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ABSTRACT

In this paper, we describe a compact system for real-time
generation of three-dimensional motion fields. Our system
consists of one FPGA, two cameras and one host processor.
With our system, we can generate dense three-dimensional
motion fields (640 x 480 vectors in a standard size image) at
video-rate from dense optical flow and dense depth map ob-
tained by area-based matching. The performance can be im-
proved up to 840 frames per second in small size (320 x 240)
images by configuring another circuit, though it requires
more amount of hardware resources. By changing search
spaces for optical flow and depth map by reconfiguration,
we can control the maximum motion speed which can be
detected, and the minimum distance to moving objects in
the image, under limited hardware resources.

1. INTRODUCTION

In this paper, we describe a compact system for real-time
generation of three-dimensional motion fields using optical
flow and depth map. Optical flow is a two-dimensional vec-
tor field in the image plane, which is obtained by comparing
two images at ¢-At and ¢ taken by one camera. Optical flow
can be used as the projection of the three-dimensional mo-
tion of the world in general. Depth map is a distance map
to objects in the image, which is obtained by comparing two
images (left and right) at ¢ taken by two cameras (stereo vi-
sion).

In our system, in order to suppress noises using redun-
dancy, dense three-dimensional motion fields are generated
from dense optical flow and dense depth map obtained by
area-based matching. In the area-based matching, the most
similar parts to small windows (w x w pixels) in one image
are looked up in the target area in another image using the
SAD (Sum of Absolute Difference) algorithm. We imple-
mented two kinds of circuits for the area-based matching.
In the first implementation, intermediate results in the com-
putation along xz and y axes are stored on the FPGA and
reused w times (but part of them are recalculated in order to
minimize the amount of data which have to be stored on the
FPGA) in order to achieve highest performance. This im-
plementation achieved 840 frames per second (fps) on small
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size images (320 x 240 vectors in a image), which drastically
outperforms previous works. In the second implementation,
intermediate results along z axis are stored, but operations
along y axis are re-executed w times in order to minimize
the circuit size while maintaining video-rate on standard size
images (640 x 480 vectors in a image).

The size of circuits for optical flow and depth map is al-
most proportional to the size of target area, though the area
is two dimensional in optical flow and one dimensional in
stereo vision (under epipolar constraint). With larger area,
faster movement can be detected in optical flow, and closer
objects can be found in stereo vision. However, under lim-
ited hardware resources, it is difficult to provide enough area
for both of optical flow and stereo vision. By changing the
area sizes by reconfiguration, we can control the maximum
motion speed which can be detected, and the minimum dis-
tance to moving objects, depending on situations.

2. PREVIOUS WORKS

Computing the three dimensional motion is a fundamental
task in computer vision, and many approaches using optical
flow and depth map such as [2, 3, 4] have been proposed.
Our approach is not new, but a brute force approach using
dense vector field and dense vector map to suppress noises
using redundancy, which becomes possible because of re-
cent progress of FPGAs.

Many approaches to reduce the computational complex-
ity of the optical flow have been proposed[5][6], but in those
algorithms, computations of areas which seem to be unnec-
essary for detecting moving objects are not executed, and
users need to think of trade-offs between accuracy and effi-
ciency. In order to accelerate its performance by hardware,
many systems have been proposed to date[7][8][9][10]. In
those systems, in order to achieve real-time processing, sizes
of images are limited or only sparse vector fields are gen-
erated. Their performances are, however, still slower than
video-rate in the standard size images.

On the other hand, recent progress has already made it
possible to generate dense depth map based on area-based
matching[11, 12].
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3. THREE-DIMENSIONAL MOTION FIELDS

Three-dimensional motion is projected onto a two-dimensional
velocity field on the image plane of the camera. If vectors
in optical flow are regarded to be equivalent to the velocity
vectors[1], start and end points of a vector in optical flow
correspond to start and end points of a three dimensional
velocity vector. Suppose that

e (X,Y,Z) is the coordinate system positioned to the
optical center of a camera, so that the Z axis coincides
the optical axis, and (z, y) is the coordinate system on
the image plane,

e correspondence between two images (¢ and ¢ - At)
has been calculated, and (z, y.) at ¢ corresponds to
(xp,yp) att - At,

e depth(z.,y.) att is Z., and depth(x,, y,) at t - At is
Zy.

Then, (Zcxe/ f, Zeye/ f, Z.) at t corresponds to (Zpzp/ f,
Zpyp/ [, Zyp) at t - At in 3-D space (f is the focal length).
Therefore, the velocity vector (motion vector) can be ex-
pressed as

(Vx. W, Vz) = (Zprp—Zexe) | |, (Zoyp—Zeye) | |, Zp—2Ze)
In our implementation, vectors from ¢ to ¢- At are calculated
in optical flow. By calculating these reversed vectors, we
can obtain three-dimensional motion vectors on pipelined
circuits as follows.

1. Circuits for optical flow and depth map are almost
same. Therefore, corresponding points to a given point
(z¢,y.) are searched in parallel on the two circuits.

2. Then, depth(z.,y.) at t are calculated using the dis-
tance between the corresponding points.

3. Atthe same time, depth(zp, yp,) att - At are obtained
by reading out depth map at ¢ - At stored in external
memory on the FPGA board.

Suppose that the camera is moving with translational
motion T = (Tx,Ty,T7) and rotational motion @ =
(wx,wy,wz). Then, two dimensional velocity (d,d,) on
the image plane can be represented as follows (suppose that
the focal length is normalized to 1 to simplify the equations).

dy = (=Tx +1T2)/Z + wxay — wy (22 + 1) —wzy

dy=(-Ty +yT2)]Z + wx(y®> + 1) —wyay + wzz
If cameras are mounted horizontally on a vehicle with non-
holonomic kinematics, we can consider T'x, Ty, wx,wz =
0. Then, the general equations above can be reduced to the
following:

de = 2T7)7 — wy (2% + 1)

dy =yT7/Z —wyzy
These equations can be solved for each vector as follows.

Tz = (dy(2* +1)/y — dyx)Z

wy = —dg +dyz/y
By calculating Tz and wy using (d., d,) obtained by optical
flow, and Z (distance) obtained by stereo vision, we can es-
timate Tz and wy. In our current implementation, values of
T and wy for all vectors are calculated on the FPGA, and
the medians of them are calculated on the host processor to
estimate the ego-motion [4]

4. THE OPTICAL FLOW

In an image taken by a camera, each pixel corresponds to
the intensity value obtained by the projection of an object in
3-D space onto the image plane. When the object or the
camera moves, its corresponding projection also changes
position in the image plane. Optical flow is a vector field
that shows the direction and magnitude of these intensity
changes from one image to the other. In the optical flow, the
corresponding point to a given point in an image is searched
in the next image taken by the same camera. Area-based
(or correlation-based) algorithms match small windows cen-
tered at a given pixel to find corresponding points between
the two images. They yield dense maps, but fail within oc-
cluded areas (occlusions are caused by the movement of the
camera). Feature-based algorithms match local cues (e.g.,
edges, lines, corners) and can provide robust, but sparse
maps which requires interpolation. In hardware systems,
area-based algorithms are widely used, because the opera-
tions required in those algorithms are very regular and sim-
ple.

The most common pixel-based matching algorithm is
squared intensity differences (SSD) and absolute intensity
differences (SAD). We used the SAD (Sum of Absolute Dif-
ference) algorithm because it is the simplest, and its result is
almost same as other algorithms in the stereo vision. In the
SAD algorithm for the optical flow, £ and  which minimize
the following equation are searched.

SAD(x’ y) 6’ 77) =

S e W o ot y+g) ~ T (i€, y+j+n)]
In this equation, Iy and I; are images in time = t and
time = t + At respectively, and w x w is the size of the
window centered at a given pixel (its position is (x, y)). The
range of £ and 7 decides the size of area where the corre-
sponding point to (x, y) is searched.

In Figure 1, a small window centered at (z,y) (Figure
1(a)) is compared with all windows in its target area centered
at (z,y) (Figure 1(b)(c)(d)). When the size of the target area
is (k+w—1) x (k+w— 1), there are k x k windows in the
target area, and k£ x k SADs (Sum of Absolute Differences)
are calculated. Then, the window which gives the minimum
SAD is chosen, and its center point (2, y’) is considered as
the corresponding point to (x, y). In this comparison, every
pixel in the window in time = ¢ is compared with k& x k pix-
els in the target area (the range of £ and n is —k/2 to k/2).
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Fig. 1. Area-Based Matching in the Optical Flow

By this two-dimensional search, we can obtain one vector
from (z,y) to (', /).

4.1. A Technique to Realize the Maximum Performance

In order to achieve maximum performance on hardware, all
operations have to be processed in parallel and in pipeline.
Therefore, suppose that all operations described in this sub-
section are executed in parallel and in pipeline.

In Figure 2(a), suppose that we have calculated & x k
SADs (k x k x w x w ADs (Absolute Differences) have
been calculated) and chosen the minimum of them to obtain
one vector (computations of only two SADs are shown to
simplify the figure). During these computations, no opera-
tions on same data are executed.

Then, the window is shifted to the right by one pixel to
obtain next vector (Figure 2(b)). At this point of time, pix-
els in a rectangle with slanting lines in the shifted window
(time = t) are already compared with pixels in rectangles
with slanting lines in its target area (time = ¢ + At) dur-
ing the computation of the previous vector. Therefore, by
storing k£ x k x (w — 1) x w ADs (Absolute Differences)
calculated in Figure 2(a), the number of new ADs to ob-
tain the new vector can be reduced to & x k£ x w. When
the window is shifted down by one pixel as shown in Figure
2(c), pixels in a rectangle with slanting lines in the shifted
window are already compared with pixels in rectangles with
slanting lines in its target area. In this case, we can also re-
duce the number of AD operations to & x k x w by storing
and reusing the k x k x w x (w — 1) ADs,

In Figure 2(d), suppose that the image size is X x Y and
the window is shifted to the right (along x axis) first, and
when the window reaches to the right-end of the image, the
window is moved to the left-end again and shifted down by
one pixel. In this case, when the window is shifted to the
right by one pixel, ADs for w x w — 1 pixels in the shifted
window (all pixels in the window except for one pixel shown
by a black dot) are already calculated (k x k& x (w x w —
1) ADs are already calculated) during the computation of
previous vectors. Therefore, by storing k x k x (w—1) x X
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Fig. 2. Reuse of the Intermediate Results

ADs (which correspond to the gray area in Figure 2(d)), we
can calculate & x k SADs which are necessary to obtain a
new vector by only calculating k& x & new ADs (ADs between
the pixel shown by the black dot and & x & pixels in the target
area). In this computation, we need to access k x k x (w x
w — 1) ADs (which are already calculated and stored) in
parallel in order to achieve maximum performance.

Figure 3 shows an implementation technique to make the
parallel access possible (the upper half of the figure shows
the two images which are compared, and the lower half of
the figure shows an array of SAD units, and the inside of a
SAD unit). In Figure 3, suppose that the vector for a pixel
(light gray square in the window) was just obtained, and the
window is shifted to the right to find the vector for the next
pixel (dark gray square). Then, the window is compared
with & x k windows in its target area (k x k SADs are cal-
culated), and the minimum SAD is searched. In order to
achieve maximum performance, k& x k SAD units are pre-
pared and the & x k SADs are calculated in parallel (In Fig-
ure 3, only two units are shown to simplify the figure). In
Figure 3, A; ; are ADs (Absolute Differences) which are al-
ready calculated during the computation of previous vectors.
In Figure 3, a new SAD is calculated using A; ; as follows.

1. w-1 ADs (A;6(i = 2,5) (squares with sparse slanting
lines)) are read out from memory M 4.

2. A new AD for the black square (which becomes Ag ¢)
is calculated (pixel data of the black square (1) is
broadcasted to all SAD Units on the array).
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Fig. 3. An Implementation Technique to Achieve Maximum Performance

3. These w ADs are held on w shift registers in the SAD
unit. Each shift register can hold w ADs (w is 5 in Fig-
ure 3). Thus, w x w ADs are on the shift registers in
total. The ADs on the shift registers are shifted when
a new SAD (consequently a new vector) is obtained.

4. These w x w ADs on the shift registers are summed
up to calculate a new SAD.

5. Among w ADs which are shifted out from the shift
registers, w-1 ADs are written back to M4 (4;1(i =
3, 6) (squares with dense slanting lines)). Thus, each
AD is summed up w times while it is on the shift reg-
ister, and is stored and read out from the memory w-1
times, which means each AD is used for calculating
w X w SADS.

By repeating the procedure above with & x & SAD units
which run in parallel and in pipeline, we can continue to
obtain a new vector in every clock cycle.

In this implementation, the width of memory M 4 must
be w-1 words. Therefore, the total number of memory banks
required in this implementation becomes & x k x (w — 1),
and these memory banks must be accessed in parallel. This
means that these memory banks have to be located on the
FPGA (because the input/output performance of LSls (in-
cluding FPGAS) is very limited). However, the number and
width of internal memory banks of the latest LSIs are not
enough under the practical w and k.

In order to reduce the number of memory banks, the pro-
cedure described above is modified as follows.

1. Only the sum of the w-1 ADs is stored in the memory
(suppose that Z?:z A; 6 Is in the memory).

2. The sum is read out, and added with Ag ¢ (320, A; 6
can be obtained).

3. w sums on a shift register are summed up to calculate
6 6
new SAD (3-,_,> jmaAig )

4. At the same time, A ¢ is calculated again, and sub-
tracted from S0, A; 6.

5. The result (Zf:.3 A ¢) is stored in the memory to ob-
tain vectors on the next row.

With this technique, we can reduce the number of mem-
ory banks to k x k from k x k x (w — 1), though we need
double SAD units. The total hardware resources required by
this technique are k x k£ x 2 SAD units, k& x kK memory banks
and a unit to choose the minimum among k£ x k& SADs in
pipeline.

4.2. Video-Rate Processing

We can reduce the circuit size by recalculating some of ADs
instead of storing all of them. This approach makes it possi-
ble to enlarge the size of the target area.
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Fig. 4. An Implementation Method by Recalculation

By recalculating sums of ADs which were given by the
memory banks (Z?:2 A; ¢ in Figure 3), we can calculate
SADs without memory banks. In Figure 4, I, is broadcasted
to & x k SAD units first, and k x k ADs for I (|A26 — Io|
in Figure 3) are calculated in the £ x k£ SAD units in paral-
lel. In the same way, ADs for I;(j = 1,4) are calculated
sequentially. These calculations take w clock cycles in total
(only one clock cycle when restored from memory banks).
These ADs are, then, summed up, and held on the shift reg-
isters. The sums held on the shift registers are used w times
to calculate w SADs and discarded after shifted w times.

Though this implementation requires w clock cycles to
generate one vector, we can calculate vectors with & x k SAD
units, no memory banks and a unit to choose the minimum
among k x k SADs in pipeline. Furthermore, the size of the
unit to choose the minimum SAD can be reduced to almost
1/w, because many parts of the unit can be shared by w
SAD units (each SAD unit generates one SAD in every w
clock cycles).

The requirement for the video-rate processing is to ob-
tain one vector in 108 nano seconds. Therefore, if we can
build a circuit which runs faster than 108/w nano seconds,
we can realize video-rate processing by this implementation
method. The typical w used for the area-based matching is
7. Therefore, our goal is to build a circuit which runs faster
than 65 MHz.

5. STEREO VISION

The area-based matching in the stereo vision is almost same
with the matching in the optical flow. The only difference is
that the size of the target area is reduced to (d +w — 1) x w
from (k + w — 1) x (k 4+ w — 1), though larger d becomes
necessary (d is called disparity).

6. RESULTS

We implemented three kinds of circuits on Xilinx XC2V6000;
two circuits for optical flow (circuit-1 for the maximum per-
formance and circuit-2 for video-rate) and one circuit for
generating motion fields at video-rate (circuit-3). All cir-
cuits run at 66 MHz. Table 1 shows the hardware usage

Table 1. Performance of the Circuits

hardware usage  frame per second

(k,d) BRAMSs slices 640 x 480 320 x 240
circuit-1 ~ (11,0) 128  71% 210 840
circuit-2 (21,0 16 84% 30 120
circuit-3  (17,91) 17 80% 30 120

and the performance of the three circuits. The computa-
tion time of the three circuits is promotional to the image
size. The value of k in the circuit-1 (a circuit for optical
flow at the maximum performance) is much smaller than
the circuit-2 (the video-rate circuit for optical flow), because
k x k x 2 SAD units are required in the circuit-1, and any
part of the unit for choosing the minimum SAD can not be
shared. Therefore, we could not implement a circuit to gen-
erate motion fields at maximum performance on XC2V6000
(we could not reduce &, which is already very small, to im-
plement stereo vision together).

The maximum performance of our camera is 30 frames
per second. Therefore, we could not demonstrate higher
frame rates than that on our system, but we confirmed that
our circuit can generate motion fields at the speeds which
are shown in Table 1.

Figure 5 shows an example of the output by the circuit-3
(only a part of vectors are shown in the figure, because the
image size is 640 x 480 and dense vector map is generated
by the circuit). In Figure 5, a stuffed toy (tiger) was moved,
and its movement along = and y axes is shown by arrows,
and z axis by gradation. Some noises are found on areas
with only small changes in the contexts. We need to add
some circuits to suppress these noises using redundancy.

In order to detect faster motion, we need to enlarge the
target area in the optical flow. As shown in Table 1, the
maximum size which can be implemented on XC2V6000 is
21 x 21 pixels in the video-rate circuit. Therefore, the max-
imum displacement in the optical flow field is (10, 10). This
means that we can observe objects which traverse the image
plane in 64 frames (about 2.1 seconds) when the image plane
width is 640 pixels, and 32 frames (about 0.27 seconds if
the cameras support 120 fps, otherwise 1.07 seconds) when
the image plane width is 320 pixels. When both of optical
flow and stereo vision are implemented, the maximum dis-
placement is reduced to (8, 8) (the minimum traverse time
becomes 2.5 seconds and 0.33 (1.33) seconds). Therefore, a
practical approach at video-rate is as follows.

1. Calculate optical flow and depth map on small size
images.

2. When motions of particular interest are detected, stop
moving.

3. By configuring other circuit, calculate only optical flow
(or optical flow and depth map, depending on situa-
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Fig. 5. The Output by the Circuit

tions) on large size images in order to trace the mo-
tions.

4. Then, configure the circuit to calculate optical flow
and depth map for small size images again.

We have supported only the circuits shown in Table 1,
and the image size is reduced by the host processor in the
current implementation, though it should be done on the
FPGA. We also need to prepare circuits which support rect-
angular target areas such as 41 x 11, because movement of
moving objects is not upward, nor downward in most cases.

7. CONCLUSIONS

In this paper, we describe a compact system for real-time
generation of three-dimensional motion fields. The system
was implemented on an off-the-shelf PCI board with one
FPGA. With our system, we can generate dense three-
dimensional motion fields (640 x 480 vectors in a standard
size image) at video-rate from dense optical flow and dense
depth map obtained by area-based matching. The perfor-
mance can be improved up to 840 frames per second in
small size (320 x 240) images by configuring another cir-
cuit, though it requires more amount of hardware resources.
Furthermore, by changing search spaces for optical flow and
depth map by reconfiguration, we can control the maximum
motion speed which can be detected, and the minimum dis-
tance to moving objects in the image, under limited hard-
ware resources.

We are now improving the system to suppress noises us-
ing the redundancy in dense fields, and to work with edge
detectors to clearly distinguish borders of the moving ob-
jects.
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