
CGRA Express: Accelerating Execution using Dynamic
Operation Fusion

Yongjun Park, Hyunchul Park, Scott Mahlke
Advanced Computer Architecture Laboratory

University of Michigan
Ann Arbor, MI 48109

{yjunpark, parkhc, mahlke}@umich.edu

ABSTRACT
Coarse-grained reconfigurable architectures (CGRAs) present an
appealing hardware platform by providing programmability with
the potential for high computation throughput, scalability, low cost,
and energy efficiency. CGRAs have been effectively used for in-
nermost loops that contain an abundant of instruction-level paral-
lelism. Conversely, non-loop and outer-loop code are latency con-
strained and do not offer significant amounts of instruction-level
parallelism. In these situations, CGRAs are ineffective as the ma-
jority of the resources remain idle. In this paper, dynamic opera-
tion fusion is introduced to enable CGRAs to effectively accelerate
latency-constrained code regions. Dynamic operation fusion is en-
abled through the combination of a small bypass network added
between function units in a conventional CGRA and a sub-cycle
modulo scheduler to automatically identify opportunities for fu-
sion. Results show that dynamic operation fusion reduced total
application run-time by up to 17% on a 4x4 CGRA.

Categories and Subject Descriptors
D.3.4 [Processors]: [Code Generators]; C.3 [Special-Purpose and
Application-Based Systems]: [Real-time and Embedded Systems]

General Terms
Algorithms, Experimentation, Performance

Keywords
Coarse-grained reconfigurable architecture, latency-constrained, mod-
ulo scheduling, subgraph accelerator

1. INTRODUCTION
The embedded computing systems that power today’s mobile de-

vices demand both high performance and energy efficiency to sup-
port various high-end applications such as audio and video decod-
ing, 3D graphics, and signal processing. Traditionally, application-
specific hardware in the form of ASICs is used on the compute-
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Figure 1: Overview of a 2x2 CGRA.

intensive kernels to meet these demands. However, the increasing
convergence of different functionalities combined with high non-
recurring costs involved in designing ASICs have pushed design-
ers towards more flexible solutions that are post-programmable.
Coarse-grained reconfigurable architectures (CGRA) are becoming
attractive alternatives because they offer large raw computation ca-
pabilities with low cost/energy implementations [13, 21, 15]. Ex-
ample CGRA systems that target wireless signal processing and
multimedia are ADRES [16], MorphoSys [13], and Silicon Hive [19].

CGRAs generally consist of an array of a large number of func-
tion units (FUs) interconnected by a mesh style network, as shown
in Figure 1. Register files are distributed throughout the CGRA to
hold temporary values and are accessible only by a small subset of
the FUs. The FUs can execute common integer operations, includ-
ing addition, subtraction, and multiplication. In contrast to FPGAs,
CGRAs sacrifice gate-level reconfigurability to achieve hardware
efficiency. Thus, CGRAs have short reconfiguration time, low de-
lay characteristics, and low power consumption.

While CGRAs are fully programmable, an effective compiler is
essential for achieving efficient execution. The primary challenge
is instruction scheduling wherein applications are mapped in time
and space across the array. However, scheduling is challenging
due to the sparse connectivity and distributed register files. On
CGRAs, dedicated routing resources are not provided. Rather, FUs
serve as either compute or routing resources at a given time. There-
fore, the scheduler must manage the computation, flow, and storage
of operands across the array to effectively map applications onto
CGRAs. Compilers generally focus on mapping compute-intensive
innermost loops onto the array. Early work focused on exploiting
instruction-level parallelism [12, 2]. However, these approaches
could not make efficient use of the available resources due to lim-
ited ILP, thus more recent research focuses on exploiting loop-level
parallelism through modulo scheduling [15, 17, 18].

CGRA research has generally focused exclusively on efficiency
for throughput-constrained innermost loops. However, real-world
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sequential region loop (resource) loop(dependency) total

# execution percentage # execution percentage # executionpercentage # execution

aac 218 42.6M 71 34 17.1M 28 2 0.3M 0.53 254 60.0M
h.264 639 44.8M 65 78 23.2M 33 1 0.6M 0.84 718 68.6M

3d 752 77.8M 51 82 70.4M 46 13 4.3M 2.81 847 152.5M

Figure 2: Execution time breakdown for three multimedia applications (#: number of basic blocks, execution: number of cycles,
percentage: percent of execution cycles). Execution time is broken down into three categories: sequential are all non-innermost loop
regions, loop (resource) are inner-most loops whose performance is constrained by the availability of resources, and loop (depen-
dency) are inner-most loops whose performance is constrained by cross-iteration dependences.

media applications consist of more than highly parallel inner loops.
Specifically, substantial fractions of time are spent in non-loop or
outer loop code, as well as recurrence dominated innermost loops.
Traditional CGRAs do not handle such latency-constrained code
segments in an effective manner as they have no mechanisms to
accelerate dataflow graphs that are narrow and sequential. In fact,
the majority of the resources sit idle in such situations.

This paper proposes a new technique referred to as dynamic op-
eration fusion to accelerate latency-constrained code segments on
CGRAs. The core idea is to dynamically configure the existing pro-
cessing elements of a CGRA into small acyclic subgraph accelera-
tors. Each cycle, any FU can be fused with multiple of its neighbors
to create an accelerator capable of executing a small computation
subgraph in a single cycle. In essence, small configurable com-
pute accelerators are realized on the array to accelerate sequential
code [4]. The necessary hardware extensions for a conventional
CGRA are quite simple – an inter-FU bypass network is added be-
tween neighboring FUs in the array using a few multiplexors. The
compiler scheduler automatically identifies opportunities to accel-
erate subgraphs by managing the scheduling process at the sub-
cycle granularity. The net result is that the usefulness of CGRAs
is extended beyond highly parallel loops to effectively operate in
latency-constrained code regions.

The contributions of this paper are as follows:

• An analysis of common media applications to understand the
limitations presented by latency constraints.

• CGRA design that supports dynamic operation fusing.

• A compiler scheduler that automatically identifies opportu-
nities for dynamic fusion.

• An evaluation of dynamic operation fusion across a set of
media applications.

2. MOTIVATION

2.1 Analysis of Multimedia Applications
To understand the effectiveness and limitations of traditional CGRAs,

we examine the characteristics of commonly used multimedia ap-
plications. In mobile environments, three of the most widely used
multimedia applications are: audio decoding, video decoding and
3D graphics acceleration. We first identify the characteristics of
each application, and verify the importance of enhancing perfor-
mance in latency-constrained code.

2.1.1 Baseline Architecture
In this paper, ADRES[16] is used for the baseline CGRA archi-

tecture. This architecture consists of 16 FUs interconnected by a
mesh style nework. Register files are associated with each FU to

store temporary values. The FUs can execute common integer op-
erations. The architecture has two operation modes: one is CGRA
array mode and the other is VLIW processor mode. In CGRA ar-
ray mode, all 16 computing resources are available and loop-level
parallelism is exploited by software pilelining compute-intensive
innermost loops. The baseline architecture is also able to function
as a VLIW processor to execute sequential and outer loop code.
The four FUs in the first row and the central register file support
VLIW functionality, while the other components are de-activated.
This type of architecture provides high performance by eliminat-
ing huge communication overhead to transfer live values between
host processor and the array as well as a multi-issue VLIW for non-
loop code that is more powerful than a traditional general-purpose
processor used as the host (e.g., an ARM-9).

2.1.2 Application analysis
Code of general applications can be categorized into sequential

and loop regions. Sequential regions often perform control flow for
decision making and handle setup for the compute-intensive loops
by transferring live values between loops. Loop regions execute
iterative work like calculating pixel data on graphic application.
Multimedia applications typically have many compute intensive
kernels that are in the form of nested loops. Software pipelining,
which can increase the throughput of the innermost nest by overlap-
ping the executions of different iterations, can decrease run time of
this type of loops tremendously. In this section, we first decompose
applications into various region types. The applications consist of :

• AAC decoder: MPEG4 audio decoding

• H.264 decoder: MPEG4 video decoding

• 3D: 3D graphics rendering accelerator

For our benchmarks, we analyzed the relative importance of se-
quential and loop regions by analyzing the execution time spent in
each. Loops were also categorized loops as their performance was
most constrained by resources or cross-iteration data dependences.
This grouping provides more precise insights because the charac-
teristics of dependence-constrained loops are more similar to se-
quential code rather than resource-constrained loops. Performance
of the sequential regions was determined by scheduling those onto
the VLIW subset of the ADRES CGRA (a 4-wide VLIW) [16].
Modulo scheduling, an efficient software pipelining technique that
exploits loop level parallelism by overlapping the execution of dif-
ferent iterations [20], was used to compute the run time of loop
regions executing on the 4x4 ADRES CGRA.

Figure 2 presents the execution time breakdown for each bench-
mark. Software pipelining can successfuly reduce the execution
time of loop regions, making it less than 50% of the total execution
time. To further improve the overall performance, it is clear that
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Figure 3: Example dataflow graphs in AAC: (a) Sequential code, (b) Loop code

improving the performance of sequential code regions is critical
since they are taking more than 60% of the total execution time.

To get a better understanding of the structure of the code in
both the acyclic and loop regions, consider the dataflow graphs
in Figure 3 from the AAC benchmark. Figure 3(a) is a data flow
graph of a sequential region that performs some control flow be-
tween compute-intensive loops and has many data dependences be-
tween instructions. Generally, this type of sequential code doesn’t
have a large number of instructions so providing abundunt com-
pute resource does not improve performance. Decreasing the de-
pendence length through a chain of instructions is the only solution
to accelerate such code. Figure 3(b) is an example of dependence-
constrained loop. This loop also has a small number of instructions
with long chains of sequential dependences. This type of code is
also hard to overlap iterations by software pipelining because last
instruction on each iteration has data dependence with the first in-
struction of the next iteration, and the next loop cannot start execu-
tion before finishing the execution of the prior loop.

2.2 Accelerating Sequential Code
Most prior research in CGRA has focused on improving the per-

formance of innermost loops through intelligent parallelization or
software pipelining techniques. However, none are effective at
enhancing the performance of sequential code regions, which oc-
cupy a significant fraction of total execution time as demonstrated
in Figure 2. In this work, we take a circuit-level approach to at-
tack the problem of improving the performance of sequential and
dependence-constrained loops on CGRAs.

One obvious approach to improve performance of all region types
is to increase the clock frequency of the CGRA. However, this ap-
proach increases power consumption a large amount due to addi-
tional pipeline registers and higher voltage needed to operate the
CGRA. Rather, our approach is to exploit the slack cycle-time to
accomplish more work in a single clock cycle when the critical
timing paths are not exercised through the CGRA. In this manner,

ADD

RF[0]

RF[2]

RF[1]

ADD

SUB

LSL

SUB

(a) (c)(b)

(b) (a)

Figure 4: Comparison of flow of data through a processing el-
ement in a CGRA: (a) Operation with register file access, (b)
Operation without register file access, (c) Flow of data for (a)
and (b)

multiple arithmetic operations can be “chained” together when the
critical timing paths are not exercised to accomplish more work in
a single cycle.

Configurable compute accelerator (CCA) [4] is one related re-
search based on this concept. CCA is also designed to execute a
number of sequential instructions on fixed clock period in a gen-
eral purpose processor. The clock period of a general purpose pro-
cessor is larger than that of CGRA and the depth of maximum se-
quentialized instruction is quite large. However, this type of accel-
erator cannot cover all the subgraphs becasue of fixed numbers of
input/output ports and limitations of subgraph depth. Expression-
grained reconfigurable architectures [1] are proposed to solve these
problems but they still cannot cover all the cases. In addition to
coverage problem, low utilization of FUs is another critical draw-
back on this type of research. They put abundant resources to ob-
tain high subgraph coverage on fixed hardware hence utilization of
each individual FU becomes low. Thus, a more efficient strategy is
required to enable the acceleration of sequential subgraphs without
adding significant cost or power to a baseline CGRA.
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Figure 5: Dynamic operation fusion example: (a) dataflow graph under consideration, (b) target 2x3 CGRA, (c) conventional schedul-
ing that requires 5 cycles, and (d) scheduling with dynamic operation fusion that requires 3 cycles.

3. DYNAMIC OPERATION FUSION
In this section, we propose dynamic operation fusion that can ac-

celerate the execution of sequential code regions by executing mul-
tiple operations in a single cycle. The basic idea is explained first
and the opportunities for dynamic operation fusion in multimedia
applications is shown. Lastly, the hardware support is discussed.

The basic idea of operation fusion stems from the observation
that the clock period of a CGRA is determined by the worst case de-
lay (critical path delay) in the architecture. When the clock period
is not fully utilized, the slack can be used to execute the successive
operation if the delay fits into the slack.

The critical path of a CGRA usually consists of: register file
read, longest execution in a FU, and write back to register file, as
shown in Figure 4(a). While register file access is required for every
operation in conventional architectures, CGRAs have distributed
interconnect across the array that can directly transfer operands be-
tween FUs. When an operation is executed without a register file
access through the interconnect, it does not fully utilize the clock
period and there is significant slack left. For example, the ADD op-
eration in Figure 4(b) reads the operands from its neighboring FUs
and transfers its result directly to another FU. If the time slack is
bigger than the delay of the successive operation LSL, both ADD
and LSL can be executed in the same clock period. As previously
mentioned, vertical collapsing of dependent operations is similar
to the CCA [4]. In CCA, the subgraphs with simple operations
(i.e., arithmetic, logical) are identified either at compile time [3]
or at run-time [4]. The execution of the subgraphs are offloaded
to a specially designed accelerator (Figure 6) that can collapse the
execution of multiple operations into a single cycle.

Instead of using dedicated hardware as in CCA, we propose dy-
namic operation fusion that utilizes existing resources in a CGRA
to collapse the dependent operations into a single cycle. Since there
are a large number of FUs in a CGRA, a subset of them can be com-
bined dynamically at run-time and execute dependent operations in
a single cycle. A simple modification to the hardware can allow

dynamic merging of FUs for operation fusion; providing an inter-
connect between FUs that bypasses the output registers. Figure 7
shows the additional interconnect from the combinational output of
an FU to the input of its neighboring FUs. Here, three FUs on the
right are serially merged together to execute the three dependent
operations on the left (ADD - ADD - LSR) in a single cycle. So,
the execution time of the sequential code region can potentially be
reduced with dynamic operation fusion, while the hardware over-
head is minimal.

Dynamic operation fusion has the following benefits over the
CCA approach with a dedicated accelerator:

• Minimal hardware overhead utilizing the existing resources.

• Multiple subgraphs can be executed simultaneously when re-
sources are available.

• Dynamic merging of FUs allow exploiting various shapes of
the subgraphs.

We will compare the schedule results using dynamic operation
fusion with traditional scheduling for a CGRA with the example
shown in Figure 5. The dataflow graph on the left contains a series
of dependent operations that read operands from register files and
store the result back into them. It is mapped onto a hypothetical 2x3
CGRA in Figure 5(b). The conventional approach will generate a
schedule shown in Figure 5(c), where the total execution time is 5
cycles. Because of the serial data dependences, the utilization of
the FUs is quite low.

Figure 5(d) shows how the execution of the dataflow graph can
be accelerated with dynamic operation fusion. Here, we assume
that one register file access and two arithmetic operations can fit
into the clock period. More detailed studies on the comparison
between the clock period and operation latencies are provided in
the following section. With the bypass network, two sets of back-
to-back operations are collapsed into the same cycle as shown in the
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Figure 6: Configurable compute accelerator design.
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Figure 7: Combining of FUs for dynamic operation fusion: (a)
Target subgraph, (b) 3 FUs combined.

schedule. At cycle 0, FU 0 and FU 3 are merged together to execute
back-to-back operations 0 and 2 in an single cycle. In the same
fashion, operations 3 and 4 are collapsed into cycle 1 on FU 4 and
FU 5. Operation 5 cannot be scheduled at cycle 1 since it stores the
result into the register file. By applying dynamic operation fusion,
the total execution time is reduced by 2 cycles over the conventional
approach.

3.1 Delay Statistics and Tick Time Unit
As shown in the previous section, dynamic operation fusion is an

effective approach to accelerate the execution of sequential code re-
gion. However, the feasibility of dynamic operation fusion depends
on the hardware characteristics of the underlying architecture. Dy-
namic operation fusion can be applied only if there is enough slack
in a clock period to execute multiple operations. So, we investi-
gated the delay characteristics of our CGRA design in a real imple-
mentation. Figure 8 shows the delay information when the clock
period is 3.5 ns. The delays are computed with Synopsis Design
Compiler and Physical Compiler using the IBM 90nm standard cell
library in typical condition. The delay here includes the delay of in-
put MUXes for each unit. In this table, single cycle operations are
categorized based on their execution time. For multi-cycle opera-
tions, the delays of the last stage is shown in the table. The execu-
tion time of all instructions are smaller than half of a clock period.
Logical operations show the minimal delay and four of them can be
fused together into a single cycle. On average, two sequential op-
erations can be collapsed. The opportunites for dynamic operation
fusion maximizes when there are a large number of operations with
a small delay. As in Figure 9, there are a large portion of compar-
ison and logic operations, which suggests that dynamic operation

Group Opcode Delay(ns) Tick (1=0.25ns)

Multi cycle op MUL, LD, ST 1.65 7

Arith ADD, SUB 1.74 7

Shift LSL, LSR, ASR 1.36 6

Comp EQ, NE, LT 0.93 4

Logic AND, OR, XOR 0.73 3

RF Read 0.91 4

RF Write 0.70 3

Figure 8: Delay and tick breakdown for common opcodes.

Tick aac (%) 3d (%) h.264 (%)

Multi cycle 2419 (31) 17077 (34.5) 11579 (30.7)

Arith 2018 (26) 12339 (25) 11075 (29.3)

Shift 370 (4.7) 1165 (2.3) 2086 (5.5)

Comp 506 (6.5) 2788 (5.6) 1923 (5.1)

Logic 2492 (32) 15919 (32.2) 11024 (29.2)

Figure 9: Breakdown of opcodes for three target applications.

fusion can potentially improve the sequential code performance in
multimedia applications.

Since multiple operations can be mapped into a single cycle, we
need a smaller time unit than the traditional clock cycle used by
compiler schedulers. We propose a new time unit called a tick, a
small time unit based on the actual hardware delay information.
The unit delay of one tick is set by the actual latency of the small-
est logic component, normally a small MUX. With the tick unit,
the clock period and the delays of other hardware components can
be converted into tick numbers. Every logic component on CGRAs
has their own tick information and the information is used for dy-
namic operation fusion scheduling. Tick information based on IBM
90nm library is shown in the last column of Figure 8.

3.2 Bypass Network
Figure 10 shows the real implementation of the bypass network

with some practical considerations. Figure 10(a) is the original FU
on the baseline architecture. Each FU has three source MUXes for
predicate and data inputs. In addition to this, each FU has one ad-
ditional MUX to increase the routing bandwidth of the array. Four
predicate, compute, and routing outputs are generated from the FU
and connected to other FUs through registers. Bypass connections
between FUs are implemented by adding a small two-input MUX
to two data outputs (Figure 10 (b)). The MUX has both an FU out-
put and register output as inputs and one of these signals is chosen
by the select signal of the MUX every cycle. This type of MUX
is selected to minimize the additional area and delay cost to the
baseline architecture. As FU and register outputs are shared, the
bandwidth is restricted but the hardware overhead can be reduced
by minimizing change of the baseline architecture. An additional
32 control bits and 32 MUXes with 33644 um2 area are required
and the costs are 3.8% and 2.3% overhead (Figure 11).

4. COMPILER SUPPORT
In this section, we describe the compiler support for dynamic

operation fusion using the bypass network in CGRA Express. Tak-
ing the concept of edge-centric modulo scheduling (EMS) [18], we
developed a scheduler that can support both sequential and loop
code regions for CGRAs. We enhanced the original algorithm with
the ability to place multiple operations in a single cycle without in-
curring the structural hazard of the resources. The concept of tick
slot in Section 3.1 is introduced into the scheduler and scheduling
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Figure 10: Comparison of bypass network implementation de-
tails: (a) baseline network and (b) network that supports dy-
namic operation fusion.
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area (mm^2) 1.447 1.48 2.3

Figure 11: Hardware overhead of the bypass network. Two
forms of overhead are specified: control bits to control the by-
pass MUXes and area of the bypass network.

is performed on a tick basis rather than a conventional cycle-based
manner.

First, we will briefly introduce the EMS framework and then de-
scribe the basic concepts of tick-based scheduling. Finally, we will
provide the added features to attack the problems specific to tick-
based scheduling.

4.1 Edge-centric Modulo Scheduling
The most distinctive feature of the EMS is that it takes routing

of values as the first-class objective. The routing of operands is
often ignored in traditional schedulers since it can be guaranteed by
the centralized resources (i.e., central register file) of a traditional
VLIW processor. Any value generated by a producer can be routed
to its consumers by putting the operand into the central register file.
However, the distributed interconnect and register files in CGRAs
require the compiler to orchestrate the communications between
producers and consumers explicitly. The modulo constraint that
must be observed to create a correct modulo schedule allows only
a limited available slots for each resource, making the routing of
operands on the array even harder.

For this reason, EMS constructs the schedule by routing the edges
in a dataflow graph, rather than placing the nodes. This approach
allows both performance gain and compilation time reduction over
the traditional node-centric approach. The following are the major
features of the EMS that differentiate it from conventional sched-
ulers.

• No explicit backtracking. With the distributed interconnect
and abundant computation resources, the scheduling space
for CGRAs can get quite large and the compilation time can
be a critical issue. To reduce the compilation time, EMS does
not have a backtracking mechanism. Especially for CGRAs,
it is hard to make forward progress with backtracking since
placing and unplacing of operations usually involves multi-
ple resources for routing. Therefore, routing decisions are
made just once.
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Figure 12: Tick-based scheduling example: (a) possible place-
ments in the tick scheduling space and (b) different longest path
delays per tick slots.

• Proactive prevention of routing failures. To compensate
for the lack of backtracking, EMS proactively avoids rout-
ing failures using probabilistic cost metrics. Before routing
an edge, the probabilities of the future usages of scheduling
slots are calculated. By avoiding the slots with high proba-
bilities, routing failures can be effectively prevented.

• Recursive routing calls for critical components. Some
components in a dataflow graph require more cautious schedul-
ing since they can easily make the scheduling fail. One good
example is a recurrence cycle. To meet the timing constraints
of the recurrence cycles, traditional schedulers usually treat
them with highest priority. Additionally, EMS schedules the
edges in a critical component altogether by routing them re-
cursively. When an edge in a recurrence cycle is routed, it
only finalizes the routing only if all other edges in the com-
ponent are successfully routed in recursive calls. This re-
cursive routing provides an implicit form of backtracking for
scheduling critical components.

4.2 Tick-based Scheduling
To enable the scheduler to place back-to-back operations in the

same cycle, it needs to keep track of where the operations are placed
at the precision of ticks. Figure 12(a) shows the scheduling space
for tick-based scheduling where each cycle is divided into multiple
ticks. For illustration purposes, register file access time is ignored.
The number of ticks in a cycle is determined by the frequency of
the target architecture and is given as input to the scheduler. Here,
operations are placed into tick slots, and the resource management
is still done on a cycle basis; only one operation is allowed to be
placed in a cycle for each resource.

To manage the cycle and tick times together, we defined STime
which is a pair, (cycle, tick). STime is used for two purposes: sched-
ule time unit , and delay of resources and operations. For example,
the input time of operation A in Figure 12(a) is scheduled at (0, 0)
and its delay is (0, 2). For multi-cycle delays of pipelined opera-
tions, STime has an additional field of init_tick making it a tuple
of (cycle, tick, init_tick). init_tick indicates the number of ticks re-
quired to process the operation at the first pipeline stage. The load
operation E shown in Figure 12(a) has a delay of (2, 3, 2). While
the load operation will have a delay of 3 cycles in a traditional ap-
proach, it requires 2 ticks and 3 ticks for the first and last stages,
respectively. Therefore, the pipelined operations can also partici-
pate in dynamic operation fusion.
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Figure 12(a) shows some possible placements of operations in
tick-based scheduling. Operations A and B are scheduled in the
same cycle using the bypass network. However, since the resources
are managed in cycles, only one operation can be mapped on a
resource in a single cycle. So, it is illegal to place back-to-back
operations C and D in the same resource/cycle. Also, an operation
cannot be mapped across the clock boundary unless it has a multi-
cycle delay. When there is not enough tick slots in a given cycle,
the scheduler delays the operation to the next cycle as shown with
operations G and H.

Operator Overloading We replaced all the time/delay units in
the EMS with our STime unit, while keeping the basic structure of
the scheduler. So, the changes applied to the original scheduler are
minimized. The basic arithmetic operators such as +, -, *, / were
overloaded in a way that the cycle field increases/decreases as the
tick field crosses the cycle boundary. Often times, a delay is added
or subtracted to a schedule time to create another schedule time.
For example, the output time of operation B in Figure 12(a) can be
calculated by adding the delay (0, 3) to the output time of operation
A (0, 1).

However, there are two things to consider when a delay is ap-
plied to a schedule time. First, the clock boundary constraint should
be checked so that the operation is not placed across the bound-
ary. Also, when adding a multi-cycle delay to a schedule time, the
resulting time should be adjusted along the clock boundary since
multi-cycle operations should be aligned with the clock boundaries.
Basically, the time gap between the output time of the producer and
the consumer needs to be added to get the output time of the con-
sumer. The equation below shows how the addition is performed
between a schedule time and a delay. num_ticks denotes the num-
ber of tick slots in a single cycle. T is the schedule time and D is
the delay. When adding a delay to a schedule time, the timing con-
straint is checked by looking at init_tick of the delay (Equation 1).
When it passes the timing constraint, the delay is added using the
overloaded operator ’+’. For multi-cycle delays, the time is con-
verted to its floor to align the resulting time along the clock bound-
ary (Equation 2). After performing the addition, Equation 3 checks
if the performed addition violates the clock boundary constraint.

if(D.cycle > 0) num_ticks− T.tick >= D.init_tick (1)

add(T, D) = (D.cycle > 0)?(T.cycle, 0) + D : T + D (2)

check(T, D) = (add(T, D).cycle− T.cycle == D.cycle) (3)

4.3 Tick Specific Features.
By introducing the new STime unit, we could minimize the mod-

ifications applied to the original EMS. However, there are some
features that need to be adapted to efficiently perform tick-based
scheduling. Three major features are explained in this section.

ASAP/ALAP time calculations. In schedulers, ASAP and ALAP
times are used to estimate how early/late an operation can be placed
without destroying timing dependences between operations. The
ASAP time of an operation C can be calculated by Equation 4. p
denotes an placed predecessor of C and d(x, y) is the longest path
delay between x and y.

ASAP (C) = MAX(time(p) + d(p, C)) (4)

Basically, the scheduler looks at all the already-placed prede-
cessors in the dataflow graph and adds the longest delay between
the predecessor and the current operation, and picks the maximum
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Figure 13: Register access regions in a tick schedule: (a)
dataflow graph, (b) register read/write regions (shaded) within
each cycle.

time. In cycle-based scheduling, the longest delay stays constant
no matter which cycle the predecessor is placed. However, in tick-
based scheduling, the longest delay changes depending on which
tick slot the predecessor is placed. Figure 12(b) shows an example
of the different delays between operation A and C. Here, we assume
that A is already placed and B and C are not. Since the operations
cannot be scheduled across the clock boundaries, the delays are dif-
ferent between the two cases. Therefore, the tick-based scheduler
calculates the longest delay of two operations for each producer’s
tick slot in a cycle.

Identifying Subgraphs. To find the opportunities for dynamic
operation fusion, the scheduler takes a greedy approach for find-
ing the target subgraphs. When an operation is placed, the sched-
uler looks at its neighboring operations in the dataflow graph and
checks the timing constraints to see if they can fit into the same
cycle using the bypass network. If there is an opportunity for fu-
sion, the scheduler recurses on the routing of an edge between the
two back-to-back operations. The use of the bypass network is en-
couraged in routing by giving a penalty when the cycle is increased
during the routing. The router will visit the available slots in the
same cycle first using the bypass network. However, this can result
in wasting FU slots just for routing since the bypass network con-
nects neighboring FUs. For this reason, we only allow the use of
the bypass network when back-to-back operations can be placed in
neighboring FUs.

Register Access Region. Even though the register access time
was ignored in Figure 12, the register read and write times need
to be considered in reality. The shaded regions in the scheduling
space in Figure 13 display the register access region. Here, we
assume the register read and write time is 1 tick. For each cy-
cle, the first tick slot is called the register read region and the last
tick slot is called the register write region. When operations are
placed in these regions, they cannot access register files due to tim-
ing constraints. For example, operation B’s output is placed at (0, 4)
slot and it can only route its value to neighboring FUs through the
FU’s output register. Therefore, routing flexibility is greatly lim-
ited for operation B. When all the neighboring FUs are occupied,
the scheduling will fail since there is no backtracking mechanism.
To avoid this situation, our scheduler performs recursive calls for
routing edges when an operation is placed in the register access
region. Figure 13(a) shows an example dataflow graph. When op-
eration B is placed at cycle 0 as shown in the figure, its output is
placed in the register write region. Therefore, the scheduler makes
sure that all the edges coming out from operation B are success-
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seqential loop(resource) loop(dependency) total
baseline express perf. ratio baseline express perf. ratio baseline express perf. ratio baseline express perf. ratio

aac 42.64 36.47 85.53% 17.40 15.75 90.51% 0.32 0.24 75.34% 60.36 52.46 86.91%
h.264 44.77 39.29 87.75% 23.80 24.70 103.78% 0.58 0.29 50.01% 69.15 64.28 92.95%
3d 77.82 60.05 77.16% 74.70 65.94 88.28% 4.29 4.22 98.32% 156.81 130.22 83.04%

Figure 14: Performance evaluation of the baseline and CGRA Express architectures for three multimedia applications. Performance
is broken down into non-innermost loop regions (sequential), inner-most loops whose performance is constrained by the availability
of resources (loop (resource)) and inner-most loops whose performance is constrained by cross-iteration dependences (loop (depen-
dency)).

fully routed before finalizing the placement. Therefore, it recurses
on the routing of two edges (E and F). When operation F is placed
in cycle 1, the scheduler also recurses on the edge to operation C
since F is placed in the register read region. The numbers shown in
the figure denote the order of routing call of each edge. Since the
operations E, F, and G are not placed in the register write region,
they can store values into the register files. So, the scheduler does
not proceed with routing the outgoing edges from them. When all
the edges with solid lines in Figure 13(a) are successfully routed,
the scheduler finalizes the placement of operation B.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
Target Architecture Two CGRA architectures are used to eval-

uate the performance of dynamic operation fusion. The baseline
architecture is the 4×4 heterogeneous CGRA shown in Figure 1.
Four FUs are able to perform load/store instructions to access the
data memory and 6 FUs support 2-cycle pipelined multiply. A 64-
entry central register file with 6 read and 3 write ports and sixteen
8-entry local register files exist in the array. Only four FUs on the
first row have direct access to the central register file and other FUs
must use data buses to access the central register file. Local regis-
ter files with one read and one write port are placed similar to the
FUs and each register file can be written by FUs in diagonal direc-
tions. There is also one 64-entry predicate register file with four
read and four write ports. The CGRA Express architecture has the
same architectural shape except the addition of the bypass network.

Target Applications All the sequential and loop code are taken
from three application domains: audio decoding (aac), video de-
coding (h.264) and 3D graphics (3d). The sequential code regions
are mapped using VLIW mode of the array and loop code regions
are mapped using CGRA mode of the array. Performance is evalu-
ated by the overall execution time.

Power/Area Measurements Both the baseline and CGRA Ex-
press architectures are generated in RTL Verilog and synthesized
with the Synopsys design compiler and Physical compiler using
IBM 90nm standard cell library in typical operation conditions.
Synopsys PrimeTime PX is used to measure power consumption.
The SRAM memory power was calculated using SRAM model
generated by the Artisan Memory Compiler. The target frequency
of both baseline and the CGRA Express architectures are 200MHz.

5.2 Performance Measurement
In order to illustrate the effectiveness of dynamic operation fu-

sion, performance of the three benchmarks is compared on the
baseline CGRA and CGRA Express. In sequential code regions,
run-time is measured by the schedule length multiplied by the fre-
quency of execution. The run-time of the loop code regions is cal-
culated by multiplying the Initiation Interval (II) achieved by EMS
and the loop trip count. II means the interval between successive
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Figure 15: Power breakdown comparison for the baseline and
CGRA Express architectures.

baseline express ratio

power (mW) 298.26 306.78 102.86%

# of cycles (million) 156.81 130.22 83.04%

energy (mJ) 233.85 199.74 85.42%

Figure 16: Energy comparison for the baseline and CGRA Ex-
press architectures.

iterations thus II is the indicator of throughput in modulo schedul-
ing. The results of this experiment are shown in Figure 14. The
numbers in the table show the execution time in millions of cycles
and perf.ratio is the ratio of execution time on CGRA express over
the baseline.

Overall, dynamic operation fusion achieves 7-17% reduction in
execution time over the baseline. This is a promising result be-
cause the hardware overhead is about 3% as discussed in Section 3.
More specifically, most of the performance improvements are due
to the schedule length reduction in sequential code regions, which
was expected since dynamic operation fusion collapses the series
of operations into a single cycle.

However, we could also observe a good amount of reduction in
resource-constrained loops. This is primarily due to the additional
bypass network. The additional connection doubles the number of
reachable slots from an FU. With the bypass network, an FU can
access its neighboring FUs results in the same cycle as well as in the
next cycle. This gives the scheduler more flexibility and improves
the throughput of the resource constrained loops. Also, when a
loop has small trip count, schedule length will be more dominant
than the II for run time, hence dynamic operation fusion can im-
prove performance. The dependence-constrained loops show up
to 50% reduction in execution time. This was expected since the
throughput of these loops was mainly limited by the critical path
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Figure 17: Performance comparison of the baseline and CGRA express architectures for different clock periods. Performance is
broken down into dependence-constrained loops (rec), resource-constrained loops (loop) and non-innermost loops (acyclic) regions.

of a single iteration, which can be efficiently reduced by dynamic
operation fusion.

5.3 Power and Energy Measurement
The instantaneous power consumption of CGRA Express archi-

tecture is seemingly higher than that of baseline architecture due to
additional hardware overhead. However, the bypass network im-
plementation can also decrease the total run time. Since there is
such trade off between power and run time, we measured total en-
ergy consumption for running complete applications to determine
the effectiveness of dynamic operation fusion.

Overall power consumption and the breakdowns of both archi-
tectures for 3D are shown in Figure 15. Overall, average power
consumption on the CGRA Express architecture is 3.1% higher
than the baseline architecture. Compared to the baseline architec-
ture, the power increase observed for the datapath is smaller than
the increase in the SRAM for control signals. The bypass network
adds just a small amount of combinational logic (MUXes) on the
baseline architecture, hence the overall effect is quite small. On
other hand, adding control signals is more critical for power con-
sumption on CGRAs because all the control signals must be read
every cycle. Therefore, overall power overhead for adding bypass
network is trivial but careful consideration is necessary due to the
additional number of control signals.

An interesting result can be found on total energy consumption
comparison between both architectures. Figure 16 shows that the
CGRA Express architecture is 15% more energy efficient than the
baseline architecture. Even though average power consumption of
the new architecture is slightly higher, the decrease in application
run time dominates the results.

5.4 Operating Frequency Optimization
As discussed in prior experiments, dynamic operation fusion can

decrease total run time by decreasing number of cycles in fixed
clock period. However, measuring total run time on various clock
periods will be another interesting question with dynamic operation
fusion. With different clock periods, total run time is calculated by
multiplying the number of cycles and the clock period. If clock
period is large, more operations can be chained into a single cy-
cle. But, these gains must offset the losses in performance due to a
reduced clock rate. We can expect some optimal smallest run time
exists as the clock period is swept that represents the sweetspot of a

fast clock rate while permitting some degree of chaining. Figure 17
shows the total run time of the three applications with various clock
periods in nanoseconds.

Dynamic operation fusion works efficiently at 5ns compared to
traditional scheduling but expanding the clock period to more than
5ns achieves no additional performance improvement. As the clock
period becomes longer, sequential code regions require fewer cy-
cles to execute and their characteristics start to resemble loop code
regions. This behavior occurs because just 4 FUs are used for
executing sequential code regions. With the most aggressive fu-
sion, the dependences of 4 successive instructions are collapsed
which basically eliminates all dependences that can constrain per-
formance and converts the code region into a resource constrained
one. Moreover, the number in sequentially dependent instructions
before a memory instruction is encountered is typically smaller
than 4, thus there are limited opportunities for fusion. As a re-
sult, using a clock period of 7.5ns results in 50% increase of total
run time because there is no additional reduction of the number of
clock cycles due to dynamic operation fusion (beyond those saw at
5ns), but the clock period is 50% larger.

6. RELATED WORK

6.1 Architecture
Many CGRA-based systems have been proposed in various pa-

pers and some of the models have been implemented. Each design
has different scalability, performance, and compilability. ADRES [14]
is the most well-known CGRA system with an 8x8 mesh of pro-
cessing elements with central and local register file. As we men-
tioned prior sections, ADRES also supports CGRA array mode as
well as VLIW mode using central register file and FUs on the top
row. MorphoSys [13] is another famous example of 8x8 grid with
a more sophisticated interconnect network. In MorphoSys, each
node has an ALU and a small local register file. RAW architec-
ture is more general system which node is small MIPS processor
with memory, registers, and a processor pipeline. PipeRench [7]
and RaPid [6] are also 1-D architectures have similar concept to
CGRAs. In PipeRench, each processing elements are arranged in
stripes to support pipelining. RaPid has a lot of heterogeneous el-
ements (ALUs and registers), which can be connected by reconfig-
urable interconnection.
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The results of recent research about general architecture explo-
ration on CGRAs are also promising. Kim [10] focussed on the
power consumption for configuration memory and proposed spa-
tial and temporal mapping with pipelining. Moreover, Kim [9] pro-
posed different approach based on data flow graph of applications.

Research on instruction set customization with configurable com-
pute accelerator (CCA) is also closly related to this research. Clark [3]
studied how to create efficient CCA based on sub graph modula-
tion and improved the idea to virtualized execution accelerator [5].
Hormati [8] also studied CCA to be more faster and smaller. Lastly,
Bonzini[1] adopt the CGRA idea to CCA and diminish disadvan-
tages of CCA, such as logic depth limitation and low coverage.

6.2 Compilation Techniques
As dealing with sparse connectivity and distributed register file is

huge challenge on compiler, many techniques have been proposed
for compiling CGRAs. Lee [11] proposed a schedule approach for
a generic CGRA, which generates pipeline schedules for innermost
loop. Park [17] also worked on innermost loop, but they focussed
on loop level parallelism while Lee worked on instruction level par-
allelism. Park’s work is more similar to Mei at al [15]’s work on
modulo scheduling.

Research on CGRA scheduling is partially similar to the research
on VLIW machine scheduling. As clustered VLIW machines are
also spatial architecture, many compilation techniques on VLIW
can be adopted to CGRAs. However, VLIW machine does not
have routing issues related to sparse interconnection network hence
some modification is necessary to support CGRA.

On this paper, we introduce some cost function about actual de-
lay of synthesized hardware (MUX, Adder, Shifter). This concept
is similar to the research about module mapping and placement
on FPGA area. Callahan [2] performed datapath module place-
ment simultaneously with the mapping using area and delay cost.
They used the area and delay cost to minize both area and delay on
FPGA. We also adopt the delay cost to increase utilization of FUs
on pre-defined clock period.

7. CONCLUSION
This paper proposes dynamic operation fusion, an effective ap-

proach to accelerate sequential code regions on CGRAs. As schedul-
ing techniques for loops have been developed, the run-time for
loops decreases by large factors as the compiler is able to make
effective use of the abundance of resources available in a CGRA.
However, the side effect is that sequential code region become more
and more of the overall performance bottleneck as these regions
have limited instruction-level parallelism. We introduce two key
concepts to execute sequential code region faster. First, a bypass
network is implemented to support dynamic operation fusing wherein
existing function units on a CGRA are configured to execute back-
to-back operations in a single cycle using any available slack in the
cycle time. A simple hardware extension in the form of an addi-
tional connection between neighboring function units and a bypass
MUX are required. Second, the compiler scheduler automatically
identifies opportunities for dynamic fusion based on sub-units of
clock cycles, called ticks. Overall, dynamic operation fusion re-
duces total application run-time by 7-17% and total energy by 15%
on a 4x4 CGRA.
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