
Delay Optimization Using SOP Balancing

 Alan Mishchenko Robert Brayton Stephen Jang Victor Kravets

Department of EECS, University of California, Berkeley LogicMill Technology IBM Corporation

 {alanmi, brayton}@eecs.berkeley.edu sjang@logic-mill.com kravets@us.ibm.com

ABSTRACT
Reducing delay of a digital circuit is an important topic in

logic synthesis for standard cells and LUT-based FPGAs.

This paper presents a simple, fast, and very efficient

synthesis algorithm to improve the delay after technology

mapping. The algorithm scales to large designs and is

implemented in a publicly-available technology mapper.

The code is available online. Experimental results on

industrial designs show that the method can improve delay

by 30% with the increase in area 2.4%, or by 41% with the

increase in area by 3.9%, on top of a high-effort synthesis

and mapping flow.

1. INTRODUCTION
Delay optimization has been studied extensively since the

early days of logic design, as part of both technology

independent [22][2][12][21] and technology dependent

synthesis [10][15][9][5]. However, existing methods for

delay optimization have several known limitations:

• Numerous local changes to the network may be

applied, with no guarantee that the delay is globally

improved or that additional area has been effectively

spent for delay improvements.

• Algorithms of high computational complexity are

often used, leading to prohibitive runtime on large

designs. Much effort is spent on deciding where to

make the changes.

• Structural flexibilities that are available during

synthesis and potentially capable of producing a

delay improvement may not be exploited by

technology mapping.

The method described in this paper overcomes these

limitations. Unlike previous methods, it does not perform a

sequence of local changes, each one updating the mapped

network and then running incremental timing analysis after

each change. Instead, the proposed method transforms the

subject graph before technology mapping, by minimizing

the number of logic levels. A subject graph with structural

choices [10][4] can be used as input to the algorithm,

resulting in improved quality of results.

The method has been implemented as a straight-forward

extension of the publicly available priority-cut-based

technology mapper [18]. The extension is described in this

paper. The resulting source code is publicly available for

unrestricted use and as a benchmark for future comparisons.

The new logic structures for delay optimization are

created by transforming logic structure of the cuts in the

timing-critical areas. The technology mapper [18] allows

for efficient area recovery in the regions where area

inevitably grows due to initial logic duplication.

Previous methods in delay-oriented restructuring focused

on MUX-based resynthesis, e.g. [2][19], generalized select

transform (GST), e.g. [12][21], and various BDD-based

techniques, e.g. [5][6]. The proposed method is simpler,

scales better, and leads to competitive quality of results. It

can also be extended to work for the sequential case, similar

to the way delay optimization is done in [23].

The rest of this paper is organized as follows. Section 2

describes the background. Section 3 describes the

algorithm. Section 4 reports experimental results. Section 5

concludes the paper and outlines future work.

2. BACKGROUND
A Boolean network is a directed acyclic graph (DAG)

with nodes corresponding to logic gates and directed edges

corresponding to wires connecting the gates. The terms

Boolean network, netlist, and circuit are used

interchangeably in this paper. In this paper, we consider

only combinational Boolean networks.

A node n has zero or more fanins, i.e. nodes that are

driving n, and zero or more fanouts, i.e. nodes driven by n.

The primary inputs (PIs) are nodes without fanins in the

current network. The primary outputs (POs) are a subset of

nodes of the network. A fanin (fanout) cone of node n is a

subset of all nodes of the network, reachable through the

fanin (fanout) edges of the node.

A combinational And-Invertor Graph (AIG) is a Boolean

network composed of two-input ANDs and inverters. To

derive an AIG, the SOPs of the nodes in a logic network are

factored, the AND and OR gates of the factored forms are

converted into two-input ANDs and inverters using

DeMorgan’s rule, and these two-input ANDs are added to

the AIG manager in a topological order. The size (area) of

an AIG is the number of its nodes; the depth (delay) is the

number of nodes on the longest path from the PIs to the

POs. The goal of optimization by local transformations of

an AIG is to reduce both area and delay.

Structural hashing of AIGs ensures that all constants are

propagated and, for each pair of nodes, there is at most one

two-input AND with them as fanins (up to a permutation).

Structural hashing is performed by hash-table lookups when

AND nodes are created and added to an AIG manager.

Structural hashing can be applied on-the-fly during AIG

construction, which reduces the AIG size.

A cut C of a node n is a set of nodes of the network,

called leaves of the cut, such that each path from a PI to n

passes through at least one leaf. Node n is called the root of

cut C. The cut size is the number of its leaves. A trivial cut

of a node is the cut composed of the node itself. A cut is K-

feasible if the number of nodes in the cut does not exceed

K. A cut is dominated if there is another cut of the same

node, which is contained, set-theoretically, in the given cut.

Area of a cut is the number of AIG nodes found on the

path between the root and the leaves, including the root and

excluding the leaves. The concepts of area and the number

of AIG nodes are used interchangeably in this paper.

Delay of a cut is the number of AIG nodes on the longest

path between the root of the cut and a primary input of the

AIG. The concepts of delay, depth, and logic level are used

interchangeably in this paper.

A local function of an AIG node n, denoted fn(x), is a

Boolean function of the logic cone rooted in n and

expressed in terms of the leaves, x, of a cut of n. The global

function of an AIG node is its function expressed in terms

of the PIs of the AIG.

AIGs can efficiently represent both local and global

functions. Because of their low memory usage, speed of

manipulation and scalability, AIGs have recently emerged

as a widely-used data-structure for various applications in

logic synthesis and formal verification.

If Boolean functions in some application depend on 16 or

fewer inputs, it is often more convenient to use truth tables

to represent and manipulate them. For example, a truth

table can be efficiently converted into an irredundant Sum-

of-Products (ISOP) using a truth-table implementation of

the Minato-Morreale algorithm [13][14].

Additional information can be found in the following

publications: AIGs [11][3], AIG-based synthesis, [16][17],

cut-based technology mapping, delay optimization, and area

recovery can be found in [8][7][20][18].

3. ALGORITHM
This section introduces AND- and SOP-balancing, which

are the key ingredients of the proposed algorithm, followed

by the overall pseudo-code of the algorithm.

3.1 AND-balancing

AND-balancing of an AIG is a well-known fast transform

that reduces the number of AIG levels. AND-balancing is

performed in two steps: covering and tree-balancing.

The covering step identifies large multi-input ANDs in

the AIG by grouping together two-input ANDs that have no

complemented attributes in between and no external fanout,

except possibly at the root node of each multi-input AND.

The covering step is illustrated in Figure 3.1.1. The circles

stand for two-input ANDs and the small bubbles on the

edges stand for the complemented attributes.

The tree-balancing step decomposes each multi-input

AND into two-input ANDs while trying to reduce the total

number of AIG levels. As the result of this step, a new

structure of two-input ANDs is created. This structure is

constructed to minimize the delay while taking into account

logic levels of the inputs. The tree-balancing step is

illustrated in Figure 3.1.2.

It should be noted that the covering step is unique, while

the tree-balancing step is not unique and depends on the

grouping of the inputs with equal delay, while transforming

multi-input ANDs into trees of two-input ANDs.

Because the covering step stops at the multiple-fanout

nodes, AND-balancing cannot increase the total number of

two-input AND nodes. However, some nodes can be

reduced when AND-balancing is applied to a large AIG and

logic sharing is created in the process.

a b c

d e
f

g
g a

b
f c

d e

⇒

a b c

f

g

d e

⇒

Figure 3.1.1: Illustration of the covering step.

d e
c f d e a b

h

g a

b
f c

⇒

Figure 3.1.2: Illustration of the tree-balancing step.

Delay: 5 levels

a b c

d e f

Delay: 3 levels

g

c f d e a b

h

g a

b
f c

d e

⇒

⇒

Covering Tree-balancing

Figure 3.1.3: Illustration of AND-balancing.

Figure 3.1.3 illustrates AND-balancing, which combines

covering and tree-balancing. In the above fitures, the delays

of the PIs are assumed to be 0. The total delay of the AIG

in this example is reduced from 5 to 3 levels.

AND-balancing described in this section is implemented

in ABC [1] as command balance.

3.2 SOP-balancing of a small AIG

In this paper, an AIG is considered small if it depends on

roughly 10 or less inputs. A small AIG can be converted

into an SOP, and then AND-balancing can be applied to

each product and the sum. In doing so, the products and the

sum are treated as multi-input ANDs and decomposed to

minimize the delay of the output node.

Figure 3.2.1 illustrates SOP-balancing for a small AIG,

where the delays of the PIs are equal to 0. The total delay of

the AIG in this example is reduced from 4 to 3. Note that

AND-balancing cannot reduce the delay in this example.

Delay: 4 levels

a b c

e f

Delay: 3 levels

F = ab + c(d + ef) F = ab + cd + cef

d a b c d

c

e f

Figure 3.2.1: Illustration of SOP-balancing.

In general, AND-balancing is limited to multi-input

ANDs, while SOP-balancing looks at larger functions. As a

result, in many cases, SOP-balancing can reduce delay

when AND-balancing cannot.

3.3 SOP-balancing of a large AIG

A large AIG, for example, the AIG representing

combinational logic of an industrial design, can contain

millions of AIG nodes. It is impossible to apply SOP-

balancing to such an AIG as a whole, but it is possible to

break it down into parts, try SOP-balancing for each part,

and if the delay is improved, locally update the large AIG

with the structure derived by SOP-balancing.

The latter is, in essence, the SOP-balancing algorithm

described in this paper. A self-explanatory pseudo-code is

given in Figure 3.3 below.

subject_graph performSopBalancing (

subject_graph S, // S is an And-Inverter Graph

int K, // K is the cut size

int C) // C is the number of cuts at each node

{

 for each node n in S, in a topological order {

 compute C structural K-input cuts of n;

 for each cut {

 compute truth table;

 compute irredundant SOP;

 perform delay-optimal balancing of the SOP;

 if (the cut has smaller AIG level than the best cut)

 save the cut as the best cut;

 }

 if (root node AIG level is reduced using the best cut)

 update AIG structure;

 }

 return S;

}

Figure 3.3. Pseudo-code of SOP-balancing.

4. EXPERIMENTAL RESULTS
The proposed algorithm is implemented in ABC [1][3] as

command sequence (if –g –K <num> -C <num>; st), where

• if is the priority-cut-based FPGA mapper [18],

• -g enables SOP-balancing for cut evaluation,

• -K <num> specifies the cuts size and,

• -C <num> is the number of cuts used at a node,

• st transforms the mapped network back into an AIG.

The input of the command sequence is an AIG. The

output is a delay-optimized AIG, with the reduced number

of logic levels on any path from the PIs to the POs.

The following cost functions are used to prioritize the cuts

in the priority-cut-based mapper:

• Delay of a cut the root node level, counting from the

PIs of the AIG, after SOP-balancing was applied to

the Boolean function of the cut.

• Area of a cut is the number of two-input ANDs

derived after SOP-balancing was applied to the

Boolean function of the cut.

Mapping into standard cells was performed by command

map [4] in ABC. Experiments targeting standard-cell

library mcnc.genlib from SIS distribution [24] were run on

a workstation with Intel Xeon Quad Core CPU and 48Gb

RAM. Only one thread and less than 1Gb of RAM were

used for the largest design in our experiments. The resulting

networks were verified by a SAT-based combinational

equivalence checker (command cec in ABC).

The experimental results were collected using a suite of

industrial designs optimized in three different ways:

• Reference run: (st; dch; map)
4

• Run 1: (st; if -g -K 6 -C 8)(st; dch; map)
4

• Run 2: (st; if -g -K 6 -C 8)
2
(st; dch; map)

6

The reference run is a typical synthesis and mapping flow

targeting standard-cells. It consists of four iterations. Each

iteration derives an AIG (st), followed by AIG-based

synthesis with choices (dch), followed by cut-based

technology mapping (map). This or a very similar flow is

currently used by most of the industrial users of ABC.

Run 1 performs one iteration of delay optimization

followed by the reference flow (4 iterations).

Run 2 performs 2 iterations of delay optimization

followed by the 1½ reference flows (6 iterations). The

increased effort of the reference flow was needed to

mitigate area increase.

The results for the three experimental runs are reported in

Table 4.1. Two outlier designs were removed from the table

because the delay improvement exceeded 50%, and this

would skew the general conclusions. The table shows that,

compared to the reference flow, Run 1 reduces delay by

30% with area increase of 2.4%, Run 2 reduced delay by

41% with area increase of 3.9%.

Table 4.2 shows the detailed break-down of delay

improvements for one design in our test suite. The table

lists area and delay after standard-cell mapping, level count

in the AIG before mapping and in the resulting mapped

network, as well as the runtime, in seconds, for each step of

each of the optimization flows (Reference, Run 1, Run 2).

These table indicates that the proposed method is very

efficient in reducing the total number of AIG levels as well

as the number of levels in the mapped network, which leads

to delay reduction after technology mapping. The table also

shows that area increase can be further reduced by

performing more iterations of logic synthesis with choices.

In another experiment, we applied the proposed delay

optimization based on SOP-balancing to MCNC

benchmarks. The delay improvements were similar to those

in Table 4.1 for industrial designs, but the area penalty was

higher. We speculate that this is because the ratio of the

critical path to the total amount of logic is relatively high in

these benchmarks. The detailed results for MCNC

benchmarks are not reported here because they are not

representative of realistic circuits synthesized these days.

Finally, a similar flow was applied to FPGA mapping, but

the delay improvements were not as substantial as for

standard cells reported in this paper. We speculate that this

is due to LUT mapping being less sensitive to the number

of levels and more sensitive to the logic density on the

critical path.

4.1 Discussion

It is important to note that the delay model used by the

ABC mapper is approximate. Therefore some part of the

improvement will be lost, when the mapped netlist is post-

processed by a typical industrial physical synthesis flow,

which performs gate-sizing, buffering, gate-duplication, and

other steps, followed by place-and-route. However, given

the high margin of improvement, it is likely that some of the

delay reduction will persist even after place-and-route.

To support this, in a separate experiment, an industrial

collaborator applied the proposed method to several test

cases, followed by the full physical synthesis flow,

including place-and-route for standard cells. This led to an

improvement close to 5% is delay, compared to the typical

high-effort flow used in that company.

We hope to be able to list the detailed results of this

experiment in the final version of the paper.

5. CONCLUSIONS
This paper introduces a simple, fast, and efficient

algorithm for delay optimization after technology mapping.

The proposed algorithm preprocesses the subject graph

represented as an AIG to reduce the number of levels of

two-input ANDs. It is implemented as a straight-forward

modification of the publicly-available priority-cut-based

technology mapper [18] and its runtime is close to that one

run of the mapper. The area increase due to logic

duplication is relatively small because of the efficient area

recovery done as part of the logic synthesis flow.

Future work may include: (a) improving the quality of the

algorithm by pre-computing the smallest delay AIG

subgraphs, instead of deriving them using SOP balancing.

(b) measuring the improvements in delay after place-and-

route, (c) extending the algorithm to work for sequential

circuits, as suggested in [23].

6. REFERENCES
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System for

Sequential Synthesis and Verification. http://www-

cad.eecs.berkeley.edu/~alanmi/abc

[2] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, and L. H. Trevillyan,

“Efficient techniques for timing correction”, Proc. ISCAS ’90.

[3] R. Brayton and A. Mishchenko, "ABC: An academic industrial-

strength verification tool", Proc. CAV'10, LNCS 6174, pp. 24-40.

[4] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,

“Reducing structural bias in technology mapping”, ICCAD '05.

[5] L. Cheng, D. Chen, and D.F. Wong, “DDBDD: Delay-driven BDD

synthesis for FPGAs”, Proc. DAC’07, pp. 910-915.

http://www.icims.csl.uiuc.edu/~dchen/ddbdd.pdf

[6] M. Choudhury and K. Mohanram, “Bi-decomposition of large

Boolean functions using blocking edge graphs”, Proc. ICCAD’10.

[7] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping

algorithm for delay optimization in lookup-table based FPGA

designs”, IEEE Trans. CAD, vol. 13(1), Jan. 1994, pp. 1-12.

[8] R. J. Francis, J. Rose, and K. Chung, ”Chortle: A technology

mapping program for lookup table-based field programmable gate

arrays”, Proc. DAC ’90, pp. 613-619.

[9] V. N. Kravets and P. Kudva, “Implicit enumeration of structural

changes in circuit optimization”, Proc. DAC ’04, pp. 438-441.

[10] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic

decomposition during technology mapping,” IEEE Trans. CAD, Vol.

16(8), Aug. 1997, pp. 813-833.

[11] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust

boolean reasoning for equivalence checking and functional property

verification”, IEEE TCAD, Vol. 21(12), Dec. 2002, pp. 1377-1394.

[12] P. McGeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli, and S. K.

Sahni, “Performance enhancement through the generalized bypass

transform”, Proc. ICCAD‘91, pp. 184-187.

[13] S. Minato, “Fast generation of irredundant sum-of-products forms

from binary decision diagrams”. Proc. of SASIMI'92 (Synthesis and

Simulation Meeting and International Interchange), Kobe, Japan,

pp. 64-73.

[14] E. Morreale, “Recursive Operators for Prime Implicant and

Irredundant Normal Form Determination”. IEEE Trans. Comp., C-

19(6), 1970, pp. 504-509.

[15] A. Mishchenko, X. Wang, and T. Kam, "A new enhanced

constructive decomposition and mapping algorithm", DAC '03, pp.

143-148.

[16] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG

rewriting: A fresh look at combinational logic synthesis", Proc. DAC

'06, pp. 532-536.

[17] A. Mishchenko and R. K. Brayton, "Scalable logic synthesis using a

simple circuit structure", Proc. IWLS '06, pp. 15-22.

[18] A. Mishchenko, S. Cho, S. Chatterjee, R. Brayton, “Combinational

and sequential mapping with priority cuts”, Proc. ICCAD ’07, pp.

354-361.

[19] A. Mishchenko, R. Brayton, and S. Jang, "Global delay optimization

using structural choices", Proc. FPGA'10, pp. 181-184.

[20] P. Pan and C.-C. Lin, “A new retiming-based technology mapping

algorithm for LUT-based FPGAs,” Proc. FPGA’98, pp. 35-42.

[21] A. Saldanha, H. Harkness, P.C. McGeer, R. K. Brayton, and A. L.

Sangiovanni-Vincentelli, “Performance optimization using exact

sensitization”, Proc. DAC’94, pp. 425-429.

[22] K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli, “Timing optimization of combinational logic”. Proc.

ICCAD ‘88, pp. 282- 285.

[23] C. Soviani, O. Tardieu, and S. A. Edwards, “Optimizing sequential

cycles through Shannon decomposition and retiming”, IEEE Trans.

CAD, Vol. 26(3), March 2007, pp. 456-467.

[24] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.

Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A.

Sangiovanni-vincentelli. “SIS: A system for sequential circuit

synthesis.” Technical Report, UCB/ERI, M92/41, ERL, Dept. of

EECS, UC Berkeley, 1992.

Table 4.1. Experimental evaluation of the proposed algorithm on industrial circuits after standard-cell mapping.

Reference Run 1 Run 2

Design Area Delay Area Delay Area Delay

D01 180978 34.2 180002 30.0 178099 27.7

D02 16296 15.0 16540 12.8 16082 12.3

D03 50431 41.4 56212 38.6 56212 38.6

D04 16296 15.0 16540 12.8 16082 12.3

D05 509984 74.1 554324 31.4 562109 25.7

D06 443913 37.9 443573 23.9 443181 20.2

D07 80939 21.4 82438 19.9 80347 18.6

D08 257609 31.3 263519 20.8 257917 21.4

D09 597980 81.2 620415 48.0 626055 42.8

D10 612608 32.1 621065 22.3 621838 19.8

D11 73191 46.0 74413 19.8 76346 14.5

D12 429761 48.4 443453 32.9 449604 25.2

D13 236783 26.2 239248 17.5 237456 14.4

D14 848678 54.4 885102 40.4 873752 39.3

D15 13066 54.4 13385 34.0 14561 26.0

D16 220757 80.9 216977 56.0 224621 26.3

D17 316893 19.7 314956 18.7 310999 18.6

Geomean 158148 36.9 161990 25.86 180418 21.8

Ratio 1 1 1.024 0.70 1.039 0.59

Table 4.2. Detailed breakdown of delay improvement achieved on one design in the test suite.

Experiments

performed

Sequence of

optimization steps

Final

Mapped

Area

Final

Mapped

Delay

Starting

AIG

Level

Final

Mapped

Level

Runtime,

sec

 st; dch; map 224079 92.90 164 89 222

Reference flow st; dch; map 221866 82.10 160 75 143

 st; dch; map 220757 80.90 112 71 136

 st; if -K 6 -g -C 8 n/a n/a 164 n/a 66

Run 1 st; dch; map 230138 45.00 55 40 208

 st; dch; map 221435 44.60 58 39 149

 st; dch; map 220171 44.60 57 29 143

 st; if -K 6 -g -C 8 n/a n/a 164 n/a 66

 st; if -K 6 -g -C 8 n/a n/a 55 n/a 63

 st; dch; map 240809 25.30 30 24 227

Run 2 st; dch; map 232301 25.30 36 25 165

 st; dch; map 230393 25.20 40 24 160

 st; dch; map 229464 24.90 39 24 155

 st; dch; map 228302 25.60 38 24 158

 st; dch; map 227636 25.70 39 24 154

