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Abstract—Modern portable embedded devices require processors that
can provide sufficient performance for demanding multimedia and wire-
less applications. At the same time they have to be flexible to support a
wide range of products and extremely energy efficient to provide a long
battery life. Coarse Grained Reconfigurable Architectures (CGRAs) poten-
tially meet these constraints by providing a mix of flexible computational
resources and large amounts of programmable interconnect. The vast de-
sign space of CGRAs complicates the development of optimized processors.
Most effort has been spent on improving the performance. However, the
energy cost of the programmable interconnect is becoming more expensive
and this cost can no longer be neglected. In this work we present an energy-
and performance-aware exploration for the interconnect of a CGRA and
show that important tradeoffs can be made for those metrics. This will en-
able designers to develop more efficient architectures, tuned to a targeted
application domain.

Index Terms—Energy-aware design, interconnect-aware design, low
power, processor architecture.

I. INTRODUCTION

Modern consumers carry a mobile phone, GPS, PDA, digital
camera, laptop, MP3 player, etc. To be able to combine all these into
one, without compromising on the functionality, flexible platforms
are needed that can provide a high performance with extremely
high energy efficiencies. Coarse grained reconfigurable architectures
(CGRAs) can provide this flexibility, while boosting performance
compared to embedded VLIW processors. CGRAs consist of: 1)
functional units (FUs), that operate on a word level (ALU, MUL,
MAC, etc.); 2) distributed register files for intermediate data storage;
3) programmable interconnect; and 4) configuration memories. A
higher parallelism and the usage of local memories lead to a high per-
formance, while still keeping the energy consumption under control.
A programmable interconnection topology provides the flexibility
to map different applications efficiently to one processor. Proposed
CGRAs differ in the number or organization of the resources described
above.

Designing the optimal CGRA architecture involves many tradeoffs.
While a large amount of research has been done to improve the
performance, very little has been done to systematically explore the
energy efficiency versus performance tradeoff for these processors.
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Fig. 1. Detailed energy breakdown of 4� 4 b neg nh rf, an instance of the
ADRES CGRA, for a UMC 130-nm standard cell technology.

Using a designer-friendly architecture exploration framework that
enables quick evaluation of different architecture variants, we report
both detailed energy and performance estimations for a set of represen-
tative application benchmarks. The obtained performance and energy
efficiency depend heavily on the provided interconnection network.
Changes in the interconnect topology change how efficiently other
resources can be utilized, the number of intermediate variables that
have to be stored and therefore also the total number of instructions,
register file accesses, configuration memory accesses, etc. At the same
time, it has been shown that interconnect is getting more expensive
for smaller technologies and therefore aggravating this problem as
technology scales [4]. Given the importance of the interconnect it is
crucial to explicitly evaluate design choices for interconnect related
parameters.

Fig. 1 shows the energy breakdown of a CGRA instance with a very
flexible interconnect topology (explained in detail in Section V) as is
typically the result of a performance driven optimization. For a 32-tap
complex FIR Filter this breakdown shows that for a 130-nm technology
as much as 30% of the total processor energy is spent in the intercon-
nect. In scaled technologies (45 nm) this interconnect energy can go up
to 50%–60% (extrapolation based on ITRS roadmap for interconnect
capacitance scaling). To perform an energy-aware architecture design,
it is therefore crucial to analyze the energy consumption in the inter-
connect.

The schedule that can be obtained depends heavily on the flexibility
of the interconnect. A limited interconnect will reduce the schedula-
bility of applications on the CGRA processor. Since the amount of in-
terconnect that connects different FUs inside a VLIW or RISC pro-
cessor is small, the energy consumption of this communication can be
neglected during the design of these processors in a first approxima-
tion. For CGRA designs this is not true, because of the large amount
of communication resources between different FUs and registers files.
As a result, the design of the interconnect has a significant effect on
both energy efficiency and performance and has to be taken into ac-
count during architecture exploration.
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In this paper, we vary the interconnect topology and use a designer-
friendly framework to generate detailed energy and performance es-
timates. Our closed loop simulation and estimation flow supports the
exploration of interconnect topologies in combination with other pa-
rameters, e.g., the size of the array, or size of distributed register files,
in order to consider the interaction between these parameters. However,
this interaction and the exploration of the other parameters are outside
the scope of this paper. We do include the direct effect of the change
in interconnection on both energy and performance, and the indirect
effect on energy consumption as a result of changes in the schedule.

This paper is organized as follows. Section II discusses related work,
while Section III briefly introduces the CGRA template and the compi-
lation and simulation tool-chain. Section IV presents our extended sim-
ulation framework and the used energy models. Section V discusses the
performed interconnect topology architecture exploration. Section VI
presents detailed exploration results and an analysis of the experimental
data. Finally, Section VII concludes this paper.

II. RELATED WORK

Recently, a large number of CGRA-based processors have been
proposed: ADRES [9], Montium [11], Morphosys [18], Pleiades [16],
RaPiD [5], SiliconHive [14], TRIPS [3], etc. Some architectures like
[3] are using coarser granularity processing elements and are targeted
toward high performance systems. A growing number of CGRAs [9],
[11], [14] are explicitly targeted at low power embedded systems.

Since most CGRAs have a relatively fixed architecture or no retar-
getable compiler, little work has been done in architectural exploration
in this domain. Others do have a flexible template, but due to the large
number of architectural parameters, the exploration space is very large
and no systematic exploration of the complete space has been pub-
lished. However, Wilton et al. [6] explored the various configurations
and sizes of the register files, but they looked only at performance.
Bansal et al. [1] investigated the impact of different network topolo-
gies for mesh-based CGRAs, but their template is too restricted and
they also looked only at performance. Others, like Silicon Hive [14],
could support architecture exploration, but have not integrated fast and
interconnect aware energy estimation into their framework, which is
one of our main contributions of this paper.

III. CGRA TEMPLATE ARCHITECTURE DESCRIPTION

CGRAs offer a large architectural space of exploration, changing any
of four categories of parameters: computational resources, data storage,
interconnection resources and configuration storage. However no sys-
tematic energy-aware and interconnect-aware architecture exploration
is available.

The presented energy- and interconnect-aware architecture explo-
ration is built on the ADRES [9] framework. ADRES is a flexible tem-
plate that includes a tightly coupled VLIW processor and a CGRA.
Many other proposed CGRA architectures can be represented by this
parameterizable template. The ADRES template consists of a number
of FUs (ADD, MUL, etc.) that operate on data words, in the form of an
array. The array can be configured with different array sizes (e.g., 4� 4,
4� 6, 8� 8) and different types of FUs (homogeneous or heteroge-
neous). The template also supports distributed storage of data (registers
and register files) and of configuration memories that can be shared by
more than one FU. Examples of ADRES instances are shown in Fig. 3.
For more details on the ADRES architecture template the reader is re-
ferred to [9].

The ADRES architecture template is developed in conjunction
with a retargetable simulator and compiler, called DRESC [8]. The
ADRES-DRESC framework allows a designer to vary many of the
critical design parameters of a CGRA and quickly evaluate the effect
on performance.

Fig. 2. Extended energy-aware architecture exploration framework.

IV. POWER MODELING AND ESTIMATION

To enable a meaningful architecture exploration for a CGRA, the
energy consumption of all components has to be taken into account. A
design targeted at boosting performance only, will lead to an over-de-
sign and a suboptimal point on the energy versus performance tradeoff
curve.

To support detailed energy estimations, the original ADRES-
DRESC framework was extended with additional components to
generate detailed performance results and to include a detailed energy
breakdown (see Fig. 2). The components of the ADRES template were
synthesized for a UMC 130-nm standard cell library, back-annotated
with switching activity and energy consumption per activation and
area were computed. The area estimates for the components are used
later for interconnect length estimation.

The energy consumption of register files is calculated using the EM-
PIRE model for register files [15], which gives accurate energy esti-
mate for various instances and is calibrated using the same technology
libraries and estimation flow. The configuration memories are modeled
using a 130 nm, 1.2 V SRAM memory macro taken from [2].

Accurate area estimations of different components are used to
construct a high level floor-plan of the ADRES architecture and wire
lengths of each individual wire are computed in an automated way.
The wire length model for buses and point-to-point interconnections
are taken from the same technology to ensure consistency. To get fast,
but fairly accurate estimations on the interconnect energy, without
going to a full placement and routing for each architecture instance,
interconnect lengths between the different functional units and con-
nections to register files are computed as the Manhattan distance
between these architectural components. Note that this leads to an
optimistic estimate for interconnect length, leading to a lower bound
on the interconnect energy estimation.

The energy estimation is completed by extending the simulator to
keep track of the activation of every component of the architecture. A
detailed activation trace is processed and the total energy consumption
is computed, per component or per category (e.g., distributed register
files or only a certain type of wires) and detailed reports are generated.

V. ENERGY-AWARE ARCHITECTURE EXPLORATION

Different types of interconnections can be added to the ADRES ar-
chitecture, both regular and irregular, as the template allows a designer
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Fig. 3. Examples of different interconnection topologies for the ADRES CGRA: (a) nearest neighbor and next hop connections; (b) nearest neighbor connections
and extra connections to the central register file; (c) nearest neighbor and next hop connections only; (d) nearest neighbor connections and horizontal and vertical
buses. (a) neg nh architecture; (b) neg nf architecture; (c) neg architecture; (d) b neg architecture.

to add any point to point connection. In this work, four different types
of connections that are commonly found in state of the art architectures
are combined in order to vary the flexibility of the resulting intercon-
nect topology from very flexible to restricted. We focus on fairly reg-
ular types, because this tends to lead to more compiler-friendly archi-
tectures and keeps the problem tractable. Fig. 3 shows four different
architectures, providing four different possible instances of the inter-
connect topology.

The following naming conventions are used to denote the different
configurations of the CGRA architecture template parameters that are
used:

1) size of the array: 4� 4 or 8� 8 FUs;
2) buses (horizontal and vertical): �: With buses, connecting all FUs

in the same row/column;
3) interconnect to nearest neighbors— neg: connection with nearest

neighbors (from the output of an FU to the input of all next neigh-
bors, in both horizontal and vertical direction, but no diagonal
connections);

4) interconnect to next hop neighbors— nh: connection with neigh-
boring FUs one hop away, both in horizontal and vertical direc-
tions, but no diagonal connections;

5) interconnect to VLIW register file— rf: extra connections from the
CGRA to VLIW register file, to facilitate distribution of live-in/
live-out variables, to the second and third rows of FUs;

e.g., 4� 4 b rf: the interconnect of this 4� 4 array instance consists of
both vertical and horizontal buses and extra connections that connect
the second and third row of the array to the VLIW register file.

Horizontal and vertical buses [see Fig. 3(d)] provide extra flexibility
to the compiler, by enabling communication over a longer distance. The
interconnect between an FU and its nearest neighbors [see Fig. 3(c)]
provides the basic connectivity between all FUs in the form of a basic
mesh topology. Adding extra connections to the next hop neighbors
[see Fig. 3(a)] can improve the mapping efficiency, but adds an extra
cost to every communication, as a larger tree of interconnect has to be
driven. Additional connections to FUs that are further away are not con-
sidered here, as they would add an even higher energy cost and become
even more expensive than using the bus, which is preferred for long dis-
tance communications. As the bus is shared between all FUs in a row
or column, and can only be used by one of them at a given cycle, long
distance communications are intentionally a scarce resource. Adding
extra connections to the central register file [see Fig. 3(b)] allows the
compiler to distribute loaded data easily over the array, which leads to
a better utilization. Adding these connections leads to a larger fan-out
for the ports of the central register file, translating to a higher energy
cost for each access.

For a fixed size of the architecture, e.g., 8� 8 FUs, these 4 tem-
plate parameters lead to 16 possible different architecture instances.
Excluding the architectures without any interconnect, the one with only

the extra connections to the central register file, we end up with 14 valid
possibilities. We also exclude all architectures that do not have nearest
neighbor connections, but do have next hop connections. These two
are equivalent from a compiler point of view, but next hop connections
are more expensive in the physical implementation. To study the effect
of the variation of the interconnect topology on performance and en-
ergy efficiency, the remaining ten architecture instances are evaluated
in Section VI.

These interconnection architecture parameters have been chosen to
be representative for a large sub-set of CGRAs. KressArray, Matrix,
RAW, Garp, Remarc, MorphoSys and DreAM all consist of 2-D arrays
of computational elements and use nearest neighbor, next hop and/or
full length or segmented buses and therefore the analysis presented here
is directly applicable to these architectures. Montium and RaPiD, use a
1-D organization of FUs and storage elements, connected with reduced
crossbars or segmented buses. These architectures are a sub-class of
the generic CGRA template, and the proposed interconnect aware ar-
chitecture exploration method can still be applied. The Montium FUs
internally consist of five smaller FUs, to which also the analysis directly
applies. Architectures from e.g., SiliconHive are more heterogeneous,
both in computational resources and in interconnection topology. In
this case more effort has to be spent on a high level layout, in order to
get reasonable wire length estimates, but the exploration method can
still be applied. However, as all these architectures feature a compa-
rable amount of computational resources and interconnections, it can
be expected that interconnect will also be a major energy consumer and
interconnect energy-aware exploration is essential.

VI. EXPERIMENTAL SECTION

Interconnect has a significant impact on the overall processor
core performance and energy consumption: a more rich and flexible
interconnect which directly increases the net energy consumption;
and an indirect impact through the effect on the compiler viz. a higher
flexibility can often lead to a better mapping and a corresponding
higher performance. To quantify this impact, ten different processor
instances, featuring the interconnect parameters that have been pre-
sented in Section V are used.

A. Benchmarks and Base Architecture

The experiments have been performed on a set of representative
benchmarks from the wireless communication and multimedia do-
mains—multiple-input–multiple-output (MIMO): MIMO channel
estimation kernel with 52 pilots; Viterbi: a 189-state Soft Viterbi
(SOVA); AVC motion: in-house optimized version of the AVC mo-
tion estimation; AVC interpolate: unoptimized version of the AVC
half-pixel interpolation filter.
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Fig. 4. Pareto plot of interconnect architecture exploration for MIMO, Viterbi, AVC Interpolate, and AVC motion estimation benchmarks.

All experiments are performed for an 8� 8 ADRES array of which
only the interconnection topology is varied (in our experience, the in-
terconnect study of arrays of similar sizes, e.g., 4� 4 to 12� 12, leads
to the same general conclusions). All FUs are of the arithmetic logic
unit (ALU)-type, except the third and sixth columns, which are multi-
pliers. The base architecture uses configuration memories of 64 entries
deep and local register files that can store 16 words, while the central
VLIW register file can store 64 words. The exploration of other array
parameters is outside of the scope of this paper, and for more informa-
tion the reader is referred to [9], [12].

Fig. 4 shows the simulation results for all four benchmarks. The
�-axis shows the normalized number of cycles that is needed to com-
plete the benchmark (inverse of performance), while the � -axis shows
the normalized energy consumption (of the complete architecture) for
that specific task, and this over the ten architecture instances that are
evaluated. A line connects all instances that are Pareto optimal. Only
these are interesting for a design that considers the energy-performance
tradeoff. By moving on a line from left to right, top to bottom, we move
to more energy efficient architectures, but loose performance.

B. Results and Analysis

The experimental results show that a variation in interconnection
topology has a significant effect on the energy consumption of the com-
plete processor in all four cases, and ranging from 12% to 35% between
the worst and best Pareto-optimal architectures for a certain bench-
mark. Compared to non-Pareto-optimal design choices, this difference
can be even bigger. For performance, three out of four benchmarks also
show a significant effect, from 35% to 40% between the best and worst

Pareto-optimal variant. Looking at all four experiments, we can con-
clude that there is only a sub-set of interconnect architecture options
(discussed in the following) that are often Pareto-optimal. There is a
clear trend for both energy consumption and performance.

For the AVC interpolate filter in Fig. 4, unoptimized code was taken.
In this case the compiler achieves an average instructions per cycle
(IPC) count of only 3.5, meaning only about 3 FUs out of the 64 are
used on average (5%), while the IPC of the array for the other bench-
marks is between 30 and 40, which corresponds to a utilization of over
50%. Manual optimizations can improve this performance drastically
and boost parallelism. In this case, we have chosen not to do this to
show that even without any effect on performance, the interconnect can
have a big effect on the energy consumption. The performance varia-
tion between the best and the worst architecture shown in Fig. 4 is only
2% for this benchmark, while the difference in energy consumption is
still 23% when compared to the architecture with the most rich inter-
connect (b neg nh rf).

1) � Architecture: The architecture that provides only horizontal
and vertical buses for data interconnection ��� is both cheapest in terms
of energy consumption and worst for performance (e.g., see Fig. 4, for
all benchmarks). Because the buses are shared by a complete row or a
complete column of FUs, interconnection resources are scarce if only
buses are provided and performance is hurt badly.

2) neg Architecture: The architecture that provides only nearest
neighbor connections (neg) is still restrictive and only performs better
for the AVC motion estimation. For the unoptimized AVC interpola-
tion filter however, the compiler was not able to map the benchmark on
this architecture (there is no neg point in Fig. 4 for AVC interpolate).
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This architecture is not very efficient for energy, and is Pareto-optimal
in none of the benchmarks.

3) b neg Architecture: Adding more connections slowly improves
the performance, adding to the energy cost. b neg is Pareto-optimal
for three out of four benchmarks, giving a significant performance im-
provement of 15% in all cases (except AVC interpolate, where the range
in performance is small overall). The energy cost that has to be paid for
this is about 4% to 15% (e.g., moving from � to b neg in Fig. 4 Viterbi).

4) nh Architectures: (neg nh, b neg nh, neg nh rf, b neg nh rf):
Adding next hop connections, although sometimes good for perfor-
mance, almost never leads to a Pareto-optimal point, except for the
“fully connected” b neg nh rf in for AVC motion estimation and
Viterbi. This architecture actually has the best performance for all of
the benchmarks, but is only Pareto-optimal for two of them. In two of
the four cases the extra interconnection freedom does not result in any
performance improvement.

5) rf Architectures: (b rf, neg rf, b neg rf, neg nh rf,
b neg nh rf): All architectures score better for performance when
extra connectivity to the central register file (indicated as rf) are
added. These connections allow the compiler to distribute the
incoming and outgoing data more efficiently over the array, and
this leads to a better utilization and a higher performance. The
improvement in performance for equal architectures, where the rf
connection is added, can be over 25% in some cases (e.g., from b to
b rf for MIMO). However, adding these long wires to the cost of all
register file read/writes adds between 5% to 20% to the energy cost,
depending on the architecture (e.g., 13% for the same point).

For the given set of benchmarks and the explored architectures, we
can conclude that the following architectures are Pareto-optimal, and
can be used in the energy efficiency versus performance tradeoff: �,
b neg, b rf, b neg rf and b neg nh rf.

VII. CONCLUSION

In this paper, we have introduced an interconnect-aware exploration
framework that allows a fast simulation based evaluation of different
CGRA architecture instances, both from an energy and performance
perspective. We have used this framework to present a study of different
interconnect topologies in the context of the ADRES CGRA template,
which supports a broad range of CGRAs styles. The results show an
energy versus performance tradeoff of up to 30% for both criteria and
we were able to identify a subset of architectures that consistently per-
form better (are Pareto-optimal) for the presented representative bench-
marks from both the wireless communication and multimedia applica-
tion domains.
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