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Abstract—This paper introduces hthreads, a unifying program-
ming model for specifying application threads running within
a hybrid computer processing unit (CPU)/field-programmable
gate-array (FPGA) system. Presently accepted hybrid CPU/FPGA
computational models—and access to these computational models
via high level languages—focus on programming language ex-
tensions to increase accessibility and portability. However, this
paper argues that new high-level programming models built on
common software abstractions better address these goals. The
hthreads system, in general, is unique within the reconfigurable
computing community as it includes operating system and mid-
dleware layer abstractions that extend across the CPU/FPGA
boundary. This enables all platform components to be abstracted
into a unified multiprocessor architecture platform. Application
programmers can then express their computations using threads
specified from a single POSIX threads (pthreads) multithreaded
application program and can then compile the threads to either
run on the CPU or synthesize them to run within an FPGA. To
enable this seamless framework, we have created the hardware
thread interface (HWTI) component to provide an abstract,
platform-independent compilation target for hardware-resident
computations. The HWTI enables the use of standard thread
communication and synchronization operations across the soft-
ware/hardware boundary. Key operating system primitives have
been mapped into hardware to provide threads running in both
hardware and software uniform access to a set of sub-microsecond,
minimal-jitter services. Migrating the operating system into hard-
ware removes the potential bottleneck of routing all system service
requests through a central CPU.

Index Terms—Field-programmable gate arrays (FPGAs), oper-
ating systems, programming models, reconfigurable computing.

I. INTRODUCTION

RECONFIGURABLE computing (or RC), as a discipline,
has now been in existence for well over a decade. During

this time, significant strides have been made in fabrication that
are now providing hybrid computer processing unit (CPU)/field-
programmable gate array (FPGA) components with millions of
free logic gates, as well as diffused intellectual property (IP)
in the form of high-speed multipliers and SRAM blocks [1].
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Fig. 1. Traditional FPGA coprocessor model.

Unfortunately, researchers have thus far struggled to develop
tools and programming environments that allow programmers
and system designers—not just hardware designers—to tap the
full potential of the new reconfigurable chips. This deficiency is
in part due to the absence of modern operating system and mid-
dleware services that extend across the CPU/FPGA boundary.
These layers, along with a high-level language, form an ab-
stract computational model of a virtual machine. Importantly,
these layers provide the concurrency and synchronization mech-
anisms used within modern software concurrency models such
as asynchronous threads.

In the absence of these concurrency mechanisms, research
has focused on implicit automated compiler extraction of
loop-level parallelism, and explicit augmentations to sequential
programming languages to achieve parallelism. As shown in
Fig. 1, these approaches treat the FPGA as a coprocessor on
which low-level instruction- and data-level parallelism can
be mapped as an extension of the execution stream running
on the CPU. These approaches are concerning for the re-
configurable computing community, as lessons learned from
historical parallel processing efforts clearly indicate the need
to provide portable parallel programming models composed
of unaltered high-level languages, operating systems, and
middleware libraries. In this paper, we first outline and dis-
cuss the issues of currently accepted computational models
for hybrid CPU/FPGA systems. We then discuss the need
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to adopt a modern virtual machine approach and associated
abstract computational model, that hides the platform specific
CPU/FPGA distinctions from the programmer. We then present
hthreads, an abstract computational model composed of hard-
ware (HW)/software (SW) codesigned operating system and
middleware services that supports the multithreaded program-
ming model. Hthreads allows programmers to work from within
the standard software concurrency model of asynchronously
running threads communicating through shared memory. The
hthreads compiler and run-time libraries allows programmers
to write multithreaded programs in C and standard pthreads
air position indicators (APIs). The hthreads operating system
and middleware services provide the mechanisms that allow
the threads to run on either the CPU, or within a custom
circuit on the FPGA. For applications where maximal data
level parallelism is required, individual threads specifically
targeted for execution within a custom circuit can also be
written in VHDL and linked into the run-time framework.
Thus, hthreads represents a framework that can support both
multiple instruction-multiple data (MIMD) and classic single
instruction multiple data model (SIMD) parallelism within the
asynchronous software concurrency model.

A. Computational Models

Computational models provide a description of a machines
primitive capabilities [2]. The basic attributes of a computa-
tional model were categorized by Brown [3] as: 1) a machine’s
primitive units; 2) control and data mechanisms; 3) communi-
cation capabilities; and 4) synchronization mechanisms. Com-
putational models can be used to describe the primitive opera-
tions of the physical machine as well as the primitive operations
of a higher level virtual machine. Tanenbaum [4] provided the
following hierarchy of computational models. We have updated
Tanenbaum’s original hierarchy to also include more modern
middleware services shown as follows:

1) algorithm or high-level plan of attack;
2) high-level language in which the user writes a program for

the computer;
3) *middleware services which provides an abstraction layer

for the high-level language;
4) operating system, a program that allocates the resources of

th system, using its own abstract picture of the system;
5) physical machine architecture, represented by its instruc-

tion set.
For a general purpose CPU, the instruction set architecture

(ISA) is the computational model of the physical machine. This
simple model, called the Von Neumann model in honor of John
Von Neumann and his associates, is categorized within Flynn’s
[5] taxonomy of machine organizations as a single instruction
stream—single data stream (SISD) computer. Historical work
within reconfigurable computing has primarily focused on
bringing the FPGA under this organization to exploit instruc-
tion- and data-level parallelism within the FPGA. The FPGA
has been brought within a single CPU’s SISD machine organ-
ization by replacing a sequence of general purpose assembler
instructions with a coprocessor instruction that initiates execu-
tion of a customized circuit on the FPGA. This is similar to the
organization of historical complex instruction set computers

(CISC) but with gates replacing traditional microcode. The
SISD machine organization has also been extended to the
SIMD machine organization using the FPGA as a slave array
of coprocessors. To program this organization, data parallelism
must be exposed either implicitly within the compiler by un-
rolling loops, or explicitly within the source program through
augmentations and library routines. In both cases, the CPU
serves as a front-end instruction sequencer, while the FPGA
serves as a set of slave coprocessors.

Computational models for both SISD and SIMD machine
organizations are largely formed through the addition of con-
trol and data selection instructions added into an existing
sequential instruction set. Programmers then deal directly with
the physical computational model. In contrast to SISD and
SIMD machine organizations, the multiple instruction multiple
data (MIMD) organization has evolved as the platform of
choice for achieving parallelism. MIMD organizations, such
as clusters, are composed of multiple processing elements
connected across interconnection networks. Programmers do
not deal with the physical computational model of an MIMD
machine directly. Instead, programmers interact with a virtual
computational model formed through a composition of services
provided by the operating system, middleware, and high-level
languages. Different attributes of the composite model can be
provided through a variety of combinations of the high-level
language, operating system, and middleware. Targeting this
virtual computational model brings portability across specific
physical computational models. Unfortunately, the absence
of such a virtual computational model extending across the
CPU/FPGA boundary has eliminated the ability to create asyn-
chronous threads within the FPGA that independently run and
communicate with other threads running within the system.
This has led to the misconception that FPGAs are not suitable
for supporting common software concurrency models such as
asynchronous threads [6]. This misconception is also reinforced
by the cursory observation that the physical circuit structure of
an FPGA is composed of programmable logic blocks that are
fundamentally synchronous. Clearly, the general purpose CPUs
within an MIMD organization also represent devices with
physically synchronous computational models. The operating
system and middleware provides the framework that enables
standard software asynchronous concurrency models.

B. Abstract Programming Models

Programming models have evolved over the last decade as
abstract frameworks within which programmers can define
system components and their interactions. Within modern soft-
ware engineering practices, abstract programming models can
bring portability through separating policy from mechanism
within the framework. The multithreaded programming model
defines the policies that enable the creation and running of asyn-
chronous threads that communicate through shared memory.
The pthreads libraries represent specific implementations
of the multithreaded programming model. Current software
practices for high-performance cluster computing combine
the use of unaltered languages, such as C, and middleware
libraries that encapsulate all machine-specific code. These are
then linked with the operating system to form a framework
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Fig. 2. Hthreads design flow.

which fully supports the policies established within the abstract
programming model. As such, the programming model is
implemented on the computational model of the virtual and not
the physical machine. Therefore, enabling the asynchronous
multithreaded programming model across the CPU/FPGA
boundary requires bringing the FPGA under both the virtual
and physical computational models. Pragmatically, this requires
extending operating system and middleware services across the
CPU/FPGA boundary.

The absence of this virtual computational model, and specif-
ically the ability to support modern asynchronous threads
through operating system and middleware support has re-
inforced the continued exploration of how to configure the
FPGA as a coprocessor within the controlling CPU’s SISD and
extended SIMD machine organizations. Specific attributes of
the physical computational model of these machines are either
reflected back into the high-level language or automatically
extracted within a parallelizing compiler [7]–[18]. Leading
FPGA fabrication houses are also working on tools that allow
interface extensions and custom circuits to be specified from a
high-level language. Altera has developed a Hardware (C2H)
compiler [19] for their NIOS-II processor. The objective of
C2H is to isolate a section of code that the programmer has
determined as being a good candidate for hardware-accelera-
tion, and then automatically create a hardware core and CPU
to FPGA interface to create a coprocessor. The C2H compiler
has a strong advantage in that a user is not required to have
prior knowledge of a hardware description language (HDL) to
implement critical portions of code in hardware. Additionally,
the C2H compiler is able to support a large portion of the full
ANSI C standard (recursion and floating-point arithmetic being
the exceptions).

Considering the challenge of producing parallel circuits from
a purely sequential language, these efforts are quite impressive.
The task of translating C to an HDL in a way that increases
program performance is nontrivial. The C language by itself
only provides a thin abstraction of the Von Neumann archi-
tecture. Interestingly, modern asynchronous multithreaded pro-
gramming models use C to describe the computations within
threads. However, the language itself must be used with the
operating system and middleware services to create the virtual
computational model on which the asynchronous programming
model runs. Thus, we feel that C can be used as the program-
ming language for reconfigurable computing, but only if the req-

uisite operating system and middleware services are also pro-
vided to the asynchronous threads.

II. HTHREADS: A MULTITHREADED PROGRAMMING MODEL

The high-level design flow for hthreads, our multithreaded
programming model for hybrid CPU/FPGA architectures, is
shown in Fig. 2. In the hthreads design flow, programmers
express their system computations using traditional pthreads
semantics. The high-level program can be written and function-
ally verified using a standard workstation running Linux prior
to synthesis and hardware design. Hthreads’ APIs are fully
compatible with pthreads APIs and API wrappers between the
two are provided to allow a user to seamlessly switch system
service libraries from pthreads to hthreads and vice versa. After
initial debugging on a standard workstation, the multithreaded
application can be profiled or run through on-the-board testing,
allowing the developer to identify which threads should be
mapped into the reconfigurable fabric of the FPGA.

As an example of the ease in which hthreads supports seam-
less creation of threads for execution in either hardware or soft-
ware, consider the code seen in Fig. 3. This example shows
the application-level code for the parent thread creating four
child threads; two within software and two within hardware. In
this example, each child thread implements a complete discrete
wavelet transform (DWT). The parent thread can create mul-
tiple child threads to run in parallel within the hardware and
synchronize with the threads as if they were traditional software
threads. Fig. 4 shows the execution times of several configura-
tions of the DWT child threads. The first two timings are for
a single child thread, representing a classic single instruction
stream FPGA accelerator model. Not surprisingly, the hardware
implementation shows 3.7 speedup compared to the software
version. The next two timing results highlight the benefits of ex-
ploiting coarse-grained parallelism within the FPGA. For two
software threads running on a single CPU, each thread must be
time-multiplexed, in a pseudo-concurrent fashion, with the total
execution time being the summation of the independent exe-
cution times of each thread, plus operating system overhead.
However, when one of the threads is mapped into hardware,
real parallelism is achieved. Two hardware threads running in
parallel show 7.1 speedup when compared to two software
threads time-multiplexing on the CPU. Additional experiments
were conducted with varying numbers of threads mapped be-
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Fig. 3. Application-level code for creating hybrid threads.

tween software and hardware. With this example, we were lim-
ited to hosting only two DWT hardware threads due to size
limitations of the FPGA being used. The speedup shown in
the last two examples, is the speedup over using all software
threads. This simple example illustrates the benefit of enabling
coarse-grained MIMD parallelism within the FPGA.

Although conceptually simple, extending hthreads across a
reconfigurable system faced two key challenges. First, our de-
sign flow was modified to support the synthesis of the appli-
cation program code, and linking of the APIs to state machine
implementations of syscall run-time services for hardware-res-
ident threads. In effect, the APIs provide consistent policies for
threads running on both the CPU and within the FPGA. This in-
cludes the ability to support standard function call invocations,
and the ability to create and pass abstract data types and pointers
between threads in accordance with the semantics of each of the
pthread APIs.

Fig. 5 shows a high-level description of our integrated com-
pilation/synthesis tool flow. As shown in Fig. 5, we have aug-
mented the standard GCC tool chain to produce a new hardware
intermediate form (HIF) from which we then generate a VHDL
implementation of a user-defined thread. The HIF is similar
to standard static-single-assignment (SSA) intermediate forms,
but in a slightly modified and controlled format to better serve
as an intermediate target for VHDL generation.

The second challenge in extending hthreads across the
HW/SW boundary was to create new hardware versions of

system service libraries in support of standard threaded opera-
tions, but for hardware threads. To support our shared-memory
threaded model, we created services to support the creation,
control, and scheduling of threads executing in hardware. Ad-
ditionally, we created services that allowed the independently
executing hardware threads to synchronize and communicate
with all other threads in the system by providing standard
semaphore operations, as well as the ability to independently
access global and local data stores. All services are invoked,
even within hardware threads, from the original calls to hthreads
APIs from the unmodified user-defined source program. Thus,
our hthreads APIs eliminate the need to create unique interfaces
for threads to interact across the CPU/FPGA interface, or hard-
ware/software boundary. This allows the high-level application
code to be portable between software and hardware boundaries,
as well as different platforms as shown by our high-level design
flow shown in Fig. 2.

III. IMPLEMENTING THE HTHREADS COMPUTATIONAL MODEL

Fig. 6 shows the hthreads run-time system components im-
plemented in hardware. Hthreads migrates a thread manager,
scheduler, mutex manager, and a CPU bypass interrupt sched-
uler (CBIS) into the hardware. This creates a virtual machine
that abstracts the CPU/FPGA boundary and is accessible from
either the FPGA or CPU. We have implemented the hthread run-
time system on both the Xilinx Virtex-II Pro 7 and Virtex II-Pro
30 platform FPGAs. An embedded PowerPC 405 core and off-
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Fig. 4. DWT example run-time performance.

Fig. 5. Compilation/synthesis tool flow.

chip memory are configured for the processor local bus (PLB)
while all hthread cores and hardware threads are located on the
on-chip peripheral bus (OPB) with a bridge in between each bus.
All hthread cores and hardware threads use the vendor supplied

Fig. 6. Hthreads system block diagram.

IPIF interconnect to communicate with the OPB. The processor
operates at 300 MHz and all other buses, cores, memory, and
hardware threads operate at 100 MHz.

Migrating these OS and middleware services into hardware
is required to create efficient mechanisms that are equally
accessible from traditional system software as well as equiv-
alent FPGA resident finite-state machines (FSMs). This has
the additional benefit of bringing significant performance ad-
vantages to software threads through more efficient invocation
and processing mechanisms [20], [21]. First, invocation mech-
anisms for accessing the system services are no longer based
on inefficient traversal of hierarchical software protocol stacks,
but instead are achieved through lightweight atomic load and
store operations. Second, speculative and variable execution
performed within key system services such as the scheduler are
eliminated. As an example, Fig. 7 shows comparative timings
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Fig. 7. Hthreads performance summary.

Fig. 8. Hthreads Mutex unlock sequence (SW to HW).

for executing typical scheduler services for a system with 2
and 250 active software threads running within hthreads. The
overhead for making a scheduling decision is now constant,
with negligible jitter. The actual overhead for selecting the next
thread to be run within the hardware-based O(1) scheduler is
24 clock cycles; a constant delay, independent of the number
of threads in the ready-to-run queue [22]. The small amount
of jitter seen in Fig. 7 is solely due to cache misses during the
swapping of thread contexts on the CPU. The Scheduler makes
all scheduling decisions a priori, in parallel to application pro-
grams running on the CPU. The CPU is only interrupted when
a thread entering the ready-to-run queue has a higher priority
than the thread running on the CPU as well as any other threads
within the ready-to-run queue. In contrast, existing software
schedulers must be invoked via an interrupt to the CPU just to
consider if an event may or may not trigger a true scheduling
decision (such as during the unblocking of a thread due to the
release of a mutex). Currently, the scheduler supports a single
PowerPC core and zero to many hardware threads. We are
currently modifying the original scheduler to support multiple
processors including multiple embedded PowerPC cores and
soft processors, such as the MicroBlaze, instantiated within the
FPGA logic.

As a more complete example, the mutex unlock() opera-
tion, illustrated in Figs. 8 and 9, shows the processing steps
the hthreads system performs to release a mutex, make a
scheduling decision, and resume the execution of a thread.
In a traditional operating system, steps A–E are performed
completely in software on the CPU. These steps would require
a context switch from the application thread to the system
services, and must be performed before the scheduler considers

Fig. 9. Hthreads Mutex unlock sequence (HW to HW).

if a new scheduling decision is required based on the queuing of
a blocked thread. In hthreads, steps B–G are performed in hard-
ware, allowing the CPU to continue executing the application
thread. For systems with both hardware and software threads,
migrating this processing off the CPU is critical, as significant
overhead and jitter can be introduced if the CPU must perform
prescheduler speculative processing for hardware threads being
unblocked. An example of how the hthreads system is capable
of avoiding CPU-based speculative processing for operations
that are solely HW-based is shown in Fig. 9 for completeness.
In contrast, [23], [24] a multithreaded capability is reported that
supports the creation and control of both hardware and software
threads through Linux running on the CPU. This approach was
taken to allow hardware threads to access data through Linux’s
existing virtual memory address space. Although convenient,
this approach requires additional complexity within the hard-
ware thread to maintain virtual address translation tables, and
invokes the memory manager running on the CPU for page
swapping through external interrupts, thus introducing jitter
and overhead.

A. Hardware Thread Interface (HWTI) Abstract Interface

The HWTI makes the policies of the virtual machines compu-
tational model accessible to hardware threads. The HWTI im-
plements the same functionality in HW-based state machines as
the hthreads.h binary libraries for traditional software threads.
An important detail to note is that every instantiated hardware
thread has its own copy of the HWTI. This enables each hard-
ware thread to execute autonomously and in parallel. This is in
contrast with software threads that may only run pseudo-concur-
rently. A block diagram depicting the HWTI user and system
interfaces, state machines, and internal registers is shown in
Fig. 10. As shown in Fig. 11, the HWTI entity is linked in
with the VHDL implementation of the user’s code in a similar
fashion to traditional linking of software library routines. The
user VHDL code can be automatically generated from our C to
VHDL translator, or written by a user as a core and linked with
the HWTI. The HWTI component contains two interfaces: the



40 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

Fig. 10. HWTI block diagram.

Fig. 11. VHDL example code for exit thread.

HWTI system interface, used for interacting with other hthreads
service components, and the HWTI user interface. The HWTI
user interface serves as both an abstraction for system service
calls and also provides indirect support for high-level language

Fig. 12. System service policy and mechanisms.

constructs typically difficult to achieve in hardware. Further-
more, the user interface is designed such that the programmer
does not have to be concerned with detailed information of the
intended FPGA chip. The user-thread is thus portable between
chips without modifications.

Fig. 12 shows the analogous nature of our common run-time
system services available to both hardware and software
threads. As shown in the center column of Fig. 12, standard
policy for invoking run-time services is achieved in two steps.
First, arguments are passed from the application program to
the run-time services and, second, the run-time service routine
is invoked. Within traditional software methods, this policy
is achieved by pushing the arguments onto the stack, and
then executing a specific trap instruction in order to invoke
the run-time service. To achieve an analogous mechanism for
hardware threads, the HWTI provides its own function call
stack. In this manner, the user-thread pushes parameters to the
HWTI and then calls the appropriate function by driving the
appropriate opcode to the function register. Once received,
the HWTI interprets the arguments and performs the system
call on behalf of the user. The run-time services are provided
as state machines in the HWTI instead of traditional binary
software libraries. In a few exceptions when a system service
cannot be implemented within the HWTI due to complexity,
the HWTI signals a special system software thread to perform
the operation on its behalf. The HWTI’s remote procedure call
(RPC) mechanism is similar to the callbacks described in [24].
Currently, remote procedure calls are used for allowing hard-
ware threads to create and join other threads (either hardware or
software). In addition to syscall services, the HWTI provides an
abstraction for accessing and modifying memory in the forms
of LOADs and STOREs. This policy allows the programmer to
ignore the complexities of the bus-interconnect protocol. The
LOAD and STORE operations work analogously to pointer
dereferencing. For instance, during a LOAD operation, the
user-thread drives the address register, with the address it
wants to read, and the HWTI responds, after executing a bus
transaction on behalf of the user-thread, with the value stored
at that address in the value register.
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An important and enabling feature that has been added to
the HWTI is a globally distributed local memory. The globally
distributed local memory, or “local memory” for short, is ac-
cessible both by the user-thread as well as all hthreads system
cores. User-threads access the local memory using the same
LOAD and STORE operations as for global memory with the
HWTI accessing the appropriate memory bank based on the
address range. The hthreads cores, including other hardware
threads and the CPU, can access the local memory blocks using
standard bus read/write transactions, since the local memory
is made available as part of the HWTI’s address range. On the
Xilinx Virtex-II Pro FPGA, the mechanism used to implement
these local memory blocks are the embedded dual-ported block
RAMs (BRAMs) distributed throughout the reconfigurable
fabric. One BRAM port is used by the system interface for
system-core references, the second BRAM port is used by the
user interface for user-thread references.

The immediate advantage of the local memory is that the
user-thread has access to a fast memory without having to con-
tend for a shared bus. As shown in Table III, the access time
for both LOAD and STORE is an order of magnitude faster
for local memory compared with global memory. Importantly,
the local memory enables the HWTI to provide a function call
stack for the user-thread. The HWTI’s function call stack works
analogously to software function call stacks. The HWTI main-
tains registers for a stack and frame pointer, pointing to its local
memory instead of traditional global memory. During a call,
the HWTI pushes the stack and frame pointer values onto the
stack, the pointers are then appropriately incremented for the
new function. All function parameters are passed by pushing
the values onto the stack and retrieved by popping the values
off the stack. The HWTI supports a PUSH and POP operation
for this purpose. Finally, this being a key difference, instead of
saving the contents of the program counter during a function
call, as done on CPUs, the HWTI pushes the thread’s return
state onto the stack. The user-thread is required to pass the re-
turn state to the HWTI, along with the function to call, during
a CALL operation. To be more specific, the user-thread passes
a 16-bit variable representing the state of the FSM to return to
after the function call is complete. The user-thread is respon-
sible for mapping this variable to its return state when control
is returned to the caller function. When the user-thread makes a
CALL operation it specifies the function it wants to call through
a 16-bit function code. Purposefully similar to the return state,
this function code represents either the initial state of the called
function within the user logic, or it represents a system library
function supported by the HWTI. Although the HWTI does not
dictate how the user-thread is designed, we have found that it is
convenient to write the user-thread as a FSM. Indeed, this is the
output of our C-to-VHDL translator. Consequently, the concept
of an instruction address in a software program is encapsulated
as a state within the user-thread’s FSM.

The HWTI’s function call stack has enabled analogous soft-
ware function call convention support not only for function in-
vocation but also variable declaration. To declare local vari-
ables, the user logic uses the DECLARE operation with the
number of words (4 bytes) in memory it wants to set aside for
local variables. The HWTI then increments its stack pointer the

specified number of words. To read or write to the declared
memory addresses the user-thread uses the READ and WRITE op-
erations with an index number that corresponds to the declared
variables. The first declared variable has index 0, the second
declared variable has index 1, and so on. The index number is
added to the stack pointer to access the appropriate memory lo-
cation within the BRAM. Since each declared variable is stored
within the HWTI’s local memory they each have an address
within global memory. Using the ADDRESSOF operator, the
user-thread may obtain a variables address. The HWTI calcu-
lates a variable’s address using the index number, frame pointer,
and base address of the hardware thread.

Finally, the HWTI’s local memory has enabled support for
dynamic memory allocation. The user-thread may call a light
version of malloc and free, part of C’s standard library, just as
it would call an hthread system service. To implement dynamic
memory allocation the HWTI adds two limitations. First, the
same thread that allocates memory must deallocate it. Second,
since the dynamic memory is allocated within the thread’s local
memory, there is a limit to the size and number of memory seg-
ments that can be allocated. The memory the HWTI allocates
(the heap) is preallocated in 8B, 32B, and 1024B segments
at the top of the local memory address range. These sizes
were selected to assist with the dynamic creation of mutexes,
condition variables, and threads, common structures within
the hthreads programming model. By preallocating memory
the HWTI avoids implementing a defragmentation routine.
When the user-thread calls malloc, the HWTI selects, using
a “best-fit” algorithm, the smallest appropriate preallocated
memory space and returns its address to the user. The HWTI
marks the memory used in a malloc state table. If the requested
memory size is larger than 1024B, the HWTI allocates this
space by decrementing a heap pointer the specified amount and
returning the appropriate address to the user. The heap pointer
is maintained, like the frame and stack pointer, as a register
within the HWTI, always pointing to an address within its local
memory. The user-thread may request only a single segment
of memory larger than 1024B. If the user-thread requests a
memory space larger than the HWTI has available, the HWTI
returns a null pointer. When the user-thread calls free, the
HWTI marks the appropriate malloc state table entry as unused.

B. Hthread Compiler

To enable programmers to develop a HW/SW codesign
without any knowledge of the targeted platform, programmers
need a tool that will automatically and correctly translate their
design from a standard high-level programming language to
hardware threads that can be synthesized for the targeted chip.
To create such a tool we are developing the HybridThreads
compiler (HTC). The prototype implementation of HTC can
successfully generate a custom hardware thread implemented
in VHDL from a software thread specified in C. The resulting
threads can then be integrated into the hthreads synthesis
process and executed on an FPGA. The goal of HTC is to be
able to translate any C thread conforming to the hthreads API
into an independent and parallel hardware thread. Because HTC
targets the HWTI, and the HWTI abstracts the system details
from the user-thread, HTC may translate the C source code
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without any concern for low-level hardware communication
details. Using unmodified C and the hthreads API allows for a
thread to easily migrate across the hardware/software boundary
and requires no special effort for the developer other than
simple compilation.

At a high level, HTC works by converting sequential C
code into a state machine specified in behavioral VHDL. The
generated state machine handles the user-thread’s control
flow and communication protocol with the HWTI. The HTC
is partitioned into two independent modules: HIFGEN and
HIF2VHDL. HIFGEN converts the programmer’s C code into
our new hardware intermediate form (HIF). HIFGEN starts
with GIMPLE, GCC’s intermediate form [25], and generates
HIF. This allows us to take advantage of GCC’s existing front
end parsing and architecture independent optimizations. HIF
is similar to traditional RISC type instructions, but modified to
better serve as an intermediate form for VHDL translation. HIF
also serves as an object file to allow for separate compilation
of hardware threads. HIF2VHDL, which is a separate process
from GCC, reads in the generated HIF files, analyzes the
control flow graph of each function in the call graph of the
hardware thread, and outputs a VHDL entity that implements
the hardware thread. Because the HWTI already provides
operating system, communication, memory management, and
call stack services, HIF2VHDL does not have to generate these
items specifically for the user-thread.

The current HTC supports a broad subset of the ANSI C stan-
dard including pointers, arrays, function calls, recursion, structs,
all C control flow constructs including variable bounded while
loops, as well as support for communication and synchroniza-
tion with other threads in the system. The current HTC is lim-
ited to using 32-bit signed integers as the only primitive data
type, and does not support function pointers, floating point op-
erations, or the bulk of C’s standard libraries. These limita-
tions are associated with the current HTC being an early pro-
totype and not due to the hardware thread model. We are cur-
rently developing a second version of HTC that will support all
ANSI C functionality. However, in our current prototype hard-
ware threads are not optimized during compilation from HIF to
VHDL and, therefore, suffer from known inefficiencies intro-
duced during the compilation process. Once we complete sup-
port for ANSI C, we will focus on optimizing the hardware
thread compilation process using both traditional compiler opti-
mizations and by researching new optimizations that are specific
to our hardware thread model. The long-term goal of HTC is to
create a system that allows for C to be compiled into a hardware
thread as easily and efficiently as it can be compiled into soft-
ware.

IV. RESULTS

To validate hthread system call functionality, relevant confor-
mance, and stress tests from the open POSIX test suite [26] were
adapted for hthreads and run in both software and hardware.
These tests are designed to ensure compliance with the pthread
model as well as detect any long-term use errors. Both inter-
faces, the software library and the HWTI respectively, passed
all adapted test cases. Successfully completing these tests was
important, as it showed the hardware/software boundary may

TABLE I
PERFORMANCE, TOTAL RESOURCES, AND SPEED UP EQUIVALENT SOFTWARE

IMPLEMENTATION, FOR SELECTED ALGORITHMS HAND TRANSLATED FROM C
TO VHDL. DATA SET IN EACH ALGORITHM WAS AN ARRAY OF 1000 INTEGERS

TABLE II
PERFORMANCE AND SIZE OF SELECTED HWTI SYSTEM CALLS

be abstracted through a shared memory multithreaded program-
ming model.

To demonstrate the HWTI’s ability to support HLL se-
mantics, a number of common application algorithms were
translated, by hand, from C to VHDL, targeting the HWTI. The
algorithms, quicksort, Harr discrete wavelet transformation
(DWT), Huffman encoding, and the IDEA encryption algo-
rithm, are listed in Table I, along with their implementation
size, performance, and speedup. Speedup compares the hard-
ware core with the original software code compiled to run on
the embedded PowerPC core. In each instance, the hardware
thread was operating on data from global memory, and using
its local memory for temporary variable declaration. Note
especially that quicksort, a recursive algorithm, successfully
used the HWTI’s function call stack to correctly maintain its
state between recursive calls. In general, hardware threads
individually achieve about a 3.5 or more speedup. Additional
speedups may be obtain with multiple threads are concurrently
working.

The base HWTI is implemented in 1019 slices. This includes
logic for the standard vendor supplied IP bus interface (IPIF),
32 kB of BRAM for the local memory, a function call stack,
and a minimal user logic thread that immediately exits fol-
lowing a RUN command (abbreviated in Fig. 11). The 1019
slices represent 7% of all slices on our Xilinx Virtex-II Pro
FPGA (XC2VP30). Size and performance results for selected
hthread system calls, implemented in the HWTI are shown
in Table II. The size of each system call is an estimate based
on the difference in size between a hardware thread that im-
mediately exits and a hardware thread that calls the selected
function and then exits. Note by this definition, the size of
hthread exit is 0 slices. The performance of most HWTI
supported system calls is largely dependent on the number
of bus operations the HWTI has to perform to complete the
call. hthread mutex lock, hthread mutex trylock,
hthread mutex unlock, hthread cond signal, and
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TABLE III
PERFORMANCE OF HWTI OPERATIONS

hthread cond broadcast require only one bus opera-
tion, and thus the execution time of each is around 40 clock
cycles. hthread cond wait requires three bus operations
and consequently takes roughly 3 as long. hthread self,
hthread equal, and hthread exit do not require any
bus operations. hthread create and hthread join
are not directly implemented within the HWTI but instead
implemented using the remote procedure call (RPC). Although
the RPC mechanism allows the HWTI to support any function,
their performance is comparatively poor. Finally, timing results
for HWTI operations are listed in Table III.

V. CONCLUSION

In this paper, we have discussed existing computational
models for hybrid CPU/FPGA systems and the need for the
creation of standard parallel programming models. We then
presented hthreads, a unifying multithreaded programming
model for controlling hardware and software threads running
across the CPU/FPGA boundary. Hthreads provides system
service libraries that encapsulate platform-specific operations
under pthreads compatible APIs. This allows threads specified
from a single pthreads multithreaded application program to be
compiled to run on the CPU or synthesized to run on the FPGA.
To support the abstraction of the CPU/FPGA component
boundary, we have created the HWTI component that frees the
designer from having to specify and embed platform-specific
instructions to form customized hardware/software interac-
tions. Instead, the hardware thread interface supports the
generalized pthreads API semantics. This approach follows
accepted practices within the high-performance computing
community that can bring both accessibility and portability to
the reconfigurable computing domain. Importantly, our ability
to allow multiple execution threads to exist within the FPGA
provides a new mechanism to exploit the full potential of the
FPGA. Hthreads, as described in this paper, is a usable OS
that has been fully implemented in synthesizable form, and all
experiments described within this paper have been executed on
Xilinx Virtex-II Pro FPGAs. More information on hthreads can
be accessed at www.ittc.ku.edu/hybridthreads.
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