
An Automated Exploration Framework for FPGA-based
Soft Multiprocessor Systems

Yujia Jin Nadathur Satish Kaushik Ravindran Kurt Keutzer
University of California at Berkeley, CA, USA

{yujia, nrsatish, kaushikr, keutzer}@eecs.berkeley.edu

ABSTRACT
FPGA-based soft multiprocessors are viable system solu-
tions for high performance applications. They provide a
software abstraction to enable quick implementations on the
FPGA. The multiprocessor can be customized for a target
application to achieve high performance. Modern FPGAs
provide the capacity to build a variety of micro-architectures
composed of 20-50 processors, complex memory hierarchies,
heterogeneous interconnection schemes and custom co-pro-
cessors for performance critical operations. However, the
diversity in the architectural design space makes it difficult
to realize the performance potential of these systems. In this
paper we develop an exploration framework to build efficient
FPGA multiprocessors for a target application. Our main
contribution is a tool based on Integer Linear Programming
to explore micro-architectures and allocate application tasks
to maximize throughput. Using this tool, we implement a
soft multiprocessor for IPv4 packet forwarding that achieves
a throughput of 2 Gbps, surpassing the performance of a
carefully tuned hand design.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles—Pipeline processors

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
FPGA, Soft multiprocessors, IPv4 packet forwarding, De-
sign space exploration, Integer Linear Programming

1. INTRODUCTION
A soft multiprocessor is a network of programmable pro-

cessors crafted out of processing elements, logic blocks and
memories on an FPGA. They allow the user to customize the
number of programmable processors, interconnect schemes,
memory layout and peripheral support to meet application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

needs. Deploying an application on the FPGA is tanta-
mount to writing software for this multiprocessor system.
Results in [9] show that soft multiprocessor systems are vi-
able alternatives for high performance applications. They
avoid risks due to high silicon development costs and design
turnaround times, while providing a software abstraction
to enable a quick implementation on the FPGA. They also
open FPGAs to the larger world of software designers.

Modern FPGAs provide the processing capacity to build
a variety of micro-architectural configurations. Today, we
can build multiprocessors composed of 20-50 processors (and
growing with Moore’s law), complex memory hierarchies,
heterogeneous interconnection schemes and custom co-pro-
cessors for performance critical operations. Future projec-
tions forecast that embedded systems will soon be composed
of over 100 processors on a single chip to guarantee accept-
able performance [4]. However, the diversity in the architec-
tural design space makes the task of determining an efficient
multiprocessor configuration tuned for a target application
challenging. Currently, the designer must manually explore
the large and complex design space of micro-architectures
for an application to achieve the full performance potential
of FPGA multiprocessors.

The objective of this paper is to address the following
question: How do we design efficient systems of soft mul-
tiprocessors for a target application? To ease this design
challenge, we advance an automated framework to assist the
designer in exploring the design space of soft multiproces-
sor micro-architectures. The objective is to identify the best
multiprocessor on the FPGA for a target application and op-
timally map the application tasks and communication links
to this micro-architecture. We construct analytical models
of the architecture and application and solve the exploration
problem using Integer Linear Programming (ILP).

In [9] we presented a hand-tuned soft multiprocessor de-
sign for the data plane of the IPv4 packet forwarding appli-
cation that achieves a throughput of 1.8 Gbps. To evaluate
the effectiveness of our framework, we use it to automati-
cally explore the design space of micro-architectures for the
same packet forwarding application. Using our tool, we op-
timally allocate the application tasks and links to maximize
throughput and compare area and performance of the re-
sulting design to the hand-tuned implementation.

The rest of the paper is organized as follows. We first
describe some related work on design space exploration for
multiprocessors in Section 2. Section 3 presents our frame-
work for micro-architecture exploration and task allocation.
We follow with details on the ILP formulation in Section

4. In Section 5, we apply our exploration framework to
determine a multiprocessor for IPv4 packet forwarding and
compare its performance to the hand-tuned implementation
in [9]. We end with some conclusions and future directions
in Section 6.

2. RELATED WORK
Design space exploration of micro-architectural alterna-

tives is a pivotal problem in the design of multiprocessor
systems. The general problem of design space exploration is
hard since there are a wide variety of architectures and appli-
cations each with their own set of objectives and constraints.
Many techniques have been proposed for multiprocessor de-
sign space exploration such as list scheduling heuristics, ge-
netic algorithms, simulated annealing and linear program-
ming. A systematic survey of existing techniques can be
found in [6].

Although the general exploration problem is difficult to
solve, the problem we consider in this paper is more spe-
cific. Following the MESCAL methodology [7], we define
our exploration problem by identifying the architectural de-
sign space and describing our target class of applications.
We limit the architectural design space to multiprocessor
micro-architectures built from a network of processors inter-
connected using buses and point-to-point FIFO links. We
can choose from different types of hard and soft processors,
memories and communication elements that the FPGA sup-
ports and customize the topology of the multiprocessor. In
the application space, we target dataflow and stream ori-
ented applications which are suitable for soft multiprocessor
systems. This is an important class of high performance
applications that are common in the networking and signal
processing domains. A few examples of these applications
are the networking and DSP benchmarks in the EEMBC
suite [1].

Our exploration problem takes in a single application de-
scribed in the form of an application graph (described in
more detail in Section 3.2). Our exploration objective is
to maximize throughput, which is the most important mea-
sure of performance in stream-oriented applications. The
output of our exploration is a soft multiprocessor system
customized for the target application. This problem is more
manageable than the general design space exploration prob-
lem, which can include arbitrary hardwired logic. It is also
more focused because we are targeting the multiprocessor
system to a specific application rather than a domain of ap-
plications. However, this problem is still challenging because
of the freedom to customize the computation, memory and
communication capabilities to achieve high performance.

There have been other attempts at solving design space
exploration problems with similar application and architec-
ture features. The problem considered in this paper is most
similar to the ones addressed by Hoang in [8] and Grajcar
in [5]. Both these papers start with a similar application
graph and optimize for throughput or makespan, which are
closely related problems. However, the techniques used to
solve the optimization problem in these papers differ from
our approach. Hoang [8] proposes a heuristic to schedule
DSP programs onto multiprocessors for maximum through-
put. Grajcar [5] uses a genetic algorithm based on list
scheduling to minimize the makespan of a set of tasks on
a bus-based multiprocessor system. By contrast, we use an
ILP based formulation to determine an optimal soft multi-

processor and allocate application tasks and links to maxi-
mize throughput. Such a formulation is flexible and can be
easily adapted to different problem restrictions. Although
finding the optimal design may be time consuming, in recent
years ILP solver technologies have advanced significantly
and many large problems can be routinely solved [3]. When
near optimal designs are acceptable, additional time can be
saved by setting the ILP solver to stop within an acceptable
error margin.

3. FRAMEWORK FORMICRO-
ARCHITECTURE EXPLORATION

The starting point of the framework is the application
graph that describes tasks and communication links. The
application graph has an associated timing model that co-
models computation and communication of the tasks. Our
main contribution is an exploration tool to determine a valid
soft multiprocessor configuration that maximizes through-
put for a given application graph and timing model. We
formulate the exploration problem as an Integer Linear Pro-
gram (ILP). The outputs of the exploration step are (a)
a micro-architecture configuration of processors and com-
munication channels, and (b) a mapping of the applica-
tion tasks and links onto the processors and channels of the
micro-architecture.

In the following sections we provide details regarding the
micro-architecture building blocks and the application model
and present our ILP formulation to determine an optimal
configuration that maximizes throughput.

3.1 Micro-architecture Building Blocks
To simplify the discussion of our problem formulation, we

restrict the micro-architecture building blocks to processors
and point-to-point FIFO communication channels. The set
P denotes the set of available processors to build the multi-
processor. The set C is a set of FIFO communication chan-
nels (of infinite bandwidth) between pairs of processors. For
simplicity, we assume there is only one channel connecting
two processors. The element cp,p′ ∈ C denotes a channel
between processors p, p′ ∈ P, p �= p′.

3.2 Application Graph and Timing Model
The application graph is a directed acyclic graph A =

(T, L). A node t ∈ T is a program task that is entirely
executed in a single processor. L ⊆ T × T is the set of
directed communication links between tasks. A link l =
(t, t′) ∈ L connects tasks t, t′ ∈ T, t �= t′.

We associate a timing model with the application graph
consisting of task execution time and communication over-
head annotations (real numbers). Execution time for task
t ∈ T on processor p ∈ P is given by the parameter et,p ≥ 0.
The communication overhead for a link l = (t, t′) ∈ L on
channel cp,p′ ∈ C is given by two parameters, wl,c ≥ 0 and
rl,c ≥ 0. The parameter wl,c represents the time to perform
a write of a block of data for task t on channel c. Similarly,
the parameter rl,c represents the time to read a block of
data for task t′ on channel c. In the case when tasks t, t′

in link l = (t, t′) are assigned to the same processor p ∈ P ,
the communication link is not mapped to a physical channel
between processors and hence the read and write times for
link l are assumed to be 0.

3.3 Valid Multiprocessor Configurations
Given an application graph A = (T, L), a set of proces-

sors P , and a set of communication channels C, a valid
configuration ν is an assignment with maps ν : T → P and
ν : L → P ∪C. Valid configurations resulting from the task
allocation problem have the following characteristics:

(a) Each task t ∈ T is assigned to a single processor p ∈ P .

(b) Each link l ∈ L is assigned to either a processor p ∈ P
or a communication channel cp,p′ connecting proces-
sors p, p′ ∈ P .

(c) If a link l = (t, t′) is assigned to a processor p ∈ P , then
the tasks t and t′ must also be assigned to the same
processor p. Logically, ν(l) = p ⇔ ν(t) = p ∧ ν(t′) =
p, ∀l = (t, t′) ∈ L, ∀p ∈ P .

(d) If a link l = (t, t′) is assigned to a communication
channel cp,p′ ∈ C, then task t must be assigned to
processor p, and task t′ must be assigned to processor
p′ Logically, ν(l) = cp,p′ ⇔ ν(t) = p ∧ ν(t′) =
p′, ∀l = (t, t′) ∈ L,∀cp,p′ ∈ C.

3.4 Optimization Objective
The optimization objective is to find a valid configuration

with maximum throughput. For a given application graph,
we can restate the throughput maximization objective as
minimizing the makespan of the system. The makespan
of a schedule is the latest completion time for any task in
it. Given a valid configuration ν satisfying properties (a-
d) above, we can compute its makespan as follows. Let
Tp ⊆ T be a subset of tasks assigned to processor p ∈ P , i.e.
Tp = {t ∈ T : ν(t) = p}. Let LS

p ⊆ L be a subset of links
that “start” at processor p in the given configuration, i.e.
LS

p = {l ∈ L : ν(l) = cp,p′ , p′ ∈ P}. Similarly, let LE
p ⊆ L

be a subset of links that “end” at processor p under ν, i.e.
LE

p = {l ∈ L : ν(l) = cp′,p, p′ ∈ P}. Then the total execu-
tion time Φp of processor p under the given configuration ν
is:

(e) Φp =
X

t∈Tp

et,p +
X

l∈LS
p

wl,ν(l) +
X

l∈LE
p

rl,ν(l)

In other words, the execution time of a processor is a sum
of the execution time of the tasks assigned to it and the
communication write overhead (wl,c) for each outgoing link
and the communication read overhead (rl,c) for each incom-
ing link. The makespan M of a valid configuration ν is the
maximum execution time across all processors:

(f) M = max{Φp : p ∈ P}
3.5 Example

Figure 1 shows a simple example for the micro-architecture
exploration under our simplified scenario. The application
graph, A, consists of 2 independent branches, where each
branch is a chain of 3 tasks. The architecture elements, P
and C, are two different processors which can be optionally
linked together with a FIFO queue. The execution time,
et,p, for each task on each processor is shown in the figure.
For both processors the FIFO access times, rl,c and wl,c, are
10 cycles for each read or write access. An obvious mapping
is to assign each application graph branch to a single pro-
cessor. This produces a makespan of 70 cycles and it is not

optimal. Figure 1 shows another valid configuration that
achieves the optimal makespan of 60 cycles.

10

10

Execution Time (cycles)

Optimal Architecture Configuration

Makespan = 60 cycles

Read

Write

30

20

20

10

20

10

Total time = 50 cycles Total time = 60 cycles

Application Graph

R1 T1

R2 L2 T2

L1

L1R1

R2 L2 T2

T1

P1 P2

L

T

R

P1 P2

Figure 1: Example for micro-architecture explo-
ration.

4. DETAILED PROBLEM FORMULATION
We now present the details of our ILP formulation to ex-

plore the space of FPGA micro-architectures and allocate
application tasks and links to maximize throughput. The
problem variables are described below (line below the vari-
able explains what the variable denotes when set to 1).

Xt,p ∈ {0, 1} ∀ t ∈ T,∀ p ∈ P

task t assigned to processor p

Yl,p ∈ {0, 1} ∀ l ∈ L, ∀ p ∈ P

link l assigned to processor p

Zl ∈ {0, 1} ∀ l ∈ L

link l assigned to some channel

XZS
l,p ∈ {0, 1} ∀ l ∈ L, ∀ p ∈ P

p start of channel to which l assigned:

i.e. XZS
l,p = Xt,p ∧ Zl, l = (t, t′)

XZE
l,p ∈ {0, 1} ∀ l ∈ L, ∀ p ∈ P

p end of channel to which l assigned:

i.e. XZE
l,p = Xt′,p ∧ Zl, l = (t, t′)

Φp ≥ 0 ∀ p ∈ P

the total execution time of processor p

M ≥ 0 max execution time over all processors

The X variables denote task assignment to processors. The
Y, Z, XZS and XZE variables concern link assignment to
processors or channels. XZE

l,p indicates if a processor p is the

end of a channel covering link l. Similarly, XZS
l,p indicates

if a processor p is the start of a channel covering link l.
These variables express the connection of a task with a link
(properties (c) and (d) of a valid configuration). Φp and M
are part of the makespan computation.

4.1 Constraints
The constraints in the ILP formulation are detailed below.

min M (makespan)

X

p∈P

Xt,p = 1, ∀ t ∈ T (a)

X

p∈P

Yl,p +
X

p∈P

XZS
l,p = 1, ∀ l ∈ L (b)

X

p∈P

Yl,p +
X

p∈P

XZE
l,p = 1, ∀ l ∈ L (b)

Yl,p + XZS
l,p = Xt,p, ∀ l = (t, t′) ∈ L (c,d)

∀ p ∈ P

Yl,p + XZE
l,p = Xt′,p, ∀ l = (t, t′) ∈ L (c,d)

∀ p ∈ P
X

t∈T

Xt,p et,p +

X

l∈L

(XZS
l,p wl + XZE

l,p rl) = Φp,∀ p ∈ P (e)

Φp ≤ M, ∀ p ∈ P (f)

We associate each constraint with the properties (a-d) of
a valid configuration and (e-f) for makespan computation.
The first constraint ensures that every task is mapped to
exactly one processor. This corresponds to property (a) of
a valid configuration. The constraint for (b) ensures that
every link is either covered by a processor or by a channel.
The (c) and (d) properties taken together form an impli-
cation Yl,p ∨ XZS

l,p ⇒ Xt,p, and a similar implication for
Xt′,p. The other direction of the implication is also true;
any link adjacent to a task covered by a processor has to
be covered either by the same processor, or by a channel.
Thus we can strengthen the above implication to the equal-
ity Yl,p + XZS

l,p = Xt,p, l = (t, t′) ∈ L, p ∈ P . The resulting
formulation after strengthening to equality satisfies both (c)
and (d) properties. Constraint (e) computes the processor
execution time. We assume that the channel read and write
access times are only dependent on the amount of data com-
municated across the link that it supports. Therefore the
channel subscript (c) is dropped from the definitions of r
and w in Section 3.2. Constraint (f) checks that all execu-
tion times are within the makespan. The problem objective
is to minimize makespan.

There are alternative ways of formulating the above con-
straints. Constraints (b),(c) and (d) could be rewritten
to avoid using the XZS and XZE variables by replacing
them with Z. However, variables similar to XZS and XZE

are still required to calculate the communication delay, and
hence the throughput. To correctly relate these variables
with Z, we must introduce additional constraints express-
ing the logical and relation. However, the use of these con-
straints results in a much weaker ILP formulation. ILP
solvers like CPLEX [2] cannot efficiently handle such con-
straints, resulting in long solution times. On the other hand,
the above formulation can be solved efficiently by CPLEX.

4.2 Extensions
The formulation presented above has been simplified for

the sake of clarity. In our complete ILP formulation for
design space exploration, we also incorporate states in our
application graph and memory elements in our architectural
design space. It is easy to extend the above formulation to
deal with these additional elements. We add variables to
denote the assignment of states to memory elements. We
add constraints to ensure that all states are covered. We
also augment the performance calculation constraints with
memory access times. To calculate the access time, we in-

clude memory performance profiles as a parameter to the
formulation. With the above extensions to include states
and memory accesses, we can model applications more com-
pletely. In our experiments we use the complete formulation
for design space exploration.

Other constraints may be added by the designer in the
above formulation to suit a specific design scenario. For ex-
ample, designers often know that a particular multiproces-
sor topology would best suit a particular application. They
may also have detailed knowledge about architecture fea-
tures that limit performance. As an example, a bus may be
known to have a large arbitration overhead. In such a case,
a designer may want to limit the number of masters on that
bus. In general, designer guidance may save a large amount
of time in the exploration process. Our ILP based formula-
tion is flexible enough to allow designers to add a variety of
constraints for efficient design space exploration.

5. EXPERIMENTS
In this section, we use our framework to explore the de-

sign space for the header processing of IPv4 packet forward-
ing mapped onto Xilinx Virtex-II Pro 2VP50 FPGA. The
2VP50 consists of 23,616 slices and 522 KB on-chip Block-
RAM memory. The building block of the multiprocessor
system is the Xilinx MicroBlaze soft processor IP, which is
a part of the Embedded Development Kit(EDK). The Mi-
croBlaze processor occupies approximately 450 slices (2% of
the 2VP50 FPGA area). The soft multiprocessor on the
Xilinx FPGAs is a network composed of (a) multiple soft
MicroBlaze cores, (b) the IBM PowerPC 405 cores, (c) dis-
tributed BlockRAM memories, (d) IBM CoreConnect buses:
the On-chip Peripheral bus (OPB) and the Processor Local
Bus (PLB), and (e) point-to-point FIFOs called Fast Sim-
plex Links (FSL) [11].

We first describe the IPv4 packet forwarding application.
We then describe the assumptions driving our ILP imple-
mentation and show the resulting design. Finally, we com-
pare our result against the hand-tuned implementation in [9].

5.1 IPv4 Packet Forwarding Application
The IPv4 packet forwarding application runs at the core

of network routers and forwards packets to their final desti-
nations. The forwarding application consists of finding the
next-hop router address and the egress port to which the
packet should be sent. The data plane of the application in-
volves three operations: (i) check whether the input packet
is uncorrupted, (ii) find the next-hop and egress port using
the destination address, and (iii) update header checksum
and time-to-live fields (TTL), and forward the packet. To
handle gigabit rates, routers must be able to forward mil-
lions of packets per second. The next-hop lookup is the most
intensive data plane operation. The address lookup requires
searching the forwarding table for the longest prefix that
matches the packet destination address. A natural way to
represent prefixes is a tree-based data structure (called a
trie) that uses the bits of the prefix to direct branching.
There are variations to the basic trie scheme that attempt
to trade off the memory requirements of the trie table and
the number of memory accesses required for lookup [10]. A
commonly used scheme is a fixed-stride multi-bit trie. The
stride is the number of bits inspected at each step of the
prefix match algorithm [10]. In our experiments, the stride
order is (12 4 4 4 4 4): the first-level stride inspects 12-bits

of the IP address and subsequent strides inspect 4 bits at
a time, requiring a maximum of 6 memory accesses for an
address lookup. An additional memory access is required to
determine the egress port for the matched prefix.

The design objective is to maximize router throughput.
In our experiments, we measure the number of packets pro-
cessed per second by the multiprocessor design. We compute
throughput by multiplying this packet rate with packet size.
To model the worst-case scenario for the data plane forward-
ing performance, we make three assumptions: (a) All packet
sizes are 64 bytes - this is the minimum size for an Ether-
net frame. (b) All address prefixes in the route table are
the full 32 bits in length - hence the trie lookup algorithm
takes 7 memory accesses to find the next hop. (c) Results
of the prefix search algorithm are not cached - the lookup
algorithm must be executed for every packet header. We do
not consider control plane processing, such as route table
updates and ICMP error messages, since they occur infre-
quently and hence have a low impact on the core router
performance. We also do not consider the packet payload
transfer, since header processing is the most compute inten-
sive part of the application.

Figure 2 shows the application graph for IPv4 packet for-
warding. It contains 9 tasks. The first branch of 7 tasks are
associated with the table lookup operation. Each of these
tasks requires a memory access into the routing table. The
remaining 2 tasks are associated with the TTL and version
verification and checksum certification. The graph shows
the parallelism that is inherent in the application: tasks be-
longing to different branches can be executed in parallel.
For the IPv4 application, the seven memory lookups must
be done in sequence. However, the two verification tasks can
be executed at any point in the application. We replicate
the graph multiple times to increase the amount of paral-
lelism available in the application. The replicated graph will
result a more efficient soft multiprocessor system because of
the additional parallelism available.

Route
Table

Lookup 3

Route
Table

Lookup 5

Route
Table

Lookup 2

Route
Table

Lookup 6

Route
Table

Lookup 4

Route
Table

Lookup 1

Route
Table

Lookup 7
Verify

Ver. & ttl

Verify
Checksum

StateKey: Task Link

Figure 2: Application graph for IPv4 header pro-
cessing.

5.2 Design space exploration for IPv4 packet
forwarding

In the ILP formulation for IPv4 packet forwarding, we
use FSL queues and OPB buses for the communication ele-
ments. We limit memory to on-chip block RAM (BRAM).
For the Xilinx Virtex-II Pro 2VP50 FPGA, the maximum
BRAM available is set to 500KB. We only use MicroBlaze
processors. We conservatively estimate that this Virtex de-
vice can support up to 12 MicroBlaze processors. Thus we
upper bound the number of MicroBlazes in the ILP formu-

lation to 12. We also add constraints to reflect the architec-
ture limitations. First, BRAM is dual ported. So we limit
the number of communication connections to any memory
unit to two. Second, we observe that OPB bus performance
drops significantly when the number of bus masters exceeds
two. So we limit the number of processors that can connect
to a single OPB to two.

For the exploration, we use CPLEX [2] as our ILP solver.
During the exploration we select the best design based on
the ILP results and synthesize it to verify performance. Ver-
ification may fail because we do not consider routing detail
in the ILP and the architecture performance may not be lin-
ear. If the verification fails, we add constraints to eliminate
the current design and repeat the process.

Figure 3 shows the multiprocessor solution for header pro-
cessing after the exploration. It contains 3 pipeline stages,
with 4 processors in the first two stages and 3 processors
in the last stage. The IP address lookup contains a total
of 7 memory accesses. The first two stages involve 3 mem-
ory accesses each. The third stage has a single memory ac-
cess. The verify operations are divided between the first and
third stages. The processors in the third pipeline stage pro-
cess packets 25% faster than the rate of the former stages.
Hence, only three processors are needed in this stage. The
throughput of the design obtained is 2 Gbps.

Route
Table

Route
Table

Route
Table

Block RAM

From source
microblaze 1

Lookup1

ver & ttl
Verify

Lookup1

ver & ttl
Verify

From source
microblaze 2

Lookup1

ver & ttl
Verify

Lookup3

Verify
checksum

Lookup3

Verify
checksum

Lookup3

Verify
checksum

To source
microblaze 1

To source
microblaze 2

To source
microblaze 1

To source
microblaze 2

OPB

Key: OPB FSLMicroBlaze

OPB
32

Verify
ver & ttl

Lookup1

Lookup2

Lookup2

Lookup2

Lookup2

FSL

Figure 3: Multiprocessor design solution for IPv4
header processing after automated exploration.

5.3 Comparison to hand-tuned design
In this section, we first briefly summarize the hand-tuned

design presented in [9]. We then compare this to the results
of our automated exploration.

Figure 4 shows the final hand-tuned multiprocessor design
for header processing as presented in [9]. In this design there
are 4 arrays of pipelined MicroBlaze processors. FSL links
transfer the header between processors in a pipeline array.
All processors in lookup stages 1 and 2 access the same part
of the route table in shared memory over the OPB bus.
As in our automated exploration framework, each OPB can
only be connected to two masters. The BRAM memory is
dual-ported. Hence, the same route table memory can be
serviced by 2 OPB buses. Thus, the choice of 4 branches is
optimum for multiprocessor designs where shared resources
are accessed over the OPB. The measured throughput of the
header processing multiprocessor in Figure 4 is 1.8 Gbps.

The design from our automated exploration has higher

Route
Table

Route
Table

From source
microblaze 1

From source
microblaze 2

ver & ttl
Verify

checksum

ver & ttl
Verify

checksum

ver & ttl
Verify

checksum

ver & ttl
Verify

checksum

32
OPB OPB

Lookup
Stage 1 Stage 2

Lookup

Stage 1
Lookup Lookup

Stage 2

Stage 1
Lookup Lookup

Stage 2

Stage 1
Lookup

Stage 2
Lookup

To source
microblaze 1

To source
microblaze 2

To source
microblaze 1

To source
microblaze 2

Key:
OPB FSL

Block RAMMicroBlaze

Figure 4: Hand-tuned multiprocessor design for
IPv4 header processing.

throughput than the hand-tuned design, while using fewer
processors. This is because the result of the design au-
tomation balances the workload across all the processors
extremely well. In comparison, the hand-tuned multipro-
cessor design in Figure 4 is less balanced. The first ver-
ify stage is slightly underutilized as compared to the latter
stages, leading to lower throughput. It would be difficult
for a designer to balance out all stages evenly, while using
the right number of processors per stage. This problem can
however be optimally handled by an automated tool like the
one presented in this work.

6. CONCLUSIONS
Modern FPGAs provide the processing capacity to build a

variety of micro-architectural configurations. However, the
vast diversity in the architectural design space makes the
task of determining an efficient multiprocessor configuration
tuned for a target application challenging. Currently, the de-
signer must manually explore the large and complex design
space of micro-architectures for an application to achieve
the full performance potential of FPGA multiprocessors. So
how can we improve the design process for soft multiproces-
sors for a target application?

To ease the design challenges and improve the design pro-
cess, we have proposed an automated framework to assist
the designer in exploring the design space of soft multipro-
cessor micro-architectures. The objective is to identify the
best multiprocessor on the FPGA for a target application
and optimally map the application tasks and communication
links to this micro-architecture. Our framework uses ana-
lytical models of the architecture and application and solves
the exploration problem using Integer Linear Programming
(ILP).

To evaluate the effectiveness of our framework, we applied
the framework to automatically explore the design space of
micro-architectures for the IPv4 packet forwarding appli-
cation. It produced an efficient soft multiprocessor design
that achieved a throughput of 2 Gbps, surpassing a carefully
tuned hand design.

While the initial experimental results for our exploration
framework are promising, there are several areas for im-
provement. First, additional experiments are needed to fur-
ther demonstrate the effectiveness and flexibility of our ap-

proach. We plan to apply the framework to other network
applications as well as to target multimedia applications.
Second, our current formulation ignores the arbitration over-
head when computing the communication access time. This
can be a significant source of error when there are a large
number of masters on a bus. We plan to extend the frame-
work to include arbitration overhead to eliminate this source
of error. Lastly, our framework allows the designer to guide
the exploration process by inserting additional constraints
in the formulation. While the ILP formulation is already
flexible enough to do this, we plan to add an easy to use
interface so that these types of constraints can be added
systematically.

7. ACKNOWLEDGMENTS
We thank Akash Deshpande of Teja Systems for suggest-

ing the investigation of soft multiprocessor systems. We also
thank André DeHon for his guidance and comments. Fi-
nally, we thank the anonymous reviewers for their valuable
suggestions.

8. REFERENCES
[1] EEMBC. http://www.eembc.org/.

[2] ILOG CPLEX.
http://www.ilog.com/products/cplex/.

[3] A. Atamtürk and M. W. Savelsbergh. Integer
Programming Software Systems. Technical Report
BCOL.03.01, IEOR, University of California at
Berkeley, January 2003.

[4] Chris Rowen, Tensilica Inc. Fundamental Change in
MPSoCs: A fifteen year outlook. In MPSOC’03
Workshop Proceedings. International Seminar on
Application-Specific Multi-Processor SoC, 2003.

[5] M. Grajcar. Genetic List Scheduling Algorithm for
Scheduling and Allocation on a Loosely Coupled
Heterogeneous Multiprocessor System. In In Proc. of
the Design Automation Conference (DAC), volume 17,
pages 280–285, June 1999.

[6] M. Gries and Y. Jin. Comprehensively Exploring the
Design Space. In M. Gries and K. Keutzer, editors,
Building ASIPs: The MESCAL Methodology, pages
131–178. Springer Inc., 2005.

[7] M. Gries and K. Keutzer, editors. Building ASIPs:
The MESCAL Methodology. Springer Inc., 2005.

[8] P. D. Hoang and J. M. Rabaey. Scheduling of DSP
Programs onto Multiprocessors for Maximum
Throughput. In IEEE Transactions on Signal
Processing, volume 41, pages 2225–2235, June 1993.

[9] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer. An
FPGA-based Soft Multiprocessor System for IPv4
Packet Forwarding . In International Conference on
Field Programmable Logic and Applications (FPL),
August 2005.

[10] M. Ruiz-Sánchez, E. Biersack, and W. Dabbous.
Survey and Taxonomy of IP Address Lookup
Algorithms. Network, IEEE, Vol.15, Iss.2, pages 8–23,
March-April 2001.

[11] Xilinx, Inc. Embedded Systems Tools Guide, Xilinx
Embedded Development Kit, EDK version 6.2i
edition, June 2004.

