
ZIGGURAT-BASED HARDWARE GAUSSIAN RANDOM NUMBER GENERATOR

Guanglie Zhang, Philip H.W. Leong ∗

Department of Computer Sci. & Eng.,
The Chinese University of Hong Kong,

Shatin, NT, Hong Kong
{glzhang, phwl}@cse.cuhk.edu.hk

Dong-U Lee†, John D. Villasenor ‡

Electrical Engineering Department,
University of California,

Los Angeles, USA
{dongu, villa}@icsl.ucla.edu

Ray C.C. Cheung§, Wayne Luk ¶

Department of Computing,
Imperial College London,

London, UK
{r.cheung, w.luk}@imperial.ac.uk

ABSTRACT

An architecture and implementation of a high performance
Gaussian random number generator (GRNG) is described.
The GRNG uses the Ziggurat algorithm which divides the
area under the probability density function into three re-
gions (rectangular, wedge and tail). The rejection method
is then used and this amounts to determining whether a ran-
dom point falls into one of the three regions. The vast major-
ity of points lie in the rectangular region and are accepted to
directly produce a random variate. For the non-rectangular
regions, which occur 1.5% of the time, the exponential or
logarithm functions must be computed and an iterative fixed
point operation unit is used. Computation of the rectangular
region is heavily pipelined and a buffering scheme is used
to allow the processing of rectangular regions to continue
to operate in parallel with evaluation of the wedge and tail
computation. The resulting system can generate 169 mil-
lion normally distributed random numbers per second on a
Xilinx XC2VP30-6 device.

1. INTRODUCTION

Gaussian random number generators (GRNG) are used in
a large number of computationally intensive modeling and
simulation applications including heat transfer [1], commu-
nications systems [2], and evolutionary programming [3].
Given their importance, there has been surprisingly little re-
search on their efficient hardware implementation. McCol-
lum et al. used a lookup table followed by linear interpola-
tion to compute the inverse cumulative distribution function
in order to generate random variates with arbitrary distri-
bution [4]. Lee et al. [2] proposed using the Box-Muller
algorithm [5] to generate normally distributed random num-
bers. The elementary functions involved in its implementa-
tion are performed using non-uniform piecewise polynomial

∗Research partially supported by the H.K. Government RGC Grant,
Ref. No. CUHK4333/02E.

†Research partially supported by the Jet Propulsion Laboratory, NASA.
‡Research partially supported by the U.S. Office of Naval Research.
§Research partially supported by the Croucher Foundation.
¶Research partially supported by the U.K. EPSRC Grant, number GR/N

66599 and GR/R 31409.

approximation. The Wallace method [6] involves transform-
ing a pool of random numbers to a new pool of random num-
bers. Lee et al. made a hardware implementation of the Wal-
lace method and showed the speed and size advantages over
the Box-Muller method [7].

We propose the Ziggurat method [8] as an efficient al-
gorithm to use in a GRNG. To date, no hardware implemen-
tations of this method have been reported. The Ziggurat al-
gorithm allows fast integer operations to be used to produce
most of its outputs in a single cycle. For a small percentage
of outputs, elementary functions such as the natural loga-
rithm and exponential function need to be computed. These
are implemented using polynomial approximations using an
arithmetic logic unit (ALU) and state machine. The result-
ing system can generate 169 million normally distributed
random numbers per second on a Xilinx XC2VP30-6 de-
vice. The key contributions of this paper are:

• We develop a 5-stage fully-pipelined architecture for
the Ziggurat method that combines a single-cycle par-
allel datapath for the common cases, and a buffered
sequential ALU supporting elementary function eval-
uation for the infrequent cases.

• We advocate the Tausworthe uniform random number
generator (URNG) for custom computing machines
that perform simulation since it has strong theoretical
support and better quality than the more commonly
used linear feedback shift register. This paper shows
that the hardware implementation of the Tausworthe
generator is fast and has small area; furthermore, it
has superior performance when evaluated using the
DIEHARD random number testsuite.

• We propose an on-chip χ2 test circuit which allows
the distribution of random numbers to be monitored
at runtime. This greatly reduces the bandwidth for
full speed testing of GRNGs and allows continuous
quality checking of the GRNG.

• We demonstrate that, for applications where accurate
modeling of the tails of the Gaussian distribution are

0-7803-9362-7/05/$20.00 ©2005 IEEE 275

required, our method is smaller and faster than all pre-
viously reported designs (Table 3).

The remainder of this paper is organized as follows. Sec-
tion 2 describes the Ziggurat method for generating Gaus-
sian distributed random numbers. Section 3 provides meth-
ods for evaluating elementary functions using polynomial
approximations. Section 4 presents the architecture of our
Gaussian random number generator. Section 5 reports re-
sults and Section 6 draws conclusions.

2. THE ZIGGURAT METHOD

The Ziggurat method uses the rejection method to generate
a random variate from an arbitrary decreasing probability
density function. Our description of the Ziggurat method in
this section follows the notation of Marsaglia [8].

The rejection method for generating a random variate
can be described as follows. Let y = f(x) be a function with
finite area, C be the set of points (x, y) under the curve and
Z be a finite area superset of C, i.e. Z ⊃ C. Random points
(x, y) are taken uniformly from Z until (x, y) ∈ C and x is
returned as the random variate [5, 8]. The density of such
an x will be cf(x), with c a normalizing value that makes
cf(x) a probability density function (i.e.

∫
cf(x)dx = 1).

For a normal distribution, we use f(x) = exp[− x2

2],
x > 0. C is the area under this curve. The distribution is
made two-sided by the introduction of a randomly chosen
sign, and is scaled to ensure unit area as described above. Z
is chosen as the union of n sections, Ri (0 < i ≤ n), made
up of (n −1) rectangles and a bottom strip which tails off to
infinity. The rectangles and bottom strip are chosen so that
they are all of equal area, v and their right-hand edge is de-
noted xi. The leftmost rectangle, R0 is assumed to be empty
and x0 = 0. The following pseudocode describes the com-
plete Ziggurat algorithm (which shows the rectangle, wedge
and tail regions):

01 INITIALIZATION
02 n is the size of the w and k tables.
03 i = 0..n-1 and r = xn−1.
04 w0 = 0.532v/f(r); k0 = �232rf(r)/v�.
05 wi = .532xi; ki = �232(xi−1/xi)�.

06 {fi}, where fi = e−i2/2.
07 U(0,1) is a uniform random number generator over [0,1).
08 REPEAT
09 Generate a signed random 32-bit integer j.
10 Set index: i ← j & (2n − 1). Set x ← jwi.
11 IF |j| < ki THEN RETURN x. /* rectangle */
12 IF i = 0 THEN /* tail */
13 DO
14 Generate i.i.d. uniform (0,1) variates u1, u2.
15 x ← −ln(u1)/r, y ← −ln(u2).
16 WHILE u2 + u2 < u2

1.
17 RETURN x > 0 ? (r + x) : −(r + x).

18 IF (fi + (fi−1 − fi)U(0, 1)) < e−x2/2 /* wedge */
19 RETURN x.
20 UNTIL FALSE.

The values of xi (i = 1, 2, . . . (n−1)) are needed for the
tables in the hardware implementation and are determined
by equating the area of each of the rectangles with that of the

base region. If this area is v, the equations are as follows:

v = xi[f(xi−1) − f(xi)] = rf(r) +

Z ∞

r
f(x)dx. (1)

In order to determine r, a function z(r) is first defined
as follows:

FUNCTION z(r)
xn−1 = r.
v = rf(r) +

R ∞
r

f(x)dx.
FOR i = (n-2) DOWNTO 1

xi = f−1(v/xi+1 + f(xi+1)).
RETURN (v − x1 + x1f(x1)).

The root of z(r) (i.e. the value of r such that z(r) = 0)
is found numerically, e.g. using the bisection method. The
values for the xi are then calculated from r.

The random point is only accepted if it falls under the
pdf curve, otherwise it is rejected. The probability of ac-
cepting a point, Paccept is given by:

Paccept = area(C)/area(Z) =

R ∞
−∞ e−x2/2dx

2vn
. (2)

Finally, the probability that a point is not drawn from a
rectangular region, Pnrect (i.e. it is a wedge, tail or rejected)
can be calculated as follows:

Pnrect = 1 − area(rect)/area(Z)

=

n−2X
i=1

xi(f(xi) − f(xi+1)) + xn−1f(xn−1) (3)

3. ELEMENTARY FUNCTION EVALUATION

The fast and accurate computation of elementary functions
are necessary for an efficient implementation of the Ziggurat
method. In order to achieve high accuracy using minimal
resources, polynomial approximations are used.

We consider the exponential and logarithm functions re-
quired in the Ziggurat algorithm and describe their imple-
mentation using polynomial evaluation as proposed in [9]
for single precision floating point. A general polynomial
Pn(x) can be written as Pn(x) = Cnxn + Cn−1xn−1 +
· · · + C1x + C0 =

∑n
i=0 Cix

i where n is the degree of the
polynomial, and Ci is the coefficient of the ith term. A func-
tion is approximated over a specified input interval [a, b]. If
the input values are outside this interval, range reduction is
employed. Thus the process for computing the exponential
or logarithm function involves three steps: the reduction of
the given argument X to a related argument x in a inter-
val [a, b], the computation of the exponential for the reduced
argument x, and the reconstruction of the desired function
from its components. For the methods described below, the
peak relative errors are 7.6 × 10−8 and 7.1 × 10−8 for the
exponential and logarithm functions respectively if all the
computations are done in single precision floating point [9].

In our implementation, we use 36-bit accumulators and
18×18 bit multipliers. The format of the two’s complement
fixed point fractions used as inputs to the multipliers are 3

276

integer bits and 15 fractional bits and the peak relative error
is 2−15 for both the exponential and logarithm functions.

The range reduction for the exponential function is ac-
complished by the identities eX = 2kex = ekln2ex =
ex+kln2. An integer k is found such that the fraction x is
within a specified interval. Then X = x + kln2. As x is
restricted to the interval −0.5ln2 ≤ x ≤ +0.5ln2, k can
be calculated by k = �xlog2e + 0.5� where � � represents
the integer truncation function which returns the largest in-
teger that is less than or equal to its argument. Following
range reduction, the exponential function for reduced ar-
gument x is computed according to the following formula
(x ∈ [− ln2

2 , ln2
2]).

ex ≈ (1.9875691500 · 10−4x5 + 1.3981999507 · 10−3x4

+8.3334519073 · 10−3x3 + 4.1665795894 · 10−2x2

+1.6666665459 · 10−1x + 5.0000001201 · 10−1)x2 + x + 1.0
(4)

To evaluate the natural logarithm of a given argument X ,
the range reduction for the reduced argument x is computed
using the identities

lnX = ln(2kx) = lnx + ln2k = lnx + kln2. (5)

We first find the k such that X = 2kx and x in the range
[0.5, 1). This is done by using a left shifter to find the first set
bit in X . The logarithm function for the reduced argument
x is then computed by the function approximation.

4. ARCHITECTURE

The Z used in the Ziggurat algorithm is designed so that
random points falling in the rectangular region occur the
vast majority of the time. Computation in these cases is
extremely fast. For a small percentage of situations (1.5%
for n = 256 as calculated from (3)), wedge and tail region
acceptance must be handled and the computation of elemen-
tary functions is necessary. Fig. 1 is a block diagram show-
ing the main components of the GRNG. We use a pipelined
datapath (stage 1-3) to compute the rectangular regions and
an iterative operation unit (OU) is used to handle the wedge
and tail regions. First-in-first-out (FIFO) buffers are used so
that a number of wedge/tail computations can be queued for
processing by the operation unit while new random numbers
from rectangular regions are being generated. An optional
histogram unit (HU) allows full speed testing of the design
and can be used to apply a χ2 test. The HU allows the qual-
ity of the GRNG to be continuously monitored.
Tausworthe Random Number Generator. Linear feed-
back shift registers (LFSR) are often used to generate uni-
form random numbers in hardware. While traditional LF-
SRs are sufficient for many purposes, the Tausworthe ran-
dom number generator offers slightly superior randomness
with modest hardware cost, so is preferable for applications
such as ours in which extremely stringent noise quality stan-
dards are being applied [5, 10]. The Tausworthe URNG

����������	

��

����

�����	�

�����

�����	���

���	

��������
��

����	������

�������	��

�����

�

���������	
���

�!"

����#

�

����$

%��	�&���

�����

'���(���	

�
)��

����	
��

��	�����

��(�*��

+��	���,���

��

'���-

!	�&���

!	�&��$

!	�&��#

!	�&��.

!	�&��/ #/

#0

#0

#$#$�1�1

#0

#$

1

�1

#$

Fig. 1. Block diagram showing the architecture of the
GRNG with optional on-chip test module.

combines three LFSR based random number generators to
obtain improved statistical properties. A generator with pe-
riod length ≈ 288 is given in [10]. Fig. 2 shows the hardware
implementation of the Tausworthe URNG.
Rectangular Region Datapath and FIFOs. In pseudocode
(lines 9-11), it generates a random point and decides whether
or not it is in the rectangular region. The computation in-
volves a multiplication to get x and comparison of |j| with
ki. If the condition is true, the (otherwise unused) most sig-
nificant bit (MSB) of x is set and x is written to the rect-
angular region output (FIFO1). This datapath should be
made very efficient for the high acceptance rate of x. Our
pipelined design is shown in Fig. 1.

When the condition is false, the random point may cor-
respond to a wedge or tail. Then a marker with the MSB
being reset is written to FIFO1, and the value x is written to
FIFO2 which connects the rectangular region datapath with
the OU. This buffering serves to decouple the computation
of the rectangular regions, either a Gaussian random number
or a marker indicating a wedge/tail is written to FIFO1 every
clock cycle (unless it becomes full). The OU is responsible
for processing inputs received via FIFO2 and must write its
outputs to FIFO3. When the random point x is from the
tail region or accepted by the wedge region, the MSB of the
value is also set and write to FIFO3.

When an output is read from the GRNG, a number is

277

������

���	

�� ����

����

������

���

�� ���

����

�����	

��	

�� ����

���	

����� ����� ����	

�������������

Fig. 2. Architecture of Tausworthe URNG.

���

���

���
��	
�����

���

����
��

�
�
�

������	������
��
����
�����
�

�	
��	�
�	������

�
�
�

�
����

�����������

��

�

��

�
�
�

�
�
��

Fig. 3. Architecture of operation unit.

read from FIFO1 and its MSB is used to control a multi-
plexer. If the MSB is set, the value from FIFO1 is used,
otherwise a read from FIFO3 is returned. Meanwhile, if
the MSB of the data from FIFO3 is set, the ultimate out-
put is valid random number, otherwise, it is a rejected trial
for which no valid random number is generated (the proba-
bility of this occurring will be discussed in Section 5). Note
that the MSB is used as a marker and does not form part of
the random number.

Operation Unit (OU). The block diagram of the operation
unit is shown in Fig. 3. It is organized as a register file and
an ALU which includes two adders and a multiplier. In ad-
dition, a ROM, used to store polynomial coefficients to com-
pute the elementary functions ln and exp is used. The OU
is sequenced via a hardwired finite state machine.

Polynomial Evaluation. The OU must compute the ln and
exp functions in lines 15 and 18 of the Ziggurat pseudocode
respectively. This turns out to be the most computationally
expensive part of the Ziggurat algorithm, but fortunately,
since these correspond to the wedge and tail regions which
occur with much lower probability than the rectangular re-
gions, the speed with which one must compute these ele-
mentary functions is not so critical. As an example, for
n = 256, as used in our implementation, the combined prob-
ability of a wedge, tail or the sample being rejected is 1.5%

(3) and so, the speed for these sections need only be 1.5% of
the speed for a rectangular region.

The direct evaluation of a polynomial involves evaluat-
ing each monomial CiX

i individually. This takes i mul-
tiplications for each monomial and n additions, resulting
in n(n + 1)/2 multiplications for a polynomial of degree
n. Horner’s rule [11], as typically used in both software
and hardware implementations, achieves better numerically
stability and efficiency by factoring the terms as: Pn(x) =
(((Cnx+Cn−1)x+Cn−2)+ · · ·+C1)x+C0. Computation
starts from the innermost parentheses using the coefficients
of the highest degree monomials and works outwards.

Control Logic with State Machine. We use a finite state
machine to implement the control logic. One-hot encoding
is employed to maximize speed and minimize implementa-
tion area. The state machine begins at “S Start” and first
waits for the REQ signal which corresponds to FIFO2 being
non-empty. When the REQ signal is valid, the state ma-
chine makes a choice among the different state sequences
for wedge and tail regions according to whether the INDEX
signal is 1 or 0 respectively. The state machine generates
the address of the coefficients ROM, read and write sig-
nals for the register file and the select signal for the mul-
tiplexor. In the case of a wedge (lines 18-19 in pseudocode),
the function e−x2/2 is evaluated in the “S EXP” state and
compared with fi + [fi−1 − fi] × U in the “S Wedge” state.
If INDEX= 0, we evaluate a tail region (lines 12-17 in
pseudocode). The state machine will calculate the two loga-
rithms and do the comparison in the “S LOG” and “S Tail”
states respectively. Output from the wedge or tail computa-
tions is written to FIFO3 in the “S End” state. After this op-
eration, the state machine will settle in the “S NULL” state
to wait for another REQ signal to “S Start” and for the next
wedge or tail region.

In the histogram unit, the initial values of the RAM are
all zero. The higher order bits of the GRNG output form the
address of a dual-port RAM and the location corresponding
to the generated output is incremented. The other port of the
dual-port RAM can be used to access the histogram without
interrupting the operation of the GRNG.

5. RESULTS

An implementation of the architecture described in Section 4
with n = 256 is made on a Xilinx Virtex-II Pro XC2VP30-
6FF896C FPGA and all results in this section are for this
part unless otherwise specified. In order to achieve high
performance, some special on-chip features of the Virtex-II
FPGA are used, in particular, the SRL16 shift registers, de-
lay locked loop, dedicated 18 × 18 bit hardware multipliers
and dual-port block RAM resources. The design is written
in VHDL and synthesized using Synplify Pro 7.3. Place and
route is performed using the Xilinx ISE 6.2i.

In the subsections that follow, we will first compare the

278

Table 1. DIEHARD test results for Tausworthe and LFSR
URNGs (failed tests in bold).

TEST Tausworthe LFSR
Birthday 0.908125 0.718022
OPERM5 0.659361 0.894649

Binary Rank (31 × 31) 0.782536 0.894649
Binary Rank (32 × 32) 0.357046 0.768956

Binary Rank (6 × 8) 0.324027 0.261791
Bitstream 0.598578 0.443253

OPSO 0.431957 0.571626
OQSO 0.492004 0.559064
DNA 0.432068 0.525910

Stream Count-the-1 0.459779 0.564513
Byte Count-the-1 0.609182 0.560009

Parking Lot 0.941697 0.460448
Minimum Distance 0.337831 0.999999

3D Spheres 0.952286 0.634016
Squeeze 0.113189 0.855206

Overlapping Sums 0.139815 0.717343
Runs Up 0.555513 0.575984

Runs Down 0.253845 0.552341
Craps 0.395120 0.841941

Tausworthe URNG and an LFSR-based URNG in terms of
area utilization and the quality of the generated random num-
bers. We then describe an implementation of the GRNG
on an FPGA, discuss its performance and compare it with
previously published Box-Muller and Wallace implementa-
tions. In the last subsection, we present some statistical tests
for the GRNG.

Tausworthe URNG. We compare the Tausworthe URNG
with a maximum length LFSR-based URNG. The LFSR uses
the primitive pentanomial x88 + x87 + x17 + x16 + 1 over
GF (2) and a random initial state. The 32-bit Tausworthe
URNG uses 64 slices and can operate above 300MHz. The
88 tap LFSR can be implemented in 3.5 slices since each
slice can implement a 34-bit shift register and an extra lookup
table is required to compute the feedback. 32 of these are
required to have a parallel 32-bit output so the resource uti-
lization of the LFSR is 112 slices.

It is not possible to prove a sequence is random. How-
ever, the DIEHARD test developed by Marsaglia [12] is
widely considered to be one of the most stringent URNG
tests. Although the DIEHARD test suite is one of the most
comprehensive publically available sets of randomness tests,
unfortunately there are no well-defined pass criteria. Intel
calculated that the entire 250 test suite passes with a 95%
confidence interval for p-values between 0.0001 and 0.9999
[13], and this method is used for our testing.

The two outputs of the URNGs are compared with the
DIEHARD testsuite. Results are shown in Table 1 with
failed tests shown in bold. As it can be seen, the Tausworthe
generator passes all tests whereas the LFSR fails the mini-
mum distance test.

Table 2. Implementation results for GRNG on XC2VP30-6
and XC3S200-4 FPGAs (without test module).

XC2VP30-6 XC3S200-4
SLICEs 868 out of 13,696 (6%) 908 out of 1,920 (47%)
Block RAMs 4 out of 136 (2%) 4 out of 12 (33%)
MULT18X18s 2 out of 136 (13%) 2 out of 12 (16%)
DCMs 1 out of 8 (12%) 1 out of 4 (25%)
Period of “CLK” 5.88ns (170MHz) 6.11ns (164MHz)
Period of “CLK2” 11.76ns (85MHz) 12.21ns (82MHz)

Gaussian Random Number Generator (GRNG). In the
GRNG implementation, n = 256 is used. A single dual-
port 512 × 36 bit block RAM is used to store both w and k
arrays, each being 256 entries in size.

The GRNG produces 35-bit outputs and 32-bit values
are maintained in the rectangular region datapath for all op-
erations except the multiplier which takes 18 × 18 bit in-
puts and produces a 36-bit result. Similarly, the OU’s dat-
apath is 36-bit except for the inputs to the multiplier which
are 18 bits. The data width and size of the major blocks
used in the datapath of the GRNG are summarized in Fig. 1.
Place and route results from the CAD tools, showing max-
imum clock frequency and resource utilisation are given in
Table 2. The implementations do not include the optional
on-chip test module, which would require around 12 more
slices and 1 more block RAM.

The random point generated in the rejection method is
accepted with probability of Paccept (as shown in (2)) which
is 0.993 for n = 256. In the case that the cycle results in the
point being rejected, no output is produced. The throughput
of the implementation, can thus be calculated by:

MaxThroughput = fCLK × Paccept

Our implementation shows 170MHz×0.993 which is 169
million samples / second. It is possible that the distribution
of random numbers causes several wedge and tail requests to
be queued in the OU, and the GRNG will stall waiting for an
output of the OU. Our simulations show that this effect oc-
curs infrequently enough that it does not significantly affect
the throughput of the implementation since there are only 50
stalled cycles during 109 cycles of simulation. We envisage
that most applications would not be able to process data at
this rate and this will result in even fewer stalled cycles.

To make a fair comparison, the design is retargeted for a
Virtex-II XC2V4000-6 device using the same 170MHz tar-
get frequency. Table 3 shows a comparison between the Zig-
gurat design, Wallace [7] and Box-Muller [2] designs for
both hardware and software designs. It can be seen that the
Ziggurat implementation uses less resources and is faster
than the other two implementations. One drawback of the
Wallace design is the use of previously generated random
numbers, leading to poor distributions in those regions [14].
The Ziggurat method does not suffer from this effect.

279

Table 3. Comparisons of different Gaussian random number generators implemented on a XC2V4000-6 FPGA (one sample
is generated in every clock cycle). The software implementations run on a P4-2GHz PC.

Ziggurat Wallace [7] Box-Muller [2] Ziggurat [14] Wallace [14] Box-Muller [14]
Clock 170MHz 155MHz 133MHz 2GHz 2GHz 2GHz
SLICEs 891 770 2514 - - -
Block RAMs 4 6 2 - - -
MULT18X18s 2 4 8 - - -
Throughput (M/sec) 169 155 133 16.1 52.6 3.6

In order to find out how small of a device can imple-
ment our design, an XC3S200, the second smallest device
in Spartan-3 FPGA family, is fitted in. The implementation
results are shown in Table 2. As the maximal frequency of
implementation is 164MHz, the throughput can reach 163
million samples / second in this case.
Quality of GRNG’s Random Numbers. In order to check
the distribution of the random numbers generated by our
design, we apply the chi-square (χ2) goodness-of-fit test
[15, 16]. The χ2 test determines if the sample under anal-
ysis is drawn from a population that follows the specified
Gaussian distribution. For the χ2 test computation, the data
are divided into k bins and the test statistic is defined as:
χ2 =

∑k
i=1

(Oi−Ei)
2

Ei
where Oi is the observed frequency

for bin i and Ei is the expected frequency for bin i. The
expected frequency can be calculated by the probability pi

that each observation falls into the category i and the to-
tal number of observations t. So the expected frequency is
Ei = tpi. We generate 109 normal random numbers with
our hardware design and test them using the χ2 test based
on 512 bins spaced uniformly over [−8, 8]. The χ2

511 statis-
tic is 422.539. For a 95% level of confidence, the critical
value is 565, showing that our hardware Ziggurat design
produces good quality results. If y1 and y2 are normally dis-
tributed random numbers, e−(y2

1+y2
2)/2 should be uniformly

distributed over [0,1]. This transformation is applied and the
DIEHARD test runs. The resulting samples pass all the tests
in the DIEHARD testsuite.

6. CONCLUSION

An architecture for a hardware Gaussian random number
generator which can generate 169 million random numbers
per second is described. The Ziggurat algorithm combines
a high speed parallel datapath for the common rectangu-
lar region case and a sequential circuit for the infrequent
wedge and tail regions. The resulting implementation is
compact, fast and generates high quality Gaussian random
numbers with correct distribution in the tails. Future work
includes automating selection of the best method for ele-
mentary function evaluation, and retargeting the design for
different FPGAs.

7. REFERENCES

[1] M. Gokhale et al., “Monte Carlo radiative heat transfer simu-

lation,” in Proc. Field Programmable Logic and Applications.
LNCS 3203, Springer, 2004, pp. 95–104.

[2] D. Lee et al., “A Gaussian noise generator for hardware-
based simulations,” IEEE Transactions on Computers,
vol. 53, no. 12, pp. 1523–1534, 2004.

[3] K. Chellapilla, “Combining mutation operators in evolution-
ary programming,” IEEE Transactions on Evolutionary Com-
putation, vol. 2, no. 3, pp. 91–127, 1998.

[4] J.M. McCollum et al., “Hardware acceleration of pseudo-
random number generation for simulations applications,” in
Proc. of Annual Southeastern Symposium on System Theory,
2003, pp. 299–303.

[5] D. Knuth, Seminumerical Algorithms, ser. The Art of Com-
puter Programming. Addison-Wesley, 1997, vol. 2.

[6] C. Wallace, “Fast pseudorandom generators for normal and
exponential variates,” ACM Transations on Mathematical
Software, vol. 22, no. 1, pp. 119–127, 1996.

[7] D. Lee et al., “A hardware Gaussian noise generator using the
Wallace method,” IEEE Transactions on VLSI Systems, 2005,
accepted for publication.

[8] G. Marsaglia and W. W. Tsang, “The Ziggurat method for
generating random variables,” Journal of Statistical Software,
vol. 5, no. 8, 2000.

[9] S. Moshier, Methods and Programs for Mathematical Func-
tions. Halsted Press, 1989.

[10] P. L’Ecuyer, “Maximally equidistributed combined Taus-
worthe generators,” Mathematics of Computation, vol. 65,
no. 213, pp. 203–213, 1996.

[11] I. Munro, “Optimal algorithms for parallel polynomial evalu-
ation,” Journal of Computer and System Sciences, vol. 7, pp.
189–198, 1973.

[12] G. Marsaglia, DIEHARD: A Battery of Tests of Randomness,
http://stat.fsu.edu/˜geo/diehard.html, 1997.

[13] Intel Platform Security Division, “The Intel ran-
dom number generator,” Intel Technical Brief, 1999,
ftp://download.intel.com/design/security/rng/techbrief.pdf.

[14] D. Lee et al., “Design parameter optimization for the Wallace
Gaussian random number generator,” ACM Transactions on
Mathematical Software, 2005, submitted.

[15] R. D’Agostino and M. Stephens, Goodness-of-fit Techniques.
Marcel Dekker Inc., 1986.

[16] G. W. Snedecor and W. G. Cochran, Statistical Methods.
Iowa State University Press, 1989.

280

