast placement with module 
mapping for datapath circuits by treating the problems jointly as a 
tree covering problem. Dataflow graph representations of circuits 
are split into trees, and a linear-time implementation of dynamic 
programming is used to perform the simultaneous module 
mapping and relative module placement, with a greedy heuristic 
being employed to do global placement of the trees. They obtain 
good results when targeting the Xilinx XC4000 and explore the 
trade-off between optimizing for area and delay. 

[Sun951 and [Betz97] offer methods to speed up simulated- 
annealing-based placement algorithms, some of which we employ 
in our tool. The hierarchical clustering and placement algorithm 
proposed in [Sun951 first performs two levels of clustering to 
condense a netlist by collapsing as many nets as possible into 
clusters. A three-stage annealing schedule is subsequently 
employed to place the different levels of clustered netlists. This 
entails first performing a high temperature anneal on the highest- 
level clusters. Then, the next lower level of clusters are annealed 
across the cluster boundaries set by the previous stage of 
annealing. Finally, a low-temperature anneal is conducted using 
the original flat netlist. This hierarchical clustering and simulated 
annealing-based placement technique is used in 
TimberWolfSCv7.0, a placement tool for standard-cells. 

In [Betz97], a novel, dynamic, adaptive annealing schedule is 
described for the simulated annealing-based placement algorithm 
within the placement tool named VPR. The annealing parameters 
are adjusted automatically depending upon the size of the circuit. 
A bounding box wirelength cost function is used, with correction 
factors for multi-terminal nets. The initial temperature is computed 
as being proportional to the standard deviation in cost after a set of 
N pairwise swaps are made, where N is the total number of logic 

blocks and I/O pads in the circuit. At each temperature, 10.N 4’3 

moves are attempted, by default, and the temperature is reduced in 
such a way as to maintain a constant, useful acceptance rate. 

The application of clustering and simulated annealing to the 
partitioning of FPGA circuits is described in [Roy93], with 
emphasis on both wirelength and execution time. In [Tess98], 
compile-time efficient placement for FPGAs is approached using 
ASIC floorplanning techniques. By considering portions of the 
circuit being mapped to the PPGA as pre-placed and pre-routed 
macrocells, the compile times for large designs can be decreased 
from an hour to mere minutes, although there is both a severe area 
and circuit speed penalty. As the other portion of the Fast Compile 
Project at the University of Toronto, [Swar%a] addresses the 
routing phase of the PPGA compile. 

1.2 Paper Organization 

This paper is organized as follows: Section 2 describes the ultra- 
fast placement algorithm and the features that enable the area-time 
trade-offs. Section 3 describes the target FPGA architecture and 
the suite of test circuits, and compares the run time and quality of 
our fast placement tool to those of VPR [Betz97] [Betz98]. It also 
demonstrates the accuracy of our tool as a high-speed wirelength 
predictor. Section 4 concludes and offers direction for future work. 

2. Ultra-Fast Placement Algorithm 

In this section, we describe the ultra-fast placement algorithm and 
the parameters that allow us to exchange wirelength for compile 
time. We then describe how we determined a stable set of these 
parameters that give us the best quality-time trade-off. More 
elaborate details of the algorithm and parameters may be found in 
[Sank99]. 

2.1 Overview of Approach 

The placement problem for FPGAs begins with a technology- 
mapped netlist of logic blocks’, I/O pads, and their 
interconnections. The output is an assignment of the blocks and 
pads to specific physical locations of the PPGA. To achieve ultra- 
high-speed placement for FPGAs, we build upon the clustering and 
hierarchical simulated annealing algorithm described in [Sun951 
and the adaptive annealing schedule of [Betz97] [Betz98] and 
integrate it into the infrastructure provided by VPR (the Versatile 
Place and Route tool presented in [Betz97]). 

Figure 1 shows the framework for our ultra-fast placement 
algorithm. The first stage is a multi-level, bottom-up clustering of 
the logic blocks based on their connectivity. (Note that we do not 
incorporate If0 pads into the clusters of logic blocks, since they 
have special restrictions upon where they can be placed on the 
physical FPGA.) The bottom-up clustering is parameterized as 
follows: a total of L different levels of clustering will be 
performed. At each level i, Si blocks (or clusters) at the previous 

level are grouped into a cluster. If a circuit contains a total of N 
logic blocks, after a single level of clustering (level l), there are 
[N/s,] clusters. These clusters can be grouped again to create a 

second level of clustering, with s2 first-level clusters in each 

second-level cluster, giving KN/s,] / ~1 clusters at the top level 

(level 2), and so on. 

Once all the required clustering is done, placement must be 
performed at each level of the hierarchy. We employ a two-step 
approach at each level: an initial constructive placement followed 
by an iterative improvement step using simulated annealing. The 
parameters of the anneal are tuned to acquire a good quality-time 
trade-off, as described below. Figure 2 illustrates an abstract view 
of multi-level clustering and placement. Our goal is to achieve 
high-speed placement by quickly making good and fast global 
decisions at the higher levels of the hierarchy, and following this 
with iterative local improvement at the different levels of 
granularity. Our choices of algorithms are guided by the following 
objective: reduce the complexity of large placement problems by 
dividing them into manageable portions, and then employ known 
heuristics that are simple, fast, and effective on each portion. 

2.2 Multiple-Level Clustering 

The first step of the ultra-fast placement algorithm is a multi-level 
bottom-up clustering of logic blocks based on their connectivity. 
The input to the clustering step is a netlist of N logic blocks and 
their interconnections, the number of clustering levels, L, and the 
cluster size at each level, sl, s2, . . . sL. We restrict the cluster sizes 

(si) to be perfect squares (4, 16, 25, 64...) in order to simplify the 

grid resizing operations at the various levels. The task is to create L 
separate netlists of clusters of logic blocks and their 

’ For this paper, a logic block is one 4-input lookup table (4-LUT) 
and one D flip-flop. 

158 



Circuit 

Cluster Parameters I 

# clustering levels, L .-b Hierarchical clustering of logic 

# blocks/cluster at each level, 
blocks based on connectivity 

Sl, 54.2, ... SL-1, SL 

Placement Parameters 
+ 

i=L 

. 
To, Tf, a, InnerNum 

at each level I 
fanout threshold, maxfan 

““““‘““‘l”‘“““i 

Placement at flat level 
I 

I 

Fast, good, and legal placement of logic blocks and I/O pads 

Figure 1. High-level view of fast placement algorithm. 

Level 0 Level 1 Level 2 

I/O pad 

Multi-level Clustering Coarse placement of clusters 

Figure 2. Abstract view of multi-level clustering and 
placement. 

interconnections where each block or lower-level cluster is 
assigned to a unique higher-level cluster exactly once, and each 
cluster ci,k (the kth cluster at level i) has at most s; blocks or 

clusters from the previous level. 

The clustering algorithm begins by randomly choosing a logic 
block as a seed, and assigning it to the first slot in a cluster. Each 
unchrstered block connected to that seed is assigned a score that 
rates how much the block belongs to this cluster. This score, wh, 

159 

for each candidate block b has two components: (1) the number of 
connections between the candidate and the cluster being 
constructed, with each connection weighted by the fanout of the 
net on which it lies, as in [Sun95], and (2) the number of nets that 
would be completely absorbed if this candidate were added to the 
current cluster. We say that a net is absorbed by a cluster if all the 
blocks on that net are contained within that single cluster. If we 
denote J to represent the set of nets shared between the candidate 
block b and the cluster c under construction, Pi as the set of pins on 

net j E J, and Abe as the set of nets absorbed by adding candidate 

block b to cluster c, then the score can be expressed as 

Wb = jFJ,f’j;- 1 +lAbcl 

With this function, blocks on low-fanout nets and on nets that are 
about to be absorbed are preferred when building the clusters. The 
candidate block with the highest score is added to the next 
available cluster slot, and if the cluster is full, a new one is started 
with a new randomly selected seed block. This process is repeated 
until all the blocks are clustered. The result is a netlist of clusters 
with absorbed nets removed. We proceed in a similar manner to 
create further levels in the clustering hierarchy. 

The number of clustering levels, L, and the size of the cluster at 
each level, Si, can be varied to allow the trade-off of compile time 

and quality. As the size of the clusters increases, the placement 
problems become simpler because more is hidden, but there is less 
accurate representation of the netlist and therefore lower quality 
may result. 



2.2.1 Complexity of Clustering 
The score assigned to any candidate block changes only when a net 
is first connected to a cluster or when a net is about to be absorbed 
(i.e. all but block b of the pins on net i are contained in cluster c, 
and the cluster has an available slot). We can maintain a list of the 
best scores and associated candidates in a bucket data structure in 
order to perform fast updates. The bucket structure only needs to 
be flushed when a cluster is full. Let N be the number of logic 
blocks, K be the number of nets on each logic block, f,, be the 

maximum fanout of a net in the circuit and s be the size of the 
cluster. The complexity of the algorithm can be derived by 
observing that when generating the clusters, the algorithm must 
examine each of the N blocks once, each of the K nets connected to 
the block, and each of the other pins on those nets. This 
examination occurs either upon adding a block to a cluster or when 
a net is about to be absorbed. The complexity of the clustering 
algorithm is thus O(N.Kf_). If we clip the value off,, by 

restricting the clustering algorithm from examining nets above a 
certain fanout threshold, this is a linear-time algorithm. This bound 
is satisfied at higher levels of clustering as well, since N is scaled 
down by a factor of the cluster size s, K is scaled up by at most a 
factor of s (and is often less than that), and f_ is likely to 

decrease. Practically, the clustering is very fast: a 20,000 LUT 
circuit can be grouped into clusters of size 64 in 2.1 seconds on a 
300 MHz Sun UltraSPARC. 

2.3 Placement of Clusters at Each Level 

Once we have constructed the hierarchy of clusters, placement 
must occur at each level. The placement algorithm consists of two 
steps: constructive placement followed by annealing-based 
iterative improvement. 

2.3.1 Constructive Placement of Clusters 
Given a netlist of clusters and their interconnections, we first 
perform a random placement of all the I/O pads in the circuit at the 
highest level of the hierarchy. This provides anchor points for the 
clusters. Note that subsequent optimization steps will change the 
pad placement. 

The constructive placement determines positions for three separate 
groups of clusters: (1) those connected to output pads, (2) those 
connected to input pads, and (3) those connected to other logic 
clusters. It computes, for each cluster in each group in succession, 
the arithmetic mean position of all the clusters and pads it is 
connected to that have already been placed. The cluster is placed as 
close to this “center of gravity” as possible. The initial placement 
of the pads provides the initial guidance for this construction. We 
have found that this method provides a superior starting point for 
the subsequent iterative improvement step than a simple random 
placement. Experiments also show that this placement results in a 
slightly better time/quality trade-off than a random placement. 

At lower levels in the hierarchy, the same constructive approach is 
used, with three exceptions: (1) there is no initial pad placement - 
pads are placed in the same way logic clusters are; (2) if a block 
has not yet been placed and its position is needed for the mean 
calculation, the center of the higher-level cluster it is contained 
within is used as the position; (3) each of the cluster contents is 
placed as close to its calculated “center of gravity” while 
remaining within the prescribed cluster boundaries. 

2.3.2 Simulated-Annealing-Based Iterative 
Improvement of Placement 

Following the constructive placement of clusters and pads at any 
level in the hierarchy, we improve its quality using simulated 
annealing-based [Kirk831 [Sech85] iterative improvement. We will 
assume that the reader is familiar with the basic simulated 
annealing method as it is applied to placement. We have adapted 
the annealing implementation in VPR described in 
[Betz97][Betz98]. 

One important issue is whether or not to restrict the motion of 
blocks to remain within the cluster boundaries of the most recent 
cluster level. We have experimentally determined that it is much 
better to allow the blocks being placed to move across the cluster 
boundaries. This still means that the coarse placement from the 
previous level is useful; if the boundaries are enforced, however, 
then quality suffers. 

The key parameters that control the quality-time trade-off for 
simulated annealing are: 

1. The starting temperature, T@ This is a crucial parameter, 

because if the temperature is too high, the annealing will 
destroy the placement structure developed at previous 
levels in the hierarchy. If it is too low, then insufficient 
optimization will be done. We employ three different 
mechanisms for determining TQ The first is to employ 

the temperature “measurement” mechanism suggested in 
[Rose901 - here the temperature is determined by finding 
the temperature at which the placement appears to be at 
equilibrium (simulated thermometer). The second is to 
do a simple quench, and the third is to set the starting 
temperature to a fixed value. In the next section, we 
explore which of these approaches is most appropriate 
for different time-quality trade-off points. 

The number of “moves” per temperature, called 
“InnerNum.” The basic annealing algorithm of VPR 

[Betz97] makes InnerNum Nblockry3 moves at each 

temperature, where Nblockr is the number of blocks and 

pads. The parameter InnerNum determines how much 
work is done per temperature. 

The temperature update factor, a. The lower a is, the 
faster the anneal, but the worse the quality. VPR 
[Betz97] automatically adjusts a as described in the 
introduction; we have found that squaring the automatic 
a increases speed with little reduction in quality. 

The exit criterion - what causes the annealing to stop - is 
either a specified temperature at which the annealing 
terminates (Tf) or when either of the following two 

conditions are met: (i) the temperature is less than 1% of 
the average cost per net or (ii) the average cost over the 
last three temperatures remains unchanged. 

In summary, we have identified 3 types of schedules that permit us 
to explore the quality-time space thoroughly: (1) an aggressive 
dynamic adaptive schedule with automatic calculations for T,, Tp 

and a; (2) a quench (all temperature 0 moves), where no hill- 
climbing is permitted; (3) a manually-specified schedule where the 
values of T,, Tf and a are fixed. Schedule (1) is an anneal tailored 

160 



to the current placement of the circuit, whatever its level of
granularity, schedule (2) is a greedy heuristic, and schedule (3) is a
short, fixed anneal. In all three cases, we can trade quality for
compile time by varying the InnerNum  parameter.

2.3.3 Fanout
Another enhancement that we implement to speed up the
placement is to ignore nets with large fanout.  This is useful
because a high-fanout net will likely cover much of the FPGA and
so it is harder to reduce that area. By ignoring nets above a certain
fanout threshold, we make the placement problem simpler. If we
set the threshold too low, however, we may lack enough
information to create a good placement. Note that both the
clustering and placement steps ignore the nets above the threshold.

2.3.4 Complexity of Placement
At any level in the hierarchy, our initial constructive placement
algorithm has worst-case time complexity O(Nbr,,kr.K&& with
NblO,__  logic blocks and pads, K pins per block, and a maximum
fanout o f f , , for any net in the circuit. Just as with the clustering
algorithm, this is because we must examine each block or cluster
exactly once, each net connected to that block or cluster, and every
other block or cluster connected by that net. Furthermore, by
examining only those nets below a certain fanout threshold, we can
ensure that it remains a linear-time algorithm. Assume there are N
logic blocks and (PI+PO)  pads in the circuit, and that we choose a
uniform cluster size of s at each level of the hierarchy. For the
follow-up simulated annealing algorithm, we explore at each level

i (i = O-L)  at most InnerNum  ((N/s’)+PI+PO)~‘~  configurations
per temperature, and our starting temperature calculation and
aggressive adaptive annealing schedule typically ensure that we do
not search through many temperatures per level in the clustering
hierarchy. This means that the annealing algorithm’s worst-case

time complexity is bounded by 0(Nb10cks4’3)  and is typically less
than that.

2.4 Determination of the Quality-Time Envelope
Parameters

In this section, we describe the experiments used to identify the set
of parameters for the ultra-fast placement tool and choose those
parameters. There are two sets of parameters: those that control the
clustering, and those that control the iterative improvement of the
placement. Our goal is to determine the parameters that lead to the
best quality-time trade-off, which we call the envelope parameters.
Please note that the details of the actual FPGA architecture and the
other parts of the CAD flow are given in Section 3.1 and
Section 3.2.

2.4.1 Cluster Parameter Experiments
The key parameters of the multiple-level clustering approach are
the number of clustering levels (L) and the cluster sizes at each
level (sI . . sL). We first explored a single level of clustering - L = 1.
To determine the cluster size value (s,) that provides the best
quality-time trade-off, we ran the tool on a set of benchmark
circuits and varied the cluster size from 4 to 4096 by powers of 4.
For the subsequent iterative improvement placement, many
different annealing schedules were run in order to determine the
complete quality-time trade-off possibilities. For example,
Figure 3 is a plot of the mean normalized placement wirelength
(with respect to the best possible placement obtained by VPR

[Betz971)  versus the mean run time, across a set of 20 benchmark
circuits..In that figure, the clustering size SI was set to 64.

2.5 r

.

Legend: IevO: annealing schedule for top level clusters; flat: follow-
up annealing schedule at flat level; therm: automatic anneal using
simulated thermometer; inum: range of InnerNum values at each
level; auto: automatic anneal; quench: zero temperature anneal;
TO: manual anneal with specific starting temperature.

Figure 3. Placement quality-time plot (20 circuit average)
for ultra-fast placement tool using different combinations

of annealing schedules on l-level, size-64 clustered circuits.

We performed similar experiments and generated the same curve
for values of s, = 4, 16, 64,256, 1024 and 4096, and determined
that the values of 64 and 16 resulted in the best (lowest) quality-
time trade-off curve. Figure 4 shows the comparison of the time-
quality curves for each value of sl, and we chose to use 64 as our
l-level cluster size in the placement parameter experiments that
follow. This results in fewer clusters that are larger in size,
compared to a l-level cluster size of 16.

We performed similar studies for L = 2 and 3 levels of clustering.
These studies are problematic as there are many more parameters
and combinations of annealing schedules to explore: for L = 2,
there is the setting of s1 and s5 for L = 3, there is the setting of ~1,
s2 and s3. The experiments show that for L = 2, the values of SI =
64 and s2 = 4 were found to be best, and in a few cases, the quality-
run time trade-off was superior to the best of the L = 1 envelope.
For L = 3, the values for (s,,s~,s~) of (64,4,4),  (64,16,4)  and
(256,4,4)  were all found to behave about the same, but all of these
settings yielded results that were no better than those obtained
across L = 1 and 2. This may be due to the sizes of the large
circuits in our benchmark suite; after 2 levels of clustering, the
circuits have already been transformed into a few very large
clusters (tens of clusters with 256 total flat logic blocks in each).
So, an additional level of clustering does little to further simplify
the placement problem, and may even cost both time (because of
the extra processing at level 3) and area (an additional level of grid
resizing must be performed, which may adversely affect the grid
size at the flat level).

161



1 10 100 

G&metric mean run time (seconds) 

Figure 4. Placement quality-time curves (20 circuit average) 
for ultra-fast placement tool using a sample of annealing 

parameters and varying l-level cluster sizes from 4 to 4096. 

2.4.2 Placement Parameter Experiments 
The next set of parameters to tune is the set of simulated annealing 
parameters described in Section 2.3.2. Recall that we settled on the 
set of 3 types of schedules described in Section 2.3.2: (1) an 
automatic anneal that uses a simulated thermometer to compute To, 
dynamically calculated values for T, and a, and variable 

InnerNum; (2) a quench with variable InnerNum; (3) a fixed anneal 
with To = 0.1, Tf = 0.01, a = 0.8, and a variable InnerNum. We 

explored the combinations of these schedules at the clustered and 
flat levels of the hierarchy, for circuits clustered with L = 1 and sl = 

64 blocks per cluster. The scatter plot of geometric mean 
normalized placement cost vs. geometric mean run time is given in 
Figure 3, and note the complexity of the various combinations of 
schedules. For short run times, the envelope is comprised of a 
quench (schedule 2) at the top level with InnerNum = 10, and the 
short, fixed annealing schedule (schedule 3) with InnerNum of 0.1 
to 0.5. For longer run times, the envelope consists of the automatic 
anneal (schedule 1) at the top level with InnerNum = 1 and the 
automatic anneal at the flat level with InnerNzun from 0.2 to 1. In 
each case, though, it is evident that there are alternative schedules 
that come reasonably close to providing the same quality-time 
trade-off as the envelope. Similar combinations of schedules were 
attempted for 2 and 3-level clustered circuits. 

In order to determine the best value of the fanout threshold (the 
value of fanout above which the nets are ignored), we performed 
an experiment with L = 1 and s1 = 64, and varied the fanout 

threshold. Figure 5 is a scatter plot of quality versus run time for 
various values of fanout threshold and annealing schedules. The 
circular dots represent the quality when no nets are ignored, and 
the other points show the quality when more nets are ignored - 
from fanout thresholds ranging from 1000 to 1. It is evident that 
excessively low fanout thresholds eliminate far too much 
placement information from the circuit, hence the area degradation 
is huge. However, when nets with fanout over 100 are ignored, we 
save a few seconds of placement time with almost no degradation 
in quality. 

l 

1.0-, 
** 

,,.' 
1 10 100 

Geometric mean run time (seconds) 

Legend: maxfan: fanout threshold; IevO: annealing schedule for top 
level clusters; flat: follow-up annealing schedule for flat level netlist; 
therm: automatic anneal using simulated thermometer; inum: 
range of InnerNum values at each level. 

Figure 5. Placement quality-time plot (20 circuit average) for 
ultra-fast placement tool using different fanout thresholds 

above which nets are ignored on circuits with 3 sets of fixed 
cluster and placement parameters. 

3. Experimental Results 

In this section, we compare the new fast placement tool to an 
existing and known high-quality placement tool, VPR [Betz97]. 
We first describe the FPGA architecture used in the experimental 
comparisons, and the overall CAD flow. 

3.1 Target FPGA Architecture 

We use an island-style FPGA with a logic block that contains a 
single 4-LUT and a single D flip-flop. Each block has 6 pins: 4 
inputs, 1 output, and 1 clock. We will assume the FPGA has 
dedicated resources for routing the clock, reset, and other global 
nets. We assume an I/O pad pitch-to-logic block ratio of 2. 

3.2 Benchmark Circuits and CAD Flow 

We have collected 20 circuits from a variety of sources: 14 of the 
largest circuits from the MCNC suite [Yanggl], one comes from 
the RAW suite [Babb97], one is a synthetic circuit generated by 
GEN [Hutt97], and the remaining four are designs created for the 
Transmogrifier-2 rapid prototyping system [Lewi97] at the 
University of Toronto [Ye981 [Hame [Leve98]. Each circuit 
was optimized using SIS [Sent92], and technology mapped into 4- 
LUTs using Flowmap and Flowpack [Cong94]. VPACK [Betz97] 
was used to pack the netlists of 4-LUTs and flip-flops into logic 
blocks. The sizes of the 20 benchmark circuits range from 3000 to 
20,000 logic blocks. 

We have implemented our fast placement tool within the 
framework of VPR. We use the bounding box wirelength of all 
nets in the circuit to compare the quality of placement of each 
circuit from each tool. We measure only the time used to perform 
clustering and placement, and do not include the initial input file 
reading time and parsing (this is no more than 5 seconds for the 

162 



largest circuit). All experiments are run on a 300 MHz Sun 
UltraSPARC workstation. 

3.3 Basis of Comparison 

7.0 “““I ““‘I “““I ““” 

ti 
8 6.0 

We use the pure simulated annealing-based VPR as the basis for 
comparison to our new placement algorithm. In order to compare 
the quality-time trade-off curve for VPR, we needed to vary the 
schedule parameters for VPR itself, in a similar manner to that 
described above for our tool. 

To obtain the envelope of the quality-time curve for VPR, we 
varied each of the key simulated annealing parameters - initial 
temperature (To), exit temperature (Tf), temperature update factor 

(a), and scaling factor for the number of moves to attempt per 
temperature (ZnnerNum). We used the three types of schedules 
described in Section 2.3.2: (1) an automatic annealing schedule 
(To, T> and a calculated dynamically and adjusted depending upon 

the quality of the placement) with variable InnerNum; (2) a quench 
(greedy heuristic) with variable InnerNum; (3) a fixed annealing 
schedule, where we either sweep To, keeping Tp a, and InnerNum 
constant, or sweep a, keeping To. Tp and InnerNum constant. 

We ran each unique annealing schedule on all 20 circuits, recorded 
the run time and wirelength, and normalized the wirelength for 
each run on a given circuit to that achieved by VPR when run 
under its “ -fast” option on that same circuit. This specific VPR 
option is similar to its default parameters that are tuned to generate 
high-quality placements, except that one-tenth of the 
configurations are explored at each temperature. Typically, this 
increases the placement cost by at most lo%, but with a factor of 
10 speedup in placement time. Essentially, it is a very high quality 
placement that is obtained in a reasonable amount of time. It is 
from these experiments that we determined the envelope of the 
best VPR annealer parameters to specify across all 20 circuits. 

The envelope containing the annealing schedules that produced the 
best quality-time trade-off consisted of parts of 3 types of 
schedules with variable InnerNum: a quench, an anneal with To = 
1, Tf = 0.01, and a = 0.8, and an automatic anneal with 

dynamically-updated To, Tp and a. Figure 6 illustrates the 

geometric mean normalized placement cost (bounding-box 
wirelength) versus geometric mean run time across all 20 of our 
benchmark circuits for the 3 schedules that form the quality-time 
envelope for VPR. 

There is not much difference in wirelength and run time among the 
schedules for extremely short run times (c 3 set). We observe that, 
for run times in the 10 to 100 second range, there is ample room 
for improvement; an average of 80-100% extra wiring area is 
likely unacceptable to a circuit designer even within 10 seconds of 
placement time. 

3.4 Comparisons Between New Algorithm and 
VPR 

A head-to-head comparison between the ultra-fast placement tool 
and VPR is possible by running each set of placement parameters 
that lies on the envelope of the respective tool on every circuit in 
the benchmark suite, normalizing the placement quality results to 
those obtained by running VPR under its “-fast” option, and 
calculating the geometric mean placement cost and run time. 
Figure 7 is a plot of both the best VPR quality-time envelope and 
the new ultra-fast placement tool quality-time envelope. Each point 

0.0 t ‘),,,,I ‘,‘,,,I “““’ ‘...A 
0.1 1.0 10.0 100.0 1000.0 

Geometric mean run time (sewnde) 

Legend: auto: automatic annealing schedule; quench: zero 
temperature anneal; TO: manual anneal with starting temperature 
= 1; inum: range of InnerNum values. 

Figure 6. VPR placement quality-time trade-off (20 circuit 
average) using only those annealing schedules that form the 

envelope. 

on the fast placement envelope refers to a unique set of clustering 
and annealing parameters. It shows that the ultra-fast placement 
tool has a clear advantage for both short run times (10 seconds or 
less) and medium run times (from 10 to 100 seconds). In 10 
seconds, our placement tool requires only 30% more wirelength on 
average (than the best possible placement), while VPR requires at 
least 80% more wirelength on average. Furthermore, while VPR 
can achieve an average area penalty of 10% in over 100 seconds, 
our placement tool can attain this level in approximately 30 
seconds. If we allowed our placement tool to run without a compile 
time restriction, it would produce placements that would be very 
nearly what VPR can achieve, since both tools are based on similar 
implementations of simulated annealing. This is apparent from the 
plot: within 60 seconds on average, the ultra-fast placement tool 
yields an average wirelength that is within 5% of VPR’s high- 
quality anneal. Figure 7 also demonstrates that by manipulating the 
fast placement tool parameters, we can realize a smooth trade-off 
between placement quality and execution time. 

Table 1 provides a comparison between VPR and the ultra-fast 
placement tool with one particular set of parameters: L= 2 levels of 
clustering with cluster sizes SI = 64 and s2 = 4, with the top-level 

and level-l annealing schedules being a quench (InnerNum = lo), 
a flat anneal with To = 1 (InnerNum = OS), and nets above 

fanout=lOO ignored. The geometric mean run time across all 
circuits for this set of parameters is 11.37 seconds, and the 
geometric mean area penalty is 22%. It is difficult to find directly 
comparable run times between the two tools; we then select a 
schedule from the VPR envelope that is as close as possible. The 
first column of Table 1 gives the circuit name, its size in number of 
logic blocks, the run time and normalized placement cost obtained 
using our fast tool, and the comparable data using VPR. It shows 
that the ultra-fast placement algorithm wins in a comparison with 
VPR for every circuit in our suite, posting a superior wirelength in 
a significantly shorter run time. Note that for this particular set of 
ultra-fast placement parameters, the reduction in wirelength 
compared to VPR ranges from 13% to 50%. 

163 



& 
b - - l VPR Envelope 

l Ultra-Fast Placement Envelope 

4 

1 10 100 loo0 
Geometric mean run time (seconds) 

Figure 7. Placement quality-time envelope curves (20 circuit 
average) for VPR and new ultra-fast placement tool. 

The true measure of quality of a given placement is whether or not 
it can be successfully routed on the target FPGA. Although we 
have not attempted to route any of the ultra-fast placements, 
[Swar98b] has shown that wirelength and routability correlate 
extremely well. Therefore, we are satisfied that our ultra-fast 
placements are superior to those produced by VPR, based solely 
on wirelength for the range of compile times of interest. 

3.5 Wirelength Estimation and Accuracy 

One way to use a fast placement tool, even if the user is not 
interested in sacrificing any final circuit quality, is to use it as a 
routability estimator for a given netlist. Swartz et al. [Swar98a] 
show how to predict if a circuit will route on a given FPGA, given 
the wirelength of the placement of a circuit and the number of 
tracks per channel in the target FPGA. The drawback of their 
approach is that the placement must be known beforehand. We 
propose that our fast placement algorithm be used to obtain very 
fast and accurate estimates of the final besr placement wirelength. 
The idea is that we can run the fast placement tool in one of its 
very fastest modes, measure the wirelength of that placement, and 
then decrease the wirelength by the typical amount that the fast 
mode is usually worse than the best mode. The quality of the result 
depends on the consistency of difference in wirelength between the 
fast mode and the best mode. This can be measured by determining 
how much the normalized placement cost for each circuit, in the 
fast mode, varies from the mean normalized placement cost across 
all circuits. 

Figure 8 is a plot of the average difference of each circuit’s 
normalized wirelength from the mean over all circuits versus 
different run times of the ultra-fast placement tool obtained from 
the quality-time envelope parameters. (To obtain this graph, we 
calculate the absolute difference between the geometric mean 
normalized placement cost and the actual normalized placement 
cost for each of the 20 circuits for each particular set of fast 
placement parameters. We then compute the arithmetic mean of 
these differences (and call it mean absolute error) and plot it versus 
the geometric mean run time that was obtained for the set of 
circuits for this set of parameters.) 

spsdes 3363 5.22 1.21 6.47 1.70 

des_fm 4786 9.25 1.34 13.25 1.69 

des_sis 5351 11.12 1.24 14.14 1.67 

wood 7432 17.54 1.24 22.15 2.00 

marb 5535 11.61 1.26 13.72 2.15 

Geometric Average 11.37 1.22 14.17 1.82 

Table 1: Comparison between ultra-fast placement tool and 
VPR for 20 circuits. One set of placement parameters was 

employed for each tool such that their run times were close and 
they formed the quality-time envelope for their respective tools. 

Figure 8 shows that, as we would expect, longer compile times 
produce more accurate wirelength estimates. Impressively, even 
short run times result in accurate estimates - for example, an 
average run time of just over 10 seconds results in a mean absolute 
error of less than 5%. 

We can therefore use the fast-placement run time as an accurate 
estimator of the final best wirelength. Table 2 illustrates an 
example of fast wirelength estimation for each of the circuits in our 
benchmark suite. We used the same set of ultra-fast placement 
parameters as that used to generate the data in Table 1, and 

164 



0.20 

0.15 

2 
m 
E 
2 
2 0.10 
3 

S 

r” 

0.05 

0.00 1 

. 

. 
. 

. 
. 

l . 

. 

1 10 100 
Geometric mean run time (seconds) 

Figure 8. Mean absolute difference in wirelength (between 
mean wirelength and individual circuit results) vs. mean run 

time for parameters forming ultra-fast placement tool envelope. 

recorded both the run times and raw wirelength result in each case. 
From the envelope curve in Figure 7, we know the mean 
normalized wirelength for this set of parameters across all circuits 
to be 1.22, or 22% larger than the highest-quality wirelength 
attainable by VPR. The mean run time is 11.37 seconds. Figure 8 
indicates that the mean absolute error for that set of parameters is 
0.044 (4.4%). Our pessimistic prediction of high quality 
wirelength can be written as: 

Wirelength predicted = j3 - Wirelength 
ultra-fast 

(2) 
where p = 1 / ( Wirelengthnomalized -Absolute Error) 

The predicted high-quality wirelength for a given circuit is 
expressed as being proportional to the wirelength obtained from 
the ultra-fast placement tool. The scaling factor, p, is composed of 
the difference between the normalized wirelength for the specific 
set of ultra-fast placement parameters chosen (geometrically 
averaged over all circuits) and the previously described mean 
absolute error (arithmetic average over all circuits of the absolute 
differences between the mean normalized wirelength and the 
actual normalized wirelengths) for the same set of placement 
parameters. The scaling factor denotes by what fraction the fast 
mode wirelength should be reduced to obtain a pessimistic 
estimate of the best mode wirelength. 

So for the case in Table 2, the formula reduces to 
Wirelengthpr,dicred = Wirelength,,,,Tm, I (1.22-0.044). We employ 

this to compute a wirelength estimate for each circuit based on the 
fast placement wirelength result, and compare it to the known 
high-quality wirelength for each circuit from VPR. For 16 of the 
circuits, our pessimistic estimate is between 0.89% and 13.75% 
higher than the actual high-quality wirelength, and in only two 
cases is the error greater than 10%. In four cases, the estimator was 
not pessimistic enough, predicting a wirelength that was between 
1.71% and 3.93% less than the actual high-quality wirelength. 
Overall, the average absolute error of the wirelength estimator was 
under 5% for the set of placement parameters that yielded a mean 
nm time of just over 11 seconds. 

165 

Table 2: Example of quality of wirelength prediction capability 
of ultra-fast placement tool. 

4. Conclusions and Future Work 

We have demonstrated that an ultra-fast placement algorithm based 
on multiple-level clustering, constructive placement, and 
simulated-annealing-based refinement works very well in relation 
to an existing high-quality pure simulated annealing placement 
tool. It provides superior area results across an entire set of large 
circuits compared to VPR when both tools are instructed to take 
approximately the same amount of time to formulate a placement. 
For example, in 10 seconds on a 300 MHz Sun UltraSPARC, our 
ultra-fast tool can achieve an average area penalty of 30%. while 
VPR can manage no better than 80%. The algorithm uses several 
key clustering and placement parameters to permit the user to 



smoothly trade quality of placement for compile time. We explored 
the vast space covered by these parameters to find the fast tool’s 
best quality-time envelope and showed that its envelope is 
significantly better than that possible with the pure simulated 
annealing formulation of VPR. 

If we have no compile-time restrictions, then our algorithm 
produces placements that approach the same quality as VPR. We 
also showed that the fast placement tool can be used as a fast 
estimator of high-quality wirelength, with a mean absolute error of 
less than 5%, in an average run time of less than 11.5 seconds. 

In the future, it would be useful to explore a fast quadratic- 
programming-based placement algorithm or one based on top- 
down mincut partitioning, and determine their quality-time trade- 
off relationships. Another interesting area to pursue is the 
refinement and integration of the fast wirelength estimator with the 
difficulty predictor provided by an existing fast router [Swar98b]. 
Finally, a timing-driven fast placement tool should also be 
developed. 

5. Acknowledgments 

We gratefully acknowledge the contributions of Dr. Vaughn Betz to 
this work, not only for providing the infrastructure and support of 
VPR that was used to house the new algorithm, but also for the 
advice and guidance he offered throughout. We thank Paul 
Leventis for his translation from EDIF to BLIF of the large 
benchmark circuits created and kindly donated by Andy Ye and 
Ivan Hamer. We also thank Dr. Steve Wilton and Dr. Russ Tessier 
for providing some of the large benchmark circuits that were used 
here. This work was supported by funding from Lucent 
Technologies, MICRONET, and NSERC. 

6. References 

[Babb97] J. Babb et al., ‘The RAW Benchmark Suite: Computation 
Structures for General Purpose Computing,” FCCM, 1997, 
pp. 161-171. 

[Betz97] V. Betz and J. Rose, “VPR: A New Packing, Placement 
and Routing Tool for FPGA Research,” Proc. Intl. Workshop 
on FPL, 1997, pp. 213-222. 

[Betz98] V.Betz, “Architecture and CAD for Speed and Area Opti- 
mization of FPGAs,” Ph.D. Thesis, University of Toronto, 
1998. 

[Brow921 S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, 
Field-Programmable Gate Arrays, KIuwer Academic Pub- 
lishers, 1992. 

[Cal1981 T. J. Callahan, P Chong, A. DeHon, and J. Wawrzynek, 
“Fast Module Mapping and Placement for Datapaths in 
FPGAs,” FPGA, 1998, pp. 123-132. 

[Cong94] J. Cong and Y. Ding, “Flowmap: An Optimal Technology 
Mapping Algorithm for Delay Optimization in Lookup-Table 
Based FPGA Designs,” IEEE Trans. on CAD, Jan. 1994, pp. 
1-12. 

[Dun1851 A. E. Dunlop and B. W. Kemighan, ‘A Procedure for 
Placement of Standard-Cell VLSI Circuits,” IEEE Trans. on 
CAD, vol. 4, no. 1, Jan. 1985, pp. 92-98. 

[Gehr98] S. Gehring and S. Ludwig, “Fast Integrated Tools for Cir- 
cuit Design with FPGAs,” FPGA, 1998, pp. 133-139. 

[Hame98] I. Hamer, “Implementation of DES on Transmogrifier- 
2a,” Personal Communication, 1998. 

[Hana72] M. Hanan and J. M. Kurtzberg, “Placement Techniques,” 
in Design Automation of Digital Systems, Volume I: Theory 
and Techniques, M. A. Breuer, Ed., Prentice-Hall, 1972, pp. 
213-281. 

[Hutt97] M. Hutton, J. Rose, and D. Comeil, “Generation of Syn- 
thetic Sequential Benchmark Circuits,” FPGA, 1997, pp. 149- 
155. 

[Kirk831 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimiza- 
tion by Simulated Annealing,” Science, vol. 220, no. 4598, 
May 13, 1983, pp. 671-680. 

[Kleigl] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antre- 
ich, “GORDIAN: VLSI Placement by Quadratic Program- 
ming and Slicing Optimization,” IEEE Trans. on CAD, vol. 
10, no. 3, Mar. 1991, pp. 356-365. 

[Lewi97] D. M. Lewis, D. R. Galloway, M. van Ierssel, J. Rose, and 
P. Chow, ‘The Transmogrifier-2: A 1 Million Gate Rapid Pro- 
totyping System,” FPGA, 1997, pp. 53-61. 

[Leve98] P Leventis, “Using edif2blif Version 1.0,” University of 
Toronto, 1998. (Available for download from http:/ 
www.eecg.toronto.edrJ-leventi/ediflblif/edi~bliJ:htmn. 

[Roy931 K. Roy and C. Sechen, “A Timing Driven N-Way Chip and 
Multi-Chip Partitioner,” ICCAD, 1993, pp. 240-247. 

[Rose901 J. Rose, W. Klebsch, and J. Wolf, “Temperature Measure- 
ment and Equilibrium Dynamics of Simulated Annealing 
Placements,” IEEE Trans. on CAD, vol. 9, no. 3, Mar. 1990, 
pp. 253-259. 

[Sank991 Y. Sankar, “Ultra-Fast Automatic Placement for FPGAs,” 
M.A.Sc. Thesis, University of Toronto, in preparation, 1999. 

(Sech85] C. Sechen and A. Sangiovanni-Vincentelli, ‘The Timber- 
Wolf Placement and Routing Package,” IEEE Journal of 
Solid-State Circuits, vol. 20, no. 2, Apr. 1985, pp. 510-522. 

[Sech88] C. Sechen, VLSI Placement and Global Routing Using 
Simulated Annealing, Kluwer Academic Publishers, 1988. 

[Sent921 E. M. Sentovich et al., “SIS: A System for Sequential Cir- 
cuit Analysis,” Tech. Report No. UCB/ERL M92/41, Univer- 
sity of California, Berkeley, 1992. 

[Shah911 K. Shahookar and P Mazumder, “VLSI Cell Placement 
Techniques,” ACM Computing Surveys, vol. 23, no. 2, Jun. 
1991, pp. 143-220. 

[Sun951 W. Sun and C. Sechen, “Efficient and Effective Placement 
for Very Large Circuits,” IEEE Trans. on CAD, vol. 14, no. 3, 
Mar. 1995, pp. 349-359. 

[Swar98a] J. S. Swartz, V. Betz, and J. Rose, “A Fast Routability- 
Driven Router for FPGAs,” FPGA, 1998, pp. 140-149. 

[Swar98b] J. S. Swartz, “A High-Speed Timing-Aware Router for 
FPGAs,” M.A.Sc. Thesis, University of Toronto, 1998. 

[Tess981 R. Tessier, “Fast Place and Route Approaches for 
FPGAs,” Ph.D. Thesis, MIT, 1998. 

[Yang911 S. Yang, “Logic Synthesis and Optimization Bench- 
marks, Version 3.0,” Tech. Report, Microelectronics Centre of 
North Carolina, 199 1. 

[Ye991 A. Ye, “Procedural Texture Mapping on FPGAs,” M.A.Sc. 
Thesis, University of Toronto, in preparation, 1999. 

166 


