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Abstract—Reconfigurable Computers (RCs), built from configurable processors can offer high performance in a wide range of

applications. However, due to the limited reconfigurable resources, not all needed functionalities can be implemented at the same time,

and runtime reconfiguration becomes an appealing solution. This work proposes techniques suitable for multitasking applications as

well as applications that can change the course of processing in a nondeterministic fashion. In order to exploit both spatial and

temporal locality simultaneously, the proposed model groups hardware functions into configuration blocks of fixed size (pages),

variable size (segments), or hybrid (paged segments). Multiple blocks can be configured on a chip simultaneously. Data mining

techniques are used to group related functions into blocks (pages or segments) and temporal locality is exploited through block

replacement techniques. Simulation, as well as emulation using the Cray XD1 reconfigurable high-performance computer was used in

the experimental study. Results show a significant improvement in performance using the proposed techniques.

Index Terms—Reconfigurable Computers (RCs), field programable gate arrays (FPGA), partial reconfiguration.
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1 INTRODUCTION

RECONFIGURABLE Computers (RCs) have recently evolved
from add-on accelerator boards to stand-alone general-

purpose RCs and parallel reconfigurable supercomputers
[1], [2]. Examples of such supercomputers are the Cray XD1,
SRC, and the SGI Altix RASC [2].

Although Reconfigurable Computers can leverage the
synergism between conventional processors and FPGAs,
there exist multiple challenges that must be resolved [3].
One of the challenges is that some large circuits require more
hardware (HW) resources than what is available, and the
design cannot fit in a single FPGA chip. One solution to this
problem is runtime reconfiguration (RTR). RTR allows large

modular applications to be implemented by reusing the
same configurable resources. Each application is implemen-
ted as a set of hardware modules. Each module (function) is
implemented as a partial configuration which can be
uploaded onto the reconfigurable hardware as it is needed
to implement the application. Partial reconfiguration allows
configuring and executing a function onto an FPGA without
affecting other currently running functions. On the other

hand, the problem of the reconfiguration time overhead has
always been a concern in RTR [4]. As configuration time
could be significant, eliminating, reducing, or hiding this

overhead becomes very critical for reconfigurable systems.
Although reconfiguration happens at runtime, existing
configuration techniques follow fixed (static) schedules that
have been determined offline. These approaches can neither
support general-purpose multitasking cases nor single large
tasks that are data dependent due to their nondeterministic
processing requirements.

Locality of references has been used to provide high
average memory bandwidths in conventional microproces-
sor-based architectures through caching and memory
hierarchy techniques. A parallel concept can be defined
within the context of reconfigurable computing [3], [4].
Considering applications that are built out of small reusable
functional modules, the use of such modules can exhibit
spatial and temporal localities. In this context, spatial
locality refers to the fact that certain hardware functions
may be correlated in the way they are used by applications
and, therefore, appear together during execution. Therefore,
it can be also viewed as semantic locality. Temporal locality
refers to the fact that functions used in the past may be used
again in the near future.

Li and Hauck [4], [5] proposed several techniques to
cache the configuration for different FPGA models, e.g.,
single context and partial RTR (PRTR). In the single context
scenario, functions of an application are arranged into
blocks each of which has enough functions to fill the entire
chip. The blocks are configured in the deterministic
sequence needed by the application based on the a priori
knowledge about the application. This method assumes that
the configuration sequences are known in advance. They
also proposed a method for creating the groups based on
the statistical behavior of the applications. However, this
method considers pairwise function correlations. In the
PRTR scenario, each function is configured or replaced on a
function-by-function basis, based on the application needs.
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LRU replacement technique was used to replace the victim
functions. In the former technique, spatial processing
locality is well exploited. In the latter, PRTR, only temporal
processing locality is exploited. Kasprzyk et al. [6] have
proposed a technique that can merge multiple hardware
tasks into a reduced number of full reconfigurations. They
have compiled high-level language applications into small
hardware tasks. This technique is similar in concept to the
single context technique proposed in [4]. However, it uses a
different grouping algorithm. Sudhir et al. have proposed
several configuration caching techniques based on PRTR [7].
They have developed several cache replacement techniques
to swap configurations at runtime. This technique is similar
to the PRTR technique proposed in [4]. However, it uses
different cache replacement techniques.

In this work, we propose three techniques suitable for
multitasking and for cases of a single application that can
change the course of processing in a nondeterministic
fashion based on data. In order to exploit processing locality,
both spatial and temporal simultaneously, the proposed
models group hardware functions into hardware configura-
tion blocks of fixed size (pages), variable size (segments), or
hybrid model (paged segments) where each segment is
composed of one or more fixed-size pages. Multiple blocks
can be configured on a chip simultaneously. By grouping
only related functions that are typically requested together
in a page or a segment, processing spatial locality can be
exploited. Temporal locality is exploited through replace-
ment techniques. Data mining techniques were used to
group related functions into pages. Standard replacement
algorithms as those found in caching were considered.
Simulation and emulation, using the Cray XD1 reconfigur-
able computer, were used for the experimental study. The
results showed a significant improvement in performance
using the proposed techniques.

2 VIRTUAL RECONFIGURATION MANAGEMENT

Virtual memory is the operating system abstraction that
gives the programer the illusion of an address space being
larger than the physical address space. Virtual memory can
be implemented using either paging or segmentation. In
paging, the task logical address space is subdivided into
fixed-size pages. In segmentation, the task logical address
space is subdivided into logically related modules, called
segments. Segments are of arbitrary size, each one ad-
dressed separately by its segment number. The same
concept can be leveraged to adaptive computing by group-
ing hardware functions into hardware configuration blocks.
Blocks are retained on the FPGA itself until they are
required again. Blocks that are going to be needed in the
near future can be predicted by using the processing locality
principles and then the System configures them into the
FPGA before they are actually requested. Using this
concept, a finite amount of hardware resources can emulate
infinite hardware resources.

Developing applications for PRTR requires both HW and
software programing. The application is written in a
sequential high-level language, like C, with calls to some
HW functions (modules) from a predefined domain-specific
hardware library. At the reconfigurable hardware level, the

HW functions library can be developed using a hardware
description language. The hardware Library contains the
fine-grain processing basic building blocks (e.g., FFT, edge
detection, and/or Wavelet decomposition) independent of
the applications. Applications only deal with the application
program interface (API) for the library. Fig. 1 shows an
example of an image processing application. The applica-
tion uses the Fourier theorem to convolve an input image
with a filter image through a combination of Fourier
transforms and matrix multiplication followed by the
inverse Fourier transform. The HW functions FFT, Inverse
Fast Fourier Transform (IFFT), and Matrix-Mull are part of
the hardware library. These hardware functions are up-
loaded to the FPGA as needed by the application.

In this work, we consider only Nonpreemptive schedul-
ing. At runtime, we place the modules at specific locations
and we do not move modules around the chip after starting
execution. In addition, an FPGA is treated as a homogenous
resource. This assumption is based on many contemporary
FPGA chips such as V4 LX and V5 LX, all of which are
homogenous. The work can be extended to other types of
chips, but this is outside the scope of this work. Only PRTR
is considered where each application is implemented as a
sequence of configurations. Application is divided into a
set of independent modules that may need not operate
concurrently. Each module is implemented as a distinct
configuration which can be downloaded into the FPGA as
necessary at runtime during the application execution.
Modules can be dynamically uploaded and deleted from
the FPGA chip without affecting other running modules.
Interfacing and communication are supported via a static
bus (backbone network) which is responsible for connecting
all reconfigurable modules of the system.

3 BLOCKING

A block is defined as a set of hardware functions to be
placed at the same time on the device. Blocking exploits
spatial processing locality by arranging related HW func-
tions into blocks. Spatial processing locality would arise
from functions that are typically used together in a given
application. For example, morphological operators, such as
opening and closing in image processing, and convolution
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and decimation in Discrete Wavelet Decomposition can be
grouped together as one block. Data mining techniques,
such as Association Rule Mining (ARM), are used to derive
meaningful rules that can be useful for creating the blocks.
These rules are used to determine the degree of correlation
between the reconfigurable functions in order to group the
highly related functions together into one block.

At runtime, when the application requests any HW
function, the system configures the entire block. When the
application requests another function from the same block,
which is likely, the system starts executing it directly
without the need to configure a new bitstream.

Blocks (Partitions) suffer from fragmentation. Internal
fragmentation is a problem that occurs when using fixed-
size blocks. It refers to unused (wasted) space inside
allocated blocks since blocks are of fixed size, and the
functions assigned to a block may not use all of its space
(block sizes do not match function sizes). External fragmen-
tation is a problem that occurs when using variable-size
blocks. It refers to wasted space outside allocated blocks. It
happens when the total available space is large enough to
accommodate an incoming block, but the space is divided
into noncontiguous chunks, none of which are large enough
for the incoming block. Three blocking techniques, like those
used in virtual memory, are considered. Those techniques
are paging, segmentation, and paged segmentation.

3.1 Paging

Paging attacks external fragmentation by dividing (split-
ting) each application into smaller, fixed-equal-sized parti-
tions called pages, and dividing the FPGA chip area into
equal-size partitions called page frame, of the same size as
pages [8]. We then map from pages to frames in such a
way that each application can be composed of physical
frames that are scattered all over the FPGA chip. When an
application is executed, its pages are loaded into any
available FPGA frames.

Using paging, it is easy to manage and allocate the free
space on the FPGA by keeping a list of available frames,
and simply grab the first one that is free. It is also easy to
swap pages and frames, as all have the same size. On the
other hand, paging suffers from internal fragmentation. We
always get a whole page, even for a very small size. Larger
pages make the problem worse. Fig. 2a shows an example
of paging, where the application is composed of three
pages and the FPGA is divided into six page frames. Pages
0, 1, and 2 of the application are loaded into page frames 1,
3, and 4, respectively.

3.2 Segmentation

Segmentation refers to a virtual memory scheme in which
applications are divided into variable-size blocks. Only the
needed blocks are uploaded to any free space on the FPGA.
Segmentation gets rid of internal fragmentation by aban-
doning the notion of a contiguous space. Instead, we can
think of FPGA as an unordered collection of segments of
variable size. Segmentation needs a fitting strategy, such as
First Fit and Best Fit, to choose a fragment from the
available free space. We have lots of “holes” of available
blocks with different sizes. If a newly arrived task fits into
more than one free rectangle, a fitting strategy is used to

choose a rectangle, e.g., first fit, best fit, worst fit.
Segmentation reduces internal fragmentation and improves
performance because of locality of reference. On the other
hand, segmentation suffers from external fragmentation
and it needs a complicated process to maintain and allocate
the free space on the FPGA. In general, the advantages of
paging over segmentation outweigh their disadvantages.
Fig. 2b shows a segmentation example where three
segments are loaded simultaneously on the FPGA.

3.3 Paged Segmentation

In segmentation scheme, dynamic space management is
needed to allocate physical space to segments. This leads to
external fragmentation and forces us to think about things
like compaction. To address these problems, we can
combine the advantages of both paging and segmentation
by paging the segments. Paged segmentation is a scheme in
which applications are divided into segments. Each segment
is divided into consecutive fixed-size pages. This scheme
improves the external fragmentation. Internal fragmentation
might occur because of the wasted space that might appear
at the last page of a segment. Managing and maintaining the
free space are similar to paging scheme. Fig. 2c shows an
example for paged segmentation, where segment 0 is
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composed of only one page frame and segment 1 is
composed of three page frames.

3.4 Association Rule Mining

ARM is an advanced data mining technique that is useful in
deriving meaningful rules from a given data set [9]. It is
frequently used in areas such as databases and data
warehouses.

Given a number of transactions of item sets, association
rule discovery finds the set of all subsets of items that
frequently occur in many database records or transactions,
and extracts the rules telling us how a subset of items
correlates to the presence of another subset. One example
is the discovery of items that sell together in a super-
market. A management decision based on such findings
could be to shelve these items close to one another. There
are two important basic measures for association rules,
support, and confidence. Since the database is large and
users are concerned about only those frequently purchased
items, usually thresholds of support and confidence are
predefined by users to drop those rules that are not as
interesting or useful.

The a priori algorithm is an efficient association rule
mining algorithm, developed by Agarwal et al. [9], for finding
all association rules. The principle of this algorithm is that any
subset of a frequent item set must be frequent. The first step of
the algorithm is to discover all frequent items that have
support above the minimum required support. The second
step is to use the set of frequent items to generate the
association rules that have the sufficient level of confidence.

3.5 Blocking Algorithm

Offline software profiling of realistic executions is used to
determine the typical processing needs. Each application is
considered as one transaction, and the executed hardware
functions in that application are considered as the items. The
profiler stores the transactions and their items in a table
called transaction table. The a priori algorithm, association
rule mining algorithm [9] is executed offline on the
transaction table. It generates a small table that has all rules
between hardware functions. The algorithm uses these rules
to generate a set of blocks and a hash table to be used at
runtime. The hash table will be used at runtime to fast select
the suitable block to be uploaded to the FPGA. Assuming

that we have a hardware library of n functions, we define a
hash matrix as a three-dimensional array. Each dimension
has a length n. Each entry of the hash table has three
corresponding functions, e.g., entry (2, 3, 5) associated with
functions 2, 3, and 5. Each entry contains the block number
that has the group of functions that are highly related to
those three. At runtime, the hash function takes the index of
the most recently three hardware functions as input and
returns the block that has highly related functions to these
three functions. Fig. 3 shows a 3D hash table example.

The blocking algorithm consists mainly of three nested
loops. Each loop iteration assigns a block to one entry in the
hash table. For each hash table entry, the algorithm reads
the associated three functions, generates a new empty
block, and inserts the first function into this block. Then, it
adds the new block to the blocks table, and points the
corresponding hash table entry to this block. After that, it
searches for rules that contain either three, first and second,
or only the first of these three functions, preserving this
search sequence, and adds other functions that appear in
the retrieved rules to the new block. In the paging case, the
algorithm stops adding functions to the block when the
block size limit has been reached. If the new block is a
subset of an already created block or an already created
block is a subset of the new block, the algorithm deletes the
smaller block and updates the entries in the hash table to
point to the larger block. In the segmentation case, the
algorithm stops adding functions to the block when the
rules’ confidence reaches a minimum threshold.

To illustrate the mechanism of the algorithm, we consider
an Image Processing hardware library that has 10 functions
as shown in Table 1, and four applications written in a
sequential high-level language with calls to some HW
functions from the library. The four applications are image
convolution, image registration using exhaustive search,
wavelet-based image registration, and hyperspectral dimen-
sion reduction. Table 2 shows the transaction table gener-
ated by profiling these applications. Table 3 shows the
generated rules using a priori algorithm. Each row shows
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Fig. 3. 3D hash table.

TABLE 1
Image Processing Hardware Library: Illustrative Example

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23, 2009 at 18:36 from IEEE Xplore.  Restrictions apply. 



the related functions and the confidence of this relation.

Fig. 4 shows the contents of both the blocks table and the

hash table during the blocks creation process for the paging

scenario. The algorithm reads the first three functions which

all correspond to the fft function, index (0,0,0). The

algorithm creates a new block (blk1), inserts fft into this

block, and points the entry (0,0,0) of the hash table to blk1.

Then, it searches the rules table for rules that have fft.

Rules 3, 4, and 12 satisfy the constraints. The algorithm adds

other functions in these rules to blk1. The mat_mul and ifft

functions are added to blk1 as shown in Fig. 4a. In the
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TABLE 2
Transaction Table: Illustrative Example

TABLE 3
Generated Rules: Illustrative Example

Fig. 4. Blocking example. (a) First loop iteration. (b) Second loop iteration. (c) Modified second loop iteration. (d) Third loop iteration. (e) Modified

third loop iteration. (f) Fourth loop iteration.
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second loop iteration, the algorithm reads ifft and fft, index
(1,0,0). The algorithm creates a new block (blk2), inserts ifft
into this block, and points the entry (1,0,0) to blk2. Then, it
searches the rules table for rules that have both ifft and fft.
Rules 4 and 12 satisfy the constraints. The algorithm adds
other functions in these rules to blk2 (Fig. 4b). The algorithm
detects that blk2 is a subset of blk1. As a result, the algorithm
deletes blk2 (the smaller one) and updates the entry (1,0,0) to
point to blk1 (Fig. 4c). In the 3rd loop iteration; the algorithm
reads mat_mul, and fft, creates a new block (blk2), inserts
mat_mul into this block, and points the entry (2,0,0) to blk2.
Then, it searches the rules table for rules that have both
functions and adds other functions in these rules to blk2
(Fig. 4d). Because blk2 is also a subset of blk1, the algorithm
deletes blk2 and updates the entry (2,0,0) to point to blk1
(Fig. 4e). In the fourth loop iteration, the algorithm reads
DWT and fft. The algorithm creates blk2, inserts DWT into
this block, and points the entry (3,0,0) of the hash table to
blk2. Then, it searches the rules table for rules that have both
DWT and fft. No rules having both DWT and fft exist. The
algorithm leaves blk2 as is and proceeds with the next
iterations till it completes filling the hash table. All grouped
functions (blocks) in the hash table are then compiled into
final usable binary bitstream files.

Like standard caching techniques, our technique exploits
spatial locality by grouping related functions into blocks
using data mining. Locality in generic caching is based on
the address space which does not apply in our case. It also
exploits temporal locality through block replacement
techniques that are used in standard caching systems.

4 RUNTIME RECONFIGURATION MANAGEMENT

(RTRM)

The runtime reconfiguration manager (RTRM) module is
used to integrate all of the concepts. The RTRM is responsible
for receiving the incoming functions (HW function calls) and
making the reconfiguration and scheduling decisions. Fig. 5
shows a simplified flow chart of RTRM algorithm. Upon
receiving a request for an HW function from an application,
the system checks whether this function already exists on the
chip. When the function does exist and is not executing a
function, the system starts executing this particular function
directly. If the function is not present on the FPGA or it
already exists, but it is busy executing other tasks, the system
uses the requested function and the two previous executed
functions from the same application as indexes to the hash
table and retrieves the suitable block. Assuming the system
decides to configure a new block because the requested
function is busy executing another task. If later the function
finishes execution before the system finishes configuring the
block, the system uses the function directly and keeps
configuring the block for possible need in the future. The
system has to choose a block (victim block) to be removed
from the FPGA to make room for the block that has to be
brought in. Page replacement algorithms are used to select
the victim block. After choosing the victim segment, the
algorithm dictates that the system configures this block with
the new block and starts executing the requested function. If
all of the current uploaded blocks are currently executing

other functions, the system adds the requested function to

the function queue and waits for any function to finish its

execution. Fig. 6 shows an RTRM example using the same

library. Assume that the blocking module has already

created the blocks and the hash table, a 2D hash table is

used in this example for simplicity. Initially, the system is

idle and all page frames are empty as shown in Fig. 6a. Upon

receiving the first request for function 2, the system checks to

see if the requested function already exists on the chip. If it

does not exist, which is the case, the system reads the content

of location (2,2) from the hash table, which is block 1, and

then configures the FPGA with it and then starts executing

function 2, see Fig. 6b. When function 3 arrives, the system

checks the FPGA. If function 3 already exists on the chip and

is not busy, the system starts executing function 3 directly,

see Fig. 6c.
When function 4 arrives, the system reads the hash table

location (3, 4), and then selects block 5 and configures it.

Then it starts executing function 4. At the end, when

function 5 arrives, the system starts executing it directly as

shown in Fig. 6f. If later, the FPGA chip has no empty space

for the new block, the system has to swap one block with

the new block using memory replacement techniques.

5 EXPERIMENTAL STUDY

To demonstrate the feasibility of the new techniques, we
have conducted two types of experiments, software simula-
tion, and hardware-based emulation. We have used a
library of 100 functions and 20 applications in the simula-
tion. The hardware emulation has been performed using the
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Fig. 5. RTRM algorithm.
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Cray XD1 reconfigurable computer as an emulation tool

[12], [13]. Both types of experiments gave similar perfor-

mance results. The Cray XD1 machine is a multichassis

system. Each chassis contains up to six nodes (blades). Each

blade consists of two 64-bit AMD Opteron processors at

2.4 GHz, one Rapid Array Processor (RAP) that handles the

communication, an optional second RAP, and an optional

Application Accelerator Processor (AAP). Data from one

Opteron is moved to the RAP via a Hyper Transport link.

The AAP consists of a single Xilinx Virtex-II Pro XC2VP50-7

FPGA with a local memory of 16 MB QDR-II SRAM. The

application acceleration subsystem acts as a coprocessor to

the AMD Opteron processors, handling the computationally

intensive and highly repetitive algorithms that can be

significantly accelerated through parallel execution.
In order to use the FPGA, the developer needs to

produce the binary file that encodes the required hardware

design, the binary bitstream file, using standard FPGA

development tools. Cray provides templates in VHDL that

allow fast generation of bitstreams. It also provides cores

that interface the user logic to the Cray XD1 system.
Our simulation tool takes into consideration the config-

uration overhead for the partial bitstreams (blocks), the data

transfer overhead, and the routing overhead. This config-

uration overhead depends on the size of the block. The

simulation tool assumes a 50 ms configuration overhead for
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Fig. 6. Runtime Reconfiguration Manager (RTRM) example. (a) Initial state.
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the full chip configuration which is consistent with current
technology.

5.1 Emulation Model

The basic purpose of our partial reconfiguration technique

in this paper is to configure a part of each single FPGA chip

as needed. Such configuration will place an integrated block

of related functions instead of the only requested function,

and the chip will be able to hold several blocks at a time.

Although recent generations of FPGAs support partial

reconfiguration, the interfaces provided by most vendors

allow only full FPGA reconfiguration. Thus, the Cray XD1

was only used as an emulation environment. As the XD1

has six compute nodes with six FPGA chips, our emulation

environment used those six chips to represent one chip that

can hold up to six blocks as shown in Fig. 7. This allows us

to emulate partial reconfiguration, where we can reconfi-

gure one FPGA (block) while other FPGAs (blocks) are

executing other functions. MPI has been used to commu-

nicate between nodes (FPGAs). MPI and its performance

penalties are only an artifact of emulation environment as

MPI was used to spread the blocks across nodes. MPI will

not exist in a real system in which all blocks are placed

within the same chip. Therefore, MPI effects have been

removed from the measurements. A random job (applica-

tion) generator is implemented to fire jobs to the RTRM, and

applications arrival is Poisson distributed. It randomly

(uniformly) selects an image processing application from

the applications list and inserts a delay (Poisson) before the

next arrival. Each application requires on the average a few

hardware functions.

We have measured the average Speedup against classical

hardware implementation function-by-function basis and

against the full-reconfiguration basis. Throughput, mean

response time, turn-around time, and average hit rate have

been reported. Six replacement techniques for blocks

replacement have been implemented. The random gen-

erator fires 400 applications. The average application length

is four functions. The average function execution time is

7 ms. The average function size is 20 percent of the FPGA

chip area. The average submission delay is 4 ms.

5.2 Paging

Fig. 8a shows the speedup gained using paging compared
to the full-reconfiguration implementation for a different
number of pages and different replacement techniques.
The results show that the best performance can be

achieved when the page size is one third of the chip size.

When the number of pages is small, we have larger page

sizes that can accommodate more functions. In this case,

the system exploits only spatial locality, and can suffer

high configuration penalty. This explains the lower

performance when the number of pages is 1. On the other

hand, when the number of pages is large, the page sizes

are small, and cannot accommodate a reasonable number
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partial reconfiguration scenario. (c) Throughput. (d) Hit rate.
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of functions. If we added more pages, page sizes become
smaller and smaller and functions of reasonable sizes will
not be able to fit into them. This explains the drop in
performance after the peak. In this case, the system
exploits only the temporal locality.

The best performance is observed in the middle of the
curve when the number of pages is chosen such that they
allow a decent number of functions. In this case, the system
takes advantage of both temporal and spatial locality at a
low configuration penalty cost. This behavior depends on
the FPGA size, hardware functions size, average function
execution time, and functions arrival rate. Such parameters
can be obtained from offline workload characterization and
improved from dynamic system profiling. Fig. 8b shows the
speedup of paging compared to the function-by-function
partial reconfiguration scenario. The curve behaves similar
to Fig. 8a for the same reasons. In this case, paging has
achieved a maximum speedup of 2:8� compared to the
full chip reconfiguration scenario, and a speedup of
1:65� compared to the function-by-function implementa-
tion scenario. Fig. 8c shows the throughput of the
applications versus the number of pages on the FPGA.
The throughput of the same experiment using the function-
by-function technique is 4 applications/sec. Fig. 8d shows
the average hit rate versus the number of pages. The hit rate
can be defined as the ratio of finding the requested function
on the FPGA to the total number of requests. Hit rate
depends strongly on the grouping algorithm. If the group-
ing algorithm manages to group the highly correlated
functions in the same group, this will improve the hit rate
and reduces the thrashing. Therefore, the a priori algorithm
and ARM is utilized here. Results show that the best hit rate
(98 percent) is achieved when the number of pages is one,
Fig. 8d, although this does not produce the best perfor-
mance. This is because the page size is large and the miss
penalty (configuration time) is high with big size pages.
Results show that the random replacement technique gives
poor performance as compared to LRU. FIFO removes the
oldest page which might still be in use. LRU achieves the
best performance as expected. It removes the pages that
have been unused for the longest time.

5.3 Segmentation

The same set of experiments has been repeated with the
same operating conditions and assumptions for the seg-
mentation approach. During the experiment, the blocks
have been created using a specific confidence value. The
performance metrics have been measured at runtime using
the created blocks. The same scenario has been repeated
many times with different block libraries which are created
using different confidence levels. LRU replacement techni-
que was considered for these experiments. Fig. 9a shows the
speedup of segmentation compared to full-reconfiguration
scenario and compared to function-by-function partial
reconfiguration scenario, given different confidence thresh-
old levels. When the confidence threshold is very small, the
result is equivalent to paging with one page. In this case, the
system exploits spatial locality only. When the confidence is
very high, it is difficult to find many functions to group.
Thus, the segments become very small, and the system will
exploit temporal locality only. The middle case can be

observed when the segment size allows for the accommoda-
tion of a decent number of functions. In this case, the system
can take advantage of both temporal and spatial locality. In
this case, segmentation has achieved a maximum speedup
of 2:95� compared to the full chip reconfiguration scenario,
and a speedup of 1:8� compared to the function-by-
function implementation scenario. Fig. 9b shows the
throughput of the application versus the confidence thresh-
old level. Fig. 9c shows the average hit rate. A maximum of
98 percent of the configuration latency overhead has been
eliminated. Results show that the best hit rate is achieved
with small confidence threshold, although this does not
produce the best performance. This is because the segments
size is large and the miss penalty is high with small
confidence, while the segment size is small and miss penalty
is low with high confidence.

5.4 Paged Segmentation

The same set of experiments has been repeated for the
paged segmentation approach where each segment is
composed of one or more fixed-size pages. Fig. 10 shows
the performance of the paged segmentation versus the
number of page frames on the FPGA. The confidence
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Fig. 9. Segmentation approach results. (a) Speedup. (b) Throughput.

(c) Hit rate.
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threshold level has been set to 40 percent. The results show
that the best performance is achieved when the number of
pages is large. When the number of pages is large, the page
sizes are small. In this case, the system can choose the exact
number of pages to construct segments without wasting
any space, which improves the area utilization. Paged
segmentation has achieved a maximum speedup of 2:85�
compared to the full chip reconfiguration scenario, and a
speedup of 1:69� compared to the function-by-function
implementation scenario.

Results show that segmentation performs better than the
other two approaches and paged segmentation performs
better than paging. This is because the emulation/simulation
model does not take into account the placement overhead, the
time it takes to find a free space on the FPGA.

In order to compare the performance of the proposed
approaches (paging, segmentation, and paged segmenta-
tion), a simulation model has been implemented and the
experiments have been repeated with different function
sizes and different submission delays. Fig. 11 shows the
speedup versus the average applications submission delay.
In this experiment, the FPGA chip was divided into three
pages, the optimal number of pages. Results show that
performance is improving with increasing the submission
rate. With low submission rate, the system wastes many idle
cycles waiting for new submission. In this case, the system
does not benefit from prefetching or parallelism and the

performance is similar to the function-by-function case.
Thus, speedup saturates also at 1. Fig. 12 shows the speedup
versus the function size ratio (Average function size/chip
size). The paging experiment was repeated several times for
different page sizes. This experiment clearly shows the
drawback of paging when the function size is greater than
the page size. In this case, the application cannot execute the
required function. Performance is getting better when the
function size is getting smaller, where pages/segments can
accommodate more functions and more parallelism can be
exploited. If the function size becomes larger than the page
size, the system cannot create pages that can accommodate
the function, and the application cannot run. Thus, paging
algorithm with fixed page size cannot work well with all
functions size. Segmentation and paged segmentation do
not have this problem as the segment size can grow up to
the chip size.

5.5 Integrating Placement Algorithm

Previous experiments did not take into account the
placement time overhead. In this section, the same set of
experiments has been repeated after integrating the place-
ment module.

We have used the FAST Hashed KAMER (FHK)
Algorithm, which has been proposed in [14], to place
modules on the FPGA. The algorithm simply maintains a
list for all maximal empty rectangles (MERs) on the FPGA.
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Fig. 10. Paged segmentation performance. (a) Speedup. (b) Throughput.

Fig. 11. Speedup versus submission delay.
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A maximal empty rectangle is an empty rectangle, which
cannot be fully covered by any other empty rectangle. At
runtime, whenever a task arrives, it searches the entire list
for a suitable MER that can accommodate the task and then
places the task in this rectangle and partitions the rectangle.

This method produces a very high placement quality
(fragmentation). On the other hand, this method consumes
a long time in finding placement locations. In order to speed
up the search process, the algorithm uses the hashing table
technique [14] to implement and search the rectangles list.

Figs. 13 and 14 show the speedup of the segmentation
and paged segmentation approaches before and after
integrating the placement module compared to the full-
reconfiguration scenario and compared to function-by-
function scenario. The first pair of bars in the figures
excludes the placement overhead from both the proposed
approaches and the reference approaches (full-reconfigura-
tion and function-by-function scenarios). The second pair of
bars includes the placement overhead. Results show that
paged segmentation is performing better than segmentation
after adding placement overhead. This is because placement
of a page (or a number of pages) in the paged segmentation
is a very simple process (select a free page from the list of
pages which is a constant number). While in the segmenta-
tion scenario, the placement process is much complicated. It
shows also that the overall speedup has been degraded

when compared to full-reconfiguration scenario, while the
speedup has been improved when compared to function-
by-function scenario after adding the placement overhead.
This is because the full-reconfiguration scenario configures
the whole chip and there is no need to the placement
algorithm. Thus, integrating placement module does not
affect its performance. While in the function-by-function
scenario, the system uses partial reconfiguration to config-
ure each function, which needs a placement algorithm to
maintain the free space on the FPGA.

5.6 Modules Interfacing

This section addresses modules interface and communica-
tion mechanism for the segmented paging technique.

Hubner et al. [15] have proposed a reconfigurable
interface, which is static bus responsible to connect all
reconfigurable modules of the system. Our approach in this
paper is similar to what is proposed in [15]. Fig. 15 shows
the proposed architecture for module interface/commu-
nication for the segmented paging technique. The system
includes both static and dynamic modules. The static part is
the backbone network of the device. It contains the core
services that interface the FPGA device to the outside world
(microprocessor and external memory). The core services is
provided by the vendor of the machine. The backbone
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Fig. 14. Speedup compared to function-by-function partial reconfiguration

scenario.

Fig. 12. Speedup versus function size ratio.

Fig. 13. Speedup compared to full-reconfiguration scenario.
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network contains also static routing that interfaces the
reconfigurable pages. Xilinx bus macro is used in imple-
menting the static routing of our system.

The dynamic part includes the reconfigurable pages
(segmented pages). Each page consists of a number of
hardware tasks, I/O controller, and the local network. The
local network connects the hardware modules to the I/O
controller. The I/O controller manages the communication
between the modules and the backbone network. There are
two independent communication processes for receiving
and sending data. The cray XD1 machine has four external
memory banks. At runtime, when the system requests to
start a new module, the RTRM decides which memory bank
will hold the data of this module. There are four different
buses on the chip for each memory bank. When any module
requests the permission to send data, the I/O controller
grants one of the send buses to that module if this bus is not
used by another module. After the module finishes sending
data, it informs the I/O controller to release the bus. This
scenario adds new waiting time overhead, if the requested
bus was not available. In addition to that, the backbone
network uses around 20 percent of the chip, which affects
the size of pages and the number of function that can be
accommodated by each page.

In this section, we have implemented a simulation
module to simulate the system after considering the
interfacing problem. Figs. 16, 17, and 18 compare the
performance of the segmented paging, full-reconfiguration,
and function-by-function after including the I/O overhead
to the performance without I/O. The results show that the
I/O module reduces the performance by 13 percent,

14 percent, and 13 percent for the three cases, which
indicates that the overall speedup compared to the previous
techniques did not change.

6 CONCLUSIONS

RCs can leverage the synergism between conventional
processors and FPGAs by combining the flexibility of
traditional microprocessors with the parallelism of hardware
and reconfigurability of FPGAs. Multiple challenges must
be resolved to develop efficient and viable solutions of
reconfigurable computing applications. One important chal-
lenge is the development of runtime reconfiguration models
that enable reconfigurable chips to tune their configurations
to the underlying applications.

This paper has formulated the virtual configuration
management technique which does so by discovering and
exploiting spatial and temporal processing locality at
runtime for RCs. The developed techniques extended
memory management strategies to reconfigurable plat-
forms and augmented them with data mining concepts
using ARM.

This work has also demonstrated the applicability and
the effectiveness of the proposed concepts by applying them
to representative image processing applications. Simulation
as well as emulation using the Cray XD1 reconfigurable
high-performance computer was used for the experimental
study. The results show a significant improvement in
performance using the proposed techniques. The results
show a speedup for the proposed techniques that is almost
three times as fast as the existing schemes, both the function-
by-function and the full-reconfiguration scenarios.

Although some of the recent generations of FPGAs
support partial reconfiguration, the interfaces provided by
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Fig. 16. Segmented paging I/O overhead.

Fig. 17. Full-reconfiguration I/O overhead.

Fig. 18. Function-by-function I/O overhead.

Fig. 15. Segmented paging system.
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most system vendors allow only full reconfiguration.
System vendors should allow partial reconfiguration in
order to enable better and more realistic implementations of
system software for configuration management and to
achieve more efficient execution. FPGA manufactures, on
the other hand, should provide better support for the
existing two-dimensional partial reconfiguration by im-
proving inter-IP and IP-I/O communication.
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