
874 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 7, JULY 2008

New Non-Volatile Memory Structures for
FPGA Architectures

David Choi, Student Member, IEEE, Kyu Choi, and John D. Villasenor, Senior Member, IEEE

Abstract—A new set of programmable elements (PEs) using a
new non-volatile device for use with routing switches and logical
elements within a field-programmable gate array (FPGA) is de-
scribed. The PEs have small area, can be combined with compo-
nents that use low operational voltage on the same CMOS logic
process, are non-volatile, enable the use of fast thin-oxide pass tran-
sistors, and are reprogrammable. A novel non-volatile flip-flop for
use within the logical elements is presented as well. In combination,
these methods enable programmable logic devices with improved
area efficiency, the speed advantages of SRAM-based FPGAs, and
a wide range of opportunities for power down strategies.

Index Terms—Field-programmable gate arrays (FPGAs), non-
volatile memory.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) have
experienced dramatic increases in speed, size, flexi-

bility, performance per unit cost, and commercial impact since
the early 1990’s. While many aspects of FPGA architecture
have changed throughout this period, the underlying nature
of FPGAs as configurable devices and the attendant need to
express circuits through on-chip storage of externally sup-
plied configuration data have remained constant. Memory
technology, therefore, is central to the concept of an FPGA,
and the performance characteristics of FPGAs directly reflect
the memory technology used to construct them. Thus, FPGAs
can be generally classified according to the type of memory
structure used to store configuration data.

SRAM-based FPGAs such as those manufactured by Xilinx
and Altera comprise the largest fraction of the overall market.
These FPGAs utilize SRAM for expressing routing and core
programmable computational functions, typically through the
use of lookup tables and multiplexers. In Flash-based FPGAs
such as those manufactured by Actel, all configuration and
routing data are stored in Flash-based switches that retain their
states even when the power is off. Anti-fuse-based FPGAs
made by Actel and Quicklogic utilize one-time programmable

Manuscript received May 3, 2006; revised April 4, 2007. This work was sup-
ported in part by the Office of Naval Research under Contract N00014-06-1-
0253 and by the National Science Foundation under Grant CCR-0120778 and
Grant CCF-0541453.

D. Choi and J. D. Villasenor are with the Electrical Engineering Depart-
ment, University of California, Los Angeles, CA 90095-1594 USA (e-mail:
dschoi@ee.ucla.edu; villa@icsl.ucla.edu).

K. Choi is with the O2IC Company Ltd, Santa Clara, CA 95051 USA (e-mail:
kyu@o2ic.com).

Digital Object Identifier 10.1109/TVLSI.2008.2000461

anti-fuses to store configuration data, with programming occur-
ring by applying a programming voltage to create a permanent
connection between two interconnect wires.

Each of the previous approaches has advantages and disad-
vantages. Anti-fuse devices have the lowest cell size and can
generally deliver fast performance, but can be programmed
only once, restricting them to applications that do not require
in-system reconfiguration. Flash-based FPGAs are generally
slower than anti-fuse and SRAM-based FPGAs, but have
the advantage that configuration data can be retained even
when power is off, as well as a smaller cell size than SRAM.
SRAM-based FPGAs are generally quite fast, but the volatile
nature of SRAM requires that the configuration data be sup-
plied externally at power up, often from an electrically erasable
programmable read-only memory (EEPROM) chip. The con-
figuration process can require high current, and the SRAM cells
are significantly larger than the corresponding cells in anti-fuse
or Flash-based FPGAs.

In the present work we present configurable circuit design
approaches that utilize both non-volatile and volatile memory
in the core computational and routing logic of a configurable
device, thereby enabling large area savings and while enabling
comparable speeds to SRAM-based FPGAs. Traditionally, this
would have been unfeasible due to manufacturing constraints
and current flow incompatibilities between SRAM and tradi-
tional Flash. However, recent advances enabled by the use of
polysilicon-oxide-nitride-oxide-silicon (SONOS) technology
in combination with select gate memory cell structures for
reducing programming currents [1]–[4] have made it possible
to integrate both SRAM and Flash on the same chip using
a conventional CMOS logic process [5]–[7]. These develop-
ments in memory technology create the opportunity to design
FPGAs offering the benefit of high performance while still
retaining the ability to store data in the absence of power. The
inclusion of non-volatile memory can also enable significant
area savings over SRAM-only solutions as noted previously, a
cost savings stemming from the reduced area, reduced mask
count during manufacturing, and lower power in-system repro-
grammability. In the context of applications, the presence of
on-chip non-volatile memory allows selective power-down of
portions of the chip during computation as well as persistence
of application-specific data across overall system power-down
events. Thus, in combination, these methods offer the potential
to significantly change the ways FPGAs are designed and used.

The remainder of this paper is organized as follows. Section II
briefly reviews the use of programmable elements (PEs) in
FPGAs and establishes the foundation for the subsequent
discussion of non-volatile logic. Section III discusses the
non-volatile device which serves as the basis for the proposed

1063-8210/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

CHOI et al.: NEW NON-VOLATILE MEMORY STRUCTURES FOR FPGA ARCHITECTURES 875

Fig. 1. FPGA Logical element with three-input LUT, flip-flop (DFF), and two-
input multiplexer.

Fig. 2. Example of two logical elements connected together using a switch that
is controlled by PE.

FPGA structures. Section IV describes new PEs for logical cir-
cuits and routing switches as well as a new type of nonvolatile
flip-flop, and discusses several example applications. Section V
addresses area reductions and the conclusion is presented in
Section VI.

II. PROGRAMMABLE ELEMENTS IN FPGAS

Programmable elements in an FPGA comprise a significant
portion of the overall FPGA area and are used to configure its
functionality. The two core components of an FPGA which de-
pend on PEs are the logical elements and the routing switches
that connect the logic elements together. The speed, power, area,
and functionality of these components will depend on PE used.
A typical logical element consists of a -input lookup table
(LUT), multiplexers, and flip-flops. Fig. 1 shows an example of
generic logical element with a three-input LUT that can be used
to implement any three-input function. Within the logical ele-
ment, the LUT and the multiplexer both require configuration
data that will determine the functionality of the logic block. For
example, the three-input LUT requires eight lookup values, and
the multiplexer requires knowledge of whether to select the “1”
input or the “0” input. This configuration data must be supplied
to the associated PEs before the logical element can be used.

Routing switches are used to connect different logic blocks
together and are also controlled by PEs. Fig. 2 illustrates how
two logical elements can be connected together using a switch
that is controlled by a PE.

In SRAM-based FPGAs, the PE is SRAM and the switch is a
thin-oxide pass transistor. An example of a conventional SRAM
controlled switch is shown in Fig. 3. Depending on the value
of the switch gate voltage, the switch can either allow data to
pass from switch input to switch output, or break the connection
between the switch input and the switch output. The switch gate
voltage is controlled by the output of the SRAM, at node mb.

The SRAM is configured with input data through the use of the
word line wl.

The transfer speed in switching the pass transistor is relatively
fast. However, there are two main drawbacks with using SRAM
as the PE in an FPGA. First, when the power is cut off, the
SRAM does not retain its data. Thus, the configuration of the
switch must be reloaded to the SRAM through an external non-
volatile device such as EEPROM when the power is turned on.
Second, the large unit cell area of SRAM increases the overall
chip size and the chip cost.

In Flash-based FPGAs, both the PE and the switch are com-
bined into a single Flash-based switch, which maintains data
after power-off and also has low cell area. An example of a
widely used Flash-based switch (based on the Actel ProASIC
design [8]) is shown in Fig. 4.

In Fig. 4, the Flash device on the left is programmed through
the use of the word line, which connects to the control gate
and the two sensing lines. The charge stored in floating gate
is shared with the Flash transistor on the right, which acts as
a programmable switch that controls the data from the switch
in port and the switch out port. The Flash-based switch has a
smaller unit cell size than the corresponding SRAM element,
and offers data persistence as well. However, it is typically much
slower than the switches used in SRAM-based FPGAs due to
the higher resistance value of the Flash device. In addition, the
drain voltage of a conventional Flash during the read operation
is typically held to less than 1.5 V in order to avoid drain stress
on the floating gate charge, which will reduce the performance
of the FPGA. Yet another difference lies in the Flash process
technology, which typically differs substantially from the con-
ventional CMOS logic process and requires a higher mask count
than conventional CMOS logic processes.

Thus, there exist advantages and disadvantages in speed,
volatility, and area to using SRAM and Flash in the PEs as-
sociated with logical elements and routing switches. In what
follows, we introduce a non-volatile device that enables new
designs that simultaneously offer both the non-volatile storage
and reduced unit cell area of Flash and the speed of SRAM.

III. NON-VOLATILE DEVICE STRUCTURE AND PERFORMANCE

A. Non-Volatile Device Structure

A CMOS-based reprogrammable device such as Flash typi-
cally relies on the storage of extra charge between the gate of
the device and the gate oxide as its data storage mechanism.
The storage of extra charge, either in a floating gate or a nitride
trap, results in a threshold voltage shift on the gate which would
be higher than the threshold voltage if no charge was present.
Having the threshold voltage above a certain voltage is defined
as a programmed or off-state, and having the threshold voltage
below a certain voltage by eliminating the charge is defined as
an erased or on-state. For a conventional Flash device, a high
voltage operation along with high programming currents is re-
quired to increase the threshold voltage. This high programming
current is what forces Flash-based switches to have thicker gate
oxides and to have a larger channel length, thereby decreasing
switch performance.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

876 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 7, JULY 2008

Fig. 3. Switch with SRAM as its PE.

Fig. 4. Flash-based switch.

The importance of current and voltage compatibility can be
realized by noting that conventional Flash devices utilize pro-
gramming currents on the order 200–500 A, and programming
voltages 10 V and higher. By contrast, for enabling high speed at
low power, low voltage devices typically require thin gate oxide
thicknesses of less than 70 during 3.0 V operation or lower
and a shorter channel length. Thus, unless a special isolation
structure is built between the conventional Flash device and the
thin gate oxide device, the thin gate oxide transistors will share
the high voltages and high currents used in the programming and
erase operations of the Flash devices. If integrated, these high
programming currents and high programming voltages would
cause damage to the low voltage devices directly connected to
the Flash devices.

To address these shortcomings, we utilize the non-volatile
Flash device presented in Fig. 5. The device is composed of a
source, drain, control gate, select-gate, and body terminals. The
storage element for the trapped charge is a nitride trap composed
of oxide-nitride-oxide (ONO) materials underneath the control
gate. When electrons are injected into the nitride trap, the charge
is stored in the nitride and is isolated by the top and bottom ox-
ides, and the threshold voltage of the control gate is shifted into a
relatively higher value, thereby programming the device. When

Fig. 5. Cross section of the select gate SONOS Flash device.

electrons stored in the nitride are injected into the substrate, the
threshold voltage of the control gate is shifted toward a lower
value. The difference in threshold voltage between programmed
and erased devices determine the data value stored and read in
the device.

The select gate acts both as a current limiter and as the
mechanism for generating the high lateral electric field across
the device channel. This enables the select gate to provide high
efficiency source side injection of electrons into the nitride trap
underneath the control gate. While select gate structures in
SONOS have been studied before [1]–[4], the device used for
the configurable hardware is based on an improved self-aligned
structure enabling a more practical manufacturing process [5],
[6]. The high efficiency source side injection of this structure
provides a means of lowering the programming current down
to 1.0 A. It is also significant to note that in this structure, the
source node is always fixed as a source during programming
and read operations, in contrast with other select gate structures
where the source node becomes switched with the drain during
programming and read operations. In addition, the voltage of
the source node during programming is fixed at either 0 V
or supply voltage VCC, which ensures that the source node
voltage will always operate with relatively low voltage. The
combination of low programming current and the low voltage
of the source node is one of the key factors that enables inte-
gration of the non-volatile device with thin oxide transistors.
Safe integration between an array of select-gate non-volatile

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

CHOI et al.: NEW NON-VOLATILE MEMORY STRUCTURES FOR FPGA ARCHITECTURES 877

Fig. 6. Threshold voltage shift as a function of the programming time.

device structures and thin-oxide SRAM along bit-lines has
been demonstrated in a test chip [7].

B. Experimental Device Characteristics

To program the device, a set of programming bias conditions
is required for the control gate, the select gate, the drain, and the
source. The speed of the programming operation is determined
by the desired level of threshold shift as illustrated in Fig. 6,
which shows the experimentally measured relative threshold
shift as a function of the programming time when the drain
voltage () is 6.5 V, the select-gate voltage () is 1 V, and
the source voltage () is 0 V.

For example, for a control gate voltage of 9.5 V and a
threshold shift of 3.0 V, the programming speed of the device
is 10 s. Also, shown in Fig. 6, are different curves at var-
ious different levels of control gate voltages. This shows the
relationship between higher programming voltages and faster
programming speeds.

Programming of the device is strongly dependent on the
source voltage, as shown in Fig. 7. If all the programming
voltages are the same but the source voltage is raised to above
2 V, then the select gate (biased at 1.0 V) will not be turned on
due to the fact that the select-gate to source voltage is 1.0 V
which is lower than the threshold voltage of the select gate, and
the device will not be programmed and no threshold shift on
the control gate will occur. Thus, when the non-volatile device
is integrated with other CMOS logic, the device programming
can be controlled by applying a logical 0 or 3 V value to the
source node.

The low programming current of the device allows many de-
vices to be programmed at the same time and in parallel (up
to 1024 devices with a 1.5 mA charge pumping capability was
demonstrated in [7]), thus facilitating fast FPGA reconfiguration
with relatively modest current. By contrast, for conventional
Flash programmed using the hot-electron injection technique,
the large currents limit the total number of simultaneous devices
programmed and therefore the total number of bits programmed

Fig. 7. Threshold voltage shift versus programming time at different source
voltages.

TABLE I
PROGRAM, READ, AND ERASE VOLTAGES

to 8–16 bits at the same time with a 3.0 mA charge pumping ca-
pability.

Reading of the non-volatile device is performed by detecting
the level of the threshold shift. 2.0 V is applied to the control
gate, 3.0 V is applied to the select gate, and 3.0 V is applied to
the drain of the device. If the device has not been programmed,
then current of approximately 50 A will flow. If the device
has been programmed, then the current flow will be less than
1 A. Erasing is accomplished using the F-N tunneling mecha-
nism by applying 9.5 V to the control gate or 9.5 V to the bulk,
and 1.5 V to the select gate. The negative voltage on the select
gate is to prevent oxide breakdown between the select gate and
the control gate. Over-erase problems are circumvented through
the use of the select gate. Program, read, and erase voltage con-
ditions are summarized in Table I.

IV. NEW NON-VOLATILE STRUCTURES FOR FPGAS

A. New Programmable Element for Routing Switches

We first consider a new PE for the design of high speed
routing switches. The non-volatile device coupled with a word
line transistor and a small pull down transistor acts as the PE for
a thin gate oxide pass transistor that in turn acts as the switch,
as shown in Fig. 8.

Data in this PE is non-volatile. As shown in Fig. 8, the source
node of the non-volatile device is tied to the gate input of the
pass transistor, and supplies the non-volatile data. If the non-
volatile device is in the erased state, then applying read volt-
ages to the non-volatile device causes a current to flow through

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

878 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 7, JULY 2008

Fig. 8. Proposed non-volatile PE for routing switches.

the device. This will raise the gate voltage of the pass transistor
to high, turning the switch on. If the non-volatile device is in the
programmed state, no current will flow through the device. Any
charge build up on the gate of the pass transistor due to leakage
current from the device is pulled down through the bottom tran-
sistor (or alternatively, a diode) which is used to pull down the
voltage.

Programming the non-volatile device is performed by sup-
plying 0 or 3 V to the input, raising the word-line voltage (WL),
applying 0 V to fgy (if the bottom transistor is used instead
of a diode), and properly biasing the control gate (), select
gate(), and drain lines () according to the programming
voltages. The low programming current of the device ensures
that word-line transistor, the pull-down transistor, and the pass
transistor will not be damaged during the programming cycle.

The total cell area of the non-volatile PE is 19.5 F , compared
to the SRAM cell area of 130 F , i.e., more than a factor of 6
in area reduction. This area savings is particularly significant
because silicon for routing and for programming routing con-
figuration comprise a significant fraction of the total chip area
in a conventional SRAM-based FPGA [9], for example, 70%
in a Xilinx Virtex-II FPGA [10]. Furthermore, as Fig. 8 shows,
the device still utilizes the same switch (right side of the figure)
as SRAM-based approaches, so it achieves the same switching
speed.

B. New Programmable Element for the Configuration of
Logical Elements

An analogous approach can be applied to the non-volatile
storage of configuration data for logical elements. Two of the
new non-volatile memory devices are integrated with an nMOS
latch as shown in Fig. 9. The inputs to the non-volatile memory
devices consist of the control gate signal, the select gate signal,
and the signal. The integrated non-volatile memory PE
(“iNVM”), is used for LUT entries and configuration of multi-
plexers within a logical element.

An application of the PEs to a three-input LUT is shown in
Fig. 10. The values of the LUT are supplied by eight iNVMs,
while the inputs of the LUT are connected to pass transistors
which connect the output of one of the iNVMs to the output.

Another application of the PE for storing configuration data
is in the two-input multiplexer. The configuration of the multi-
plexer is controlled by the output of one iNVM. Depending on

Fig. 9. PE for configuration of logical elements.

Fig. 10. Three-input LUT with integrated non-volatile memory PEs.

this value, the output of the multiplexer will reflect the values of
one of the two inputs.

In order to store data onto the integrated non-volatile memory,
data is placed onto the input port and the word-line is turned
high. The nMOS latch is allowed to change its state to low-
high or high-low. Then, programming voltages are applied to
the control gate, the select gate, and the drain of the two non-
volatile devices. The source nodes of the non-volatile devices
are tied to nodes m and mb, which will be complementary, so the
non-volatile devices will also be differentially programmed. The
voltage on node mb also acts as the output of the PE. Note that
the erase operation is done before any programming operation.

When the power is turned off, the data on the nMOS latch
loses relevance. However, when the power is turned back on, the
non-volatile device that is programmed will not conduct current
while the non-volatile device that is erased will conduct current.
This differential current is used to restore the state of the nMOS
latch. This current is also used to supply and replace any charge
lost through subthreshold leakage of the nMOS latch. There-
fore, the PE will retain its configuration even when the power is
turned off.

The total cell area is 115 F , which is approximately 12% less
than the 130 F required by a conventional SRAM latch. This
difference arises because the non-volatile devices take up less
area next to the nMOS latch than that of two pMOS gates; the

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

CHOI et al.: NEW NON-VOLATILE MEMORY STRUCTURES FOR FPGA ARCHITECTURES 879

Fig. 11. Non-volatile flip-flop.

larger cell size when using two pMOS transistors is due to the
spacing of to wells used to prevent latch up.

C. New Non-Volatile Flip-Flop

In addition to multiplexers and LUTs, a typical logical ele-
ment also contains flip-flops. These flip-flops temporarily store
clock-driven data and are an important part of the logic block
functionality. Like SRAM, flip-flops lose their data when power
is turned off. This data loss occurs not only in SRAM-based
FPGAs, but also in Flash-based FPGAs, which while using
Flash for some routing and computation storage, still utilize
SRAM for flip-flops. The non-volatile flip-flop is shown in
Fig. 11. It contains the traditional structure for a flip-flop latch
in the form of an SRAM as well as two additional non-volatile
devices attached to the m and mb nodes of the SRAM cell. The
WR signal is the write control signal for the flip-flop and is
typically controlled by the clock.

Operation of the flip-flop during normal operation is the same
as that of a conventional flip-flop, utilizing the data-in and WR
signals. However, in the case of an impending power failure, the
latch data is used to program the two non-volatile devices. Since
the latch data is stored using complementary voltage levels of 0
and 3 V at nodes m and mb, the source nodes of the non-volatile
devices will also be biased with 0 or 3 V during programming.
Thus, one non-volatile device is to be programmed while the
other device is to remain erased, reflecting the data stored in the
latch. This completes a direct transfer of data from the flip-flop
to the non-volatile parts. When the power is restored, only the
erased device conducts current, raising the corresponding node
voltage on only one side of the SRAM latch high and thereby
restoring the contents of the flip-flop to its previous state.

The possibility of storing the flip-flop states into non-volatile
memory creates a number of new algorithm and application
opportunities. For example, flip-flops are frequently configured
to store state information in a state machine. By “remembering”
the state of the state machine of the FPGA, a system can be
quickly restored to its last state without having to reset the
state machine. In another example, the non-volatile flip-flops
can also be used to store pipelined data, which is valuable in
applications with long pipelines containing critical data. Thus
the non-volatile devices can be viewed as a high speed, low

TABLE II
CELL SIZES OF THE PROPOSED PES

current “backup” memory for the flip-flop. The design of the
non-volatile flip-flop cells can be applied to embedded block
RAMs as well, which are frequently employed in modern
FPGA designs. By combining SRAM with the non-volatile
devices, these block RAMs will operate with the speed of
conventional SRAM while maintaining the option to store the
data into non-volatile memory as needed.

The presence of the non-volatile flip-flop and the non-volatile
embedded block RAM create opportunities for power-down
strategies, as some or all of the FPGA can be put into sleep
mode or be powered down completely to reduce or eliminate
leakage power. With the low programming current of 1 A
per device, it is possible to program up to 1024 devices with a
1.5-mA charge pump at the same time, and even more devices
with a greater charge pumping capability. When power is
restored, data from the non-volatile memory is used to restore
the appropriate configuration information. This is performed
for each cell in parallel, eliminating the need for serialized
Flash to SRAM transfers.

Powering down the FPGA to reduce power consumption has
previously been considered [11]; however, with the devices de-
scribed here this concept can be taken one step further by storing
the states of the flip-flops and the contents of the embedded
block RAMs in non-volatile memory as well. Thus, the FPGA
can be either locally or globally powered down when it will be
known that the FPGA, or some portion of it, will not be used for
a given period of time. The specific strategies with respect to
which portions of an FPGA to power down, and when, will be
highly application dependent, and offer a rich range of design
choices and tradeoffs.

One example scenario of powering down the FPGA to re-
duce power consumption is template matching. Consider a pat-
tern matching application in which a set of 50 template images
each of size 128 by 128 with 8 bits/pixel are captured, stored
in block RAM memory, and processed using FPGA circuitry in
response to events that occur only sporadically, but that are im-
portant when they do occur. Such scenarios are common in se-
curity and other environmental monitoring applications. Since
standby power of FPGAs can be hundreds of milliwatts even in
low power designs [12], it is advantageous to consider transfer
of template data to non-volatile memory to allow local or global
power down during the time between events of interest. In con-
ventional FPGAs, the time and energy costs of restoring the tem-
plate data are significant. For example, transferring 50 template
images from the block RAMs of a traditional FPGA to external
Flash memory would take over 3.7 s given typical Flash pro-
gramming times of 9 s per 16-bit word. The associated energy
cost of programming and reading the Flash chip is 170 mJ total
(assuming active current of 15 mA), and there are additional en-
ergy costs associated with powering down and powering up the
FPGA. Assuming an FPGA standby power of 0.228 W (this is

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

880 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 7, JULY 2008

TABLE III
COMPARISON OF TOTAL FPGA DEVICE AREA WHEN SRAM VERSUS NON-VOLATILE PES ARE USED. N AND k GIVE THE NUMBER OF LOGICAL ELEMENTS

PER LOGIC BLOCK AND LOOKUP PER LOGICAL ELEMENT, RESPECTIVELY. AREA FIGURES UTILIZE THE MINIMUM WIDTH TRANSISTOR AREA

METRIC AS DESCRIBED IN [14]. LOGIC AREA COMPRISES ALL NON-PROGRAMMABLE SILICON ON THE CHIP, INCLUDING THE NON-
PROGRAMMABLE SILICON DEVOTED TO ROUTING. TOTAL DEVICE AREA IS THE SUM OF THE LOGIC AREA AND THE AREA

CONSUMED BY THE PES. PE AREA INCLUDES AREA FROM PES USED IN BOTH ROUTING AND LOGICAL ELEMENTS

the cost for a Virtex-4), the minimum time the FPGA must be
powered off before the energy costs due to the transfer are re-
covered is 0.74 s. In other words, the FPGA must be powered
off for at least 0.74 s to see a savings in energy.

Performing the same data transfer using the proposed non-
volatile flip-flop structures, however, results in a total program-
ming time of 64 ms, which is faster due to the greater number of
devices that can be programmed directly and in parallel (1024 at
a time). The associated energy cost of loading the non-volatile
devices with the flip-flop data is 0.3 mJ, which is due to the
1- A programming current per device, and gives a savings of
approximately three orders of magnitude over the traditional ap-
proach. Flip-flop data is loaded from the non-volatile cells as
the flip-flop supply voltage is restored during power-up, which
removes the necessity to perform a read operation as an extra
step. Again using the same FPGA standby power of 0.228 W, the
minimum time the FPGA must be powered off before the energy
costs are recovered is less than 1 ms, which is smaller by approx-
imately two orders of magnitude than the 0.74-s threshold in the
traditional approach. In short, utilizing non-volatile flip-flops to
store template information significantly decreases the time and
energy costs of data transfers, which decreases the minimum
power-down required time to recover the cost and provides for
potentially shorter power-down cycles. This in turn leads di-
rectly to greater energy savings because, among other things,
the use of integrated non-volatile memory enables the FPGA to
be powered down when the traditional FPGA would need to be
in standby mode. The ability to choose how and when to power
down the FPGA in such a fine-grained manner opens up new
opportunities for power savings within the context of how and
when data is sampled and how template matching is performed.

Another example scenario in which the FPGA can leverage
non-volatile storage during power-down is a system using one
or more adaptive filters for acoustic echo cancellation [13] in
which the coefficients of each filter are stored in flip-flops of
the FPGA. The filter coefficients are updated using the least-
mean-squares (LMS) algorithm, which converge after a training
period. For conventional FPGA structures, it is often not prac-
tical to extract the coefficients of the filter from the flip-flops,
store them in non-volatile memory, and restore the contents
of the flip-flops. In contrast with the template matching sce-
nario in which data is stored in easily accessible block RAMs,
powering down the FPGA in this scenario may not be viable

without losing the coefficient values. However, since the pro-
posed non-volatile flip-flop structure allows for direct transfer of
data from the flip-flop state to non-volatile memory, the filter co-
efficients can be readily preserved. This enables further energy
savings: while the FPGA is powered off, energy is conserved
when otherwise a standby power would have been required to
maintain the filter tap values. The adaptive filter, using the ap-
propriate filter coefficients, resumes operation when the power
is restored without the need to retrain the filter coefficients.

V. AREA ESTIMATION

Table II lists the cell sizes for the PEs described before. As
noted earlier, a significant portion of the FPGA chip area is con-
sumed by the programming elements used for storing routing in-
formation and configuration data. Thus, a critical question con-
cerns the impact of the area results in Table II on overall FPGA
size.

In a conventional SRAM-based FPGA, the total number of
SRAM cells used is directly related to the number of logical el-
ements in a logic block and the size of the LUT in each
logic element [14]. This is in large part because the function-
ality of the logic block impacts the routability and thus the area
efficiency as well [15]. Using the estimated number of SRAM
cells for each of the “dominant” architectures for base-
line FPGAs in [14], the area savings enabled by the non-volatile
PEs can be computed for a wide cross section of conventional
FPGA designs. These results are given in Table III, and are com-
puted based on the assumption that the area of the non-volatile
PE used for routing serves as the lower bound on the PE cell
size. Table III shows that significant area savings can be real-
ized.

VI. CONCLUSION

We have presented a set of new designs for core FPGA logic,
routing, and flip-flop circuits that offer the speed advantages
of SRAM and the area savings and non-volatility advantages
of Flash. These designs are enabled by a non-volatile device
that has the advantage of a low programming current that will
not damage low voltage switching devices. FPGA architectures
using the core FGPA elements described here offer the potential
to dramatically improve power efficiency, area, and cost, and
enable a whole new class of adaptive, power-aware application
mapping methods. Examples have been presented showing area

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

CHOI et al.: NEW NON-VOLATILE MEMORY STRUCTURES FOR FPGA ARCHITECTURES 881

savings ranging from 22% to 36% by replacing SRAM based
PEs with the proposed non-volatile structures. In addition, we
have described several application examples in which this ap-
proach enables new power-down strategies.

REFERENCES

[1] K.-T. Chang, W.-M. Chen, C. Swift, J. M. Higman, W. M. Paulson,
and K.-M. Chang, “A new SONOS memory using source-side injec-
tion for programming,” IEEE Electron Devices Lett., vol. 19, no. 7, pp.
253–255, Jul. 1998.

[2] Y. K. Lee, B. Y. Choi, J. S. Sim, K. W. Song, J. D. Lee, B.-G.
Park, D. Park, and C. Chung, “A highly scalable split-gate SONOS
flash memory with programmable-pass and pure-select transistors for
sub-90-nm technology,” in Proc. Int. Conf. Solid-State Devices Mater.,
Sep. 2004, pp. 252–253.

[3] M. Rosmeulen, J. Van Houdt, L. Haspeslagh, and K. De Meyer,
“Scanrom, a novel non-volatile memory cell storing 9 bits,” in IEEE
Symp. VLSI Tech. Dig., Jun. 2004, pp. 74–75.

[4] T. Ogura, N. Ogura, M. Kirihara, K. Park, Y. Baba, M. Sekine, and K.
Shimeno, “Embedded twin MONOS flash memories with 4 ns and 15
ns fast access time,” in IEEE Symp. VLSI Circuits Dig., Jun. 2003, pp.
207–210.

[5] K. H. Choi, “Non-volatile memory device,” U.S. 6 965 145, Nov. 15,
2005.

[6] K. H. Choi, “Method of manufacturing self-aligned non-volatile
memory device,” U.S. 6 972 229, Dec. 6, 2005.

[7] D. Choi, E.-P. Kwon, H. Lee, J. Chang, K. Choi, and J. Villasenor,
“Single-chip integration of SRAM and non-volatile memory using bit-
line sharing,” in Proc. Eur. Solid-State Circuits Conf., Sep. 2006, pp.
295–298.

[8] Actel, “ProASIC3 Flash family FPGAs datasheet, Ver. 0.6,” 2006,
White Paper.

[9] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Boston, MA: Kluwer, 1999.

[10] A. Gayasen, N. Vijaykrishnan, and M. Irwin, “Exploring technology
alternatives for nano-scale FPGA interconnects,” in Proc. Des. Autom.
Conf., Jun. 2005, pp. 921–926.

[11] S. Mohanty and V. K. Prasanna, “Duty cycle aware application design
using FPGAs,” in Proc. IEEE Symp. Field Program. Custom Comput.
Mach., Apr. 2004, pp. 338–339.

[12] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90 nm low-
power FPGA for battery-powered applications,” in Proc. Int. Symp.
Field Program. Gate Arrays, Feb. 2006, pp. 3–11.

[13] D. J. Allred, W. Huang, V. Krishnan, H. Yoo, and D. V. Anderson,
“An FPGA implementation for a high throughput adaptive filter using
distributed arithmetic,” in Proc. IEEE Symp. Field Program. Custom
Comput. Mach., Feb. 2004, pp. 324–325.

[14] Y. Lin, F. Li, and L. He, “Circuits and architectures for field pro-
grammable gate array with configurable supply voltage,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 9, pp. 1035–1047,
Sep. 2005.

[15] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate array: The effect of logic block functionality on
area efficiency,” IEEE J. Solid-State Circuits, vol. 25, pp. 1217–1225,
Oct. 1990.

David Choi (S’05) received the B.S. and M.S. de-
grees in electrical engineering from the University of
California, Los Angeles, in 2002 and 2003, respec-
tively, where he is currently pursuing the Ph.D. de-
gree in electrical engineering.

His research interests include non-volatile
memory, reconfigurable computing, communica-
tions, and video image processing.

Kyu Choi received the B.S. and M.S. degrees in
physics from Seoul National University, Seoul,
Korea, in 1969 and 1974, respectively, and the Ph.D.
degree in solid-state physics from the University of
Oregon, Eugene, in 1978.

He is currently at O2IC, Santa Clara, CA, where
he is focusing on the integration of volatile and
non-volatile memory in the same memory cell.
He has held technical and management positions
at Intel, Signetics, Synertek-Honeywell, Samsung
Electronics, and Soft Device in various areas of

device and process technology. He holds numerous patents in semiconductor
memories.

John D. Villasenor (SM’97) received the B.S. de-
gree from the University of Virginia, Charlottesville,
in 1985, the M.S. and Ph.D. degrees from Stanford
University, Stanford, CA, in 1986 and 1989, respec-
tively, all in electrical engineering.

From 1990 to 1992, he was with the Radar Sci-
ence and Engineering Section, Jet Propulsion Labo-
ratory, Pasadena, CA, where he developed methods
for imaging the earth from space. In 1992, he joined
the Electrical Engineering Department, University of
California, Los Angeles (UCLA), where he is cur-

rently a Professor. He served as Vice Chair of the Department from 1996 to
2002. At UCLA, his research efforts lie in communications, computing, imaging
and video compression, and networking.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 17, 2009 at 02:59 from IEEE Xplore. Restrictions apply.

