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Hyperspectral Image Processing
for Automatic Target Detection
Applications
Dimitris Manolakis, David Marden, and Gary A. Shaw

■  This article presents an overview of the theoretical and practical issues
associated with the development, analysis, and application of detection
algorithms to exploit hyperspectral imaging data. We focus on techniques that
exploit spectral information exclusively to make decisions regarding the type of
each pixel—target or nontarget—on a pixel-by-pixel basis in an image. First we
describe the fundamental structure of the hyperspectral data and explain how
these data influence the signal models used for the development and theoretical
analysis of detection algorithms. Next we discuss the approach used to derive
detection algorithms, the performance metrics necessary for the evaluation of
these algorithms, and a taxonomy that presents the various algorithms in a
systematic manner. We derive the basic algorithms in each family, explain how
they work, and provide results for their theoretical performance. We conclude
with empirical results that use hyperspectral imaging data from the HYDICE
and Hyperion sensors to illustrate the operation and performance of various
detectors.

M     applications in-
volve the detection of an object or activity
such as a military vehicle or vehicle tracks.

Hyperspectral imaging sensors, such as those illus-
trated in Figure 1, provide image data containing
both spatial and spectral information, and this infor-
mation can be used to address such detection tasks.
The basic idea for hyperspectral imaging stems from
the fact that, for any given material, the amount of ra-
diation that is reflected, absorbed, or emitted—i.e.,
the radiance—varies with wavelength. Hyperspectral
imaging sensors measure the radiance of the materials
within each pixel area at a very large number of con-
tiguous spectral wavelength bands.

A hyperspectral remote sensing system has four ba-
sic parts: the radiation (or illuminating) source, the
atmospheric path, the imaged surface, and the sensor.

In a passive remote sensing system the primary source
of illumination is the sun. The distribution of the
sun’s emitted energy, as a function of wavelength
throughout the electromagnetic spectrum, is known
as the solar spectrum. The solar energy propagates
through the atmosphere, and its intensity and spectral
distributions are modified by the atmosphere. The
energy then interacts with the imaged surface materi-
als and is reflected, transmitted, and/or absorbed by
these materials. The reflected/emitted energy then
passes back through the atmosphere, where it is sub-
jected to additional intensity modifications and spec-
tral changes. Finally, the energy reaches the sensor,
where it is measured and converted into digital form
for further processing and exploitation.

The signal of interest, that is, the information-
bearing signal, is the reflectance spectrum defined by
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The reflectance spectrum, or spectral signature, shows
the fraction of incident energy, typically sunlight, that
is reflected by a material as a function of the wave-
length λ of the energy.

To understand hyperspectral imaging data exploi-
tation, it is important to realize how the presence of
the atmosphere and the nature of the solar spectrum
affect the relationship between the observed radiance
spectra and the associated reflectance spectra. Basi-
cally, the observed spectrum would have the same
shape as the reflectance spectrum if the solar spec-
trum were flat and the atmosphere had the same

transmittance at all wavelengths. In reality, the mea-
sured radiance spectrum is the solar spectrum modi-
fied by the transmittance function of the atmosphere
and the reflectance spectrum of the imaged ground
resolution cell (see Figure 1). The atmosphere restricts
where we can look spectrally because it selectively ab-
sorbs radiation at different wavelengths, due to the
presence of oxygen and water vapor. The signal-to-
noise ratio at these absorption bands is very low; as a
result, any useful information about the reflectance
spectrum is lost. For all practical purposes these spec-
tral bands are ignored during subsequent hyperspec-
tral data analysis.

Any effort to measure the spectral properties of a
material through the atmosphere must consider the
absorption and scattering of the atmosphere, the
subtle effects of illumination, and the spectral re-

FIGURE 1. Hyperspectral imaging sensors measure the spectral radiance information in a scene to detect tar-
get objects, vehicles, and camouflage in open areas, shadows, and tree lines. Imaging sensors on satellites or
aircraft gather this spectral information, which is a combination of sunlight (the most common form of illumi-
nation in the visible and near infrared), atmospheric attenuation, and object spectral signature. The sensor de-
tects the energy reflected by surface materials and measures the intensity of the energy in different parts of the
spectrum. This information is then processed to form a hyperspectral data set. Each pixel in this data set con-
tains a high-resolution spectrum, which is used to identify the materials present in the pixel by an analysis of
reflectance or emissivity.
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sponse of the sensor. The recovery of the reflectance
spectrum of each pixel from the observed radiance
spectrum is facilitated with the use of sophisticated
atmospheric compensation codes.

The resulting reflectance representation, termed
the spectral signature, if sufficiently characterized,
can be used to identify specific materials in a scene.
Figure 2, for example, illustrates the different reflec-
tance spectra for naturally occurring materials such as
soil, green vegetation, and dry vegetation.

The hyperspectral sensors discussed in this article
measure radiation in the region of the electromag-
netic spectrum dominated by solar illumination (0.4
µm to 2.5 µm), where they acquire a complete reflec-
tance spectrum. Unfortunately, such sensors are inef-
fective at night because of the absence of solar illumi-
nation. The problem can be avoided by extending the
range of hyperspectral sensors into the thermal infra-
red region (8 µm to 14 µm), where materials emit
more radiation than they reflect from the sun. This
extension allows sensors to operate effectively during
both day and night.

Hyperspectral imaging sensors are basically ad-
vanced digital color cameras with fine spectral resolu-
tion at given wavelengths of illumination. Instead of
measuring three primary colors—red, green, and
blue—these sensors measure the radiation reflected
by each pixel at a large number of visible or invisible

frequency (or wavelength) bands. Such an instrument
is called an imaging spectrometer. Spectrometers are
instruments that divide the impinging electromag-
netic radiation into a number of finite bands and
measure the energy in each band. (In this sense, the
human eye can be considered a crude imaging spec-
trometer.) Depending upon the design of the spec-
trometer, the bands may or may not be contiguous
and of equal width. Therefore, the measured discrete
spectrum is usually not a uniformly sampled version
of the continuous one.

The optical system divides the imaged ground area
into a number of contiguous pixels. The ground area
covered by each pixel (called the ground resolution
cell) is determined by the instantaneous field of view
(IFOV) of the sensor system. The IFOV is a function
of the optics of the sensor, the size of the detector ele-
ments, and the altitude. The rectangular arrangement
of the pixels builds an image, which shows spatial
variation, whereas the spectral measurements at each
pixel provide the integrated spectrum of the materials
within the pixel.

Scene information is contained in the observed ra-
diance as a function of continuous space, wavelength,
and time variables. However, all practical sensors have
limited spatial, spectral, radiometric, and temporal
resolution, which results in finite-resolution record-
ings of the scene radiance. The spatial resolution of
the sensor determines the size of the smallest object
that can be seen on the surface of the earth by the sen-
sor as a distinct object separate from its surroundings.
Spatial resolution also relates to how well a sensor can
record spatial detail. The spectral resolution is deter-
mined by the width ∆λ of the spectral bands used to
measure the radiance at different wavelengths λ. The
radiometric resolution is determined by the number
of bits used to describe the radiance value measured
by the sensor at each spectral band. Finally, the tem-
poral resolution is related to how often the sensor re-
visits a scene to obtain a new set of data.

Spectral and radiometric resolution determine how
faithfully the recorded spectrum resembles the actual
continuous spectrum of a pixel. The position, num-
ber, and width of spectral bands depend upon the
sensor used to gather the information. Simple optical
sensors may have one or two wide bands, multispec-

FIGURE 2. Different materials produce different electromag-
netic radiation spectra, as shown in this plot of reflectance
for soil, dry vegetation, and green vegetation. The spectral
information contained in a hyperspectral image pixel can
therefore indicate the various materials present in a scene.
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tral sensors a few wide bands, and hyperspectral sen-
sors a few hundred narrow bands. Table 1 summarizes
some of the distinctions among remote sensing sys-
tems that exploit spatial information and spectral in-
formation.

As noted in the introductory article to this special
issue of the Journal, entitled “Spectral Imaging for
Remote Sensing,” by Gary A. Shaw and Hsiao-hua K.
Burke, multispectral sensing and, later, hyperspectral
sensing were developed for remote sensing of the
natural environment, including such applications as
mineral exploration, characterization of ground
cover, and characterization of crop health. In these
applications, morphological (or shape) information
(which is an important prerequisite for remote sens-
ing of man-made objects) is of minimal utility in the
detection process, since the various natural materials
of interest do not have predefined shapes. For ex-
ample, an area of diseased crops will have an unpre-
dictable size and shape within a larger field of healthy
crops. Similarly, mineral deposits will have unpredict-
able shapes and may even be intimately mixed with
other types of materials.

Another important aspect of traditional applica-
tions for hyperspectral imaging is that the applica-
tions are oriented toward classifying or grouping

similar pixels, when there are typically many instances
of each class of pixel, and when occasional errors in
pixel classification are not significant, since interpre-
tation of the scene is based on the clustering of the
majority of pixels. For example, in an image of crops,
if one in every one thousand pixels is misclassified,
the isolated errors will not change the overall under-
standing of whether the crops are healthy or diseased.

In comparison, any target detection application
seeks to identify a relatively small number of objects
with fixed shape or spectrum in a scene. The process-
ing methods developed for environmental classifica-
tion are not applicable to target detection for two rea-
sons. First, the number of targets in a scene is
typically too small to support estimation of statistical
properties of the target class from the scene. Second,
depending upon the spatial resolution of the sensor,
targets of interest may not be clearly resolved, and
hence they appear in only a few pixels or even a single
pixel. The isolated character of the targets makes con-
firmation by means of clustering of like samples prob-
lematic. Target detection is still possible, however, in
these situations. For example, hyperspectral sensing
could be used to increase the search rate and probabil-
ity of detection for search and rescue operations at
sea. A life jacket, which may be unresolved spatially,

Table 1. Comparison of Spatial Processing and Spectral Processing in Remote Sensing

Spatial Processing Spectral Processing

Information is embedded in the spatial arrangement Each pixel has an associated spectrum that can be
of pixels in every spectral band (two-dimensional image) used to identify the materials in the corresponding

ground-resolution cell

Image processing exploits geometrical shape information Processing can be done one pixel at a time

Very high spatial resolution required to No need for high spatial resolution
identify objects by shape (many pixels on the target) (one pixel on the target)

High spatial resolution requires large apertures Spectral resolution more important than
and leads to low signal-to-noise ratio spatial resolution

Data volume grows with the square of the Data volume increases linearly
spatial resolution with the number of spectral bands

Limited success in developing fully automated Fully automated algorithms for spectral-feature
spatial-feature exploitation algorithms exploitation have been successfully developed

for selected applications
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can still be detected and identified on the basis of its
extreme color contrast with the ocean background.

In practice, hyperspectral sensors represent a delib-
erate trade-off in which spatial resolution is degraded
in favor of improved spectral resolution. By implica-
tion, hyperspectral imaging is therefore best matched
to applications in which spectral information is more
reliable or measurable than morphology or shape in-
formation. For example, traditional analysis of passive
imagery of military vehicles depends strongly upon
being able to determine the length, width, and distin-
guishing features of a vehicle. If the vehicles are par-
tially hidden under foliage or camouflaged nets, the
morphological information is unreliable and alternate
means of detection and identification are needed.
Since hyperspectral imaging does not rely on shape
information, it is less impacted by attempts at con-
cealment and deception.

Historically, interpretation of passive imagery has
generally depended upon either human analysis of vi-
sual information in a live video or a still image, or else
upon machine measurement and analysis of param-
eters that distinguish a man-made object (i.e., a tar-
get) from the natural surroundings. As described in
the next section, the high dimensionality of hyper-
spectral imagery precludes full exploitation of the in-
formation through simple visual analysis of the data.
In fact, visual representation of the high-dimensional
data is itself a challenge, and the essence of hyperspec-
tral detection algorithms is the extraction of informa-
tion of interest from the high-dimensional data.

Data Representation and Spectral
Information Exploitation

In many applications, the basic automated processing
problem is to identify pixels whose spectra have a
specified spectral shape. This problem raises the fol-
lowing fundamental issues: (1) does a spectrum
uniquely specify a material, (2) are the spectra of any
material the same when observed at different times,
(3) how is the spectrum of a ground material related
to the spectrum observed by the sensor, and (4) how
should we compare two spectra to decide if they are
the same? Answering these questions is a challenging
undertaking, involving resources from the areas of
spectroscopy, remote sensing, high-dimensional Eu-
clidean geometry, statistics, and signal processing. In
this section we make an initial attempt to address
these issues by introducing the topics of vector repre-
sentation of spectra, spectral variability, mixed-pixel
spectra, and correlation among spectral bands.

Data Cubes and Spectral Vectors

As a result of spatial and spectral sampling, airborne
hyperspectral imaging (HSI) sensors produce a three-
dimensional (3D) data structure (with spatial-spatial-
spectral components), referred to as a data cube. Fig-
ure 3 shows an example of such a data cube. If we
extract all pixels in the same spatial location and plot
their spectral values as a function of wavelength, the
result is the average spectrum of all the materials in
the corresponding ground resolution cell. In contrast,

FIGURE 3. Basic data-cube structure (center) in hyperspectral imaging, illustrating the simultaneous spatial and spec-
tral character of the data. The data cube can be visualized as a set of spectra (left), each for a single pixel, or as a stack
of images (right), each for a single spectral channel.

Spec
tra

l d
im

en
sio

n

Spatial dimension

S
pa

tia
l d

im
en

si
on

R
ef

le
ct

an
ce

Wavelength

Spectra for a 
single pixel

Image at a 
single wavelength



• MANOLAKIS, MARDEN, AND SHAW
Hyperspectral Image Processing for Automatic Target Detection Applications

84 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 1, 2003

the values of all pixels in the same spectral band, plot-
ted in spatial coordinates, result in a grayscale image
depicting the spatial distribution of the reflectance of
the scene in the corresponding spectral wavelength.

The observed spectral radiance data, or derived ap-
parent surface reflectance data, can be viewed as a
scattering of points in an K-dimensional Euclidean
space, denoted by ℜK, where K is the number of spec-
tral bands. Each spectral band is assigned to one axis
of the space, all axes being mutually orthogonal.
Therefore, the spectrum of each pixel can be viewed
as a vector x = [x1 , x2 , … , xK]T, where T denotes ma-
trix transposition. The tip of this vector corresponds
to an K-dimensional point whose Cartesian coordi-
nates xi are the radiance or reflectance values at each
spectral band. Since each component xi ≥ 0, spectral
vectors lie inside the positive cone of ℜK. Notice that
changes in the level of illumination can change the
length of a spectral vector but not its orientation,
which is related to the shape of the spectrum. If each
material is characterized by a unique deterministic
spectrum, which can serve as a spectral fingerprint,
we can measure the similarity between two spectra x
and y by using the Euclidean distance measure

x y− = −( )
=
∑ x yk k
k

K
2

1

or the spectral angle map (SAM) measure

∠ =( , ) arccos ,x y
x y
x y

T

where xTy is the dot product of vectors x and y. These
metrics are widely used in hyperspectral imaging data
exploitation, even if there are no optimality proper-
ties associated with them.

Exploiting Spectral Correlation

When targets are spatially resolved and have known
or expected shapes, the spectral information available
in a hyperspectral image may serve to confirm the na-
ture of the target and perhaps provide additional in-
formation not available from morphological analysis
alone. When targets are too small to be resolved spa-
tially, however, or when they are partially obscured or

of unknown shape (e.g., an oil slick), detection must
be performed solely on the basis of the spectral infor-
mation. The discrimination and detection of differ-
ent materials in a scene exclusively through the use of
spectral information is sometimes termed nonliteral
exploitation, in reference to the fact that this discrimi-
nation and detection does not rely on literal interpre-
tation of an image by means of morphological analy-
sis and inference.

If every material had a unique fixed spectrum and
we could accurately measure its value at a fine grid of
wavelengths, then we could discriminate between dif-
ferent materials—at least in theory—by comparing
their spectra. In this sense, a unique fixed spectrum
could be used as a spectral signature of the material.
For example, the three types of materials in Figure 2
could be easily discriminated by measuring the spec-
tra in a narrow band around the 1.0-µm wavelength.

The situation is very different in practice, however.
Figure 4 shows the range of variation of spectra, from
37 pixels for a vehicle to 8232 pixels for a tree-covered
area. Simple inspection of this plot leads to some cru-
cial observations. If we observe a spectrum residing in
the red region of the vehicle class where it overlaps
with the green spectrum of the tree class, it is almost

FIGURE 4. Illustration of spectra variability for the tree class
and the vehicle class, where the green and red shaded areas
represent the range of observed spectra for trees and ve-
hicles, respectively. At wavelengths where the vehicle spec-
trum (in red) overlaps the tree spectrum (in green), such as
at 0.7 µm and 1.25 µm, it is almost impossible to discriminate
between the two classes by using observations from a
single spectral band.
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FIGURE 5. Simultaneous exploitation of the spectral bands at 0.7 µm and 1.25 µm
in the spectra in Figure 4 makes discrimination possible because of a clearly de-
fined decision boundary between the tree class and the vehicle class.
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impossible to say with certainty if that spectrum cor-
responds to a vehicle or tree pixel. In actual systems,
where we obtain measurements only in certain spec-
tral bands, we would expect discrimination to be even
more difficult.

The key question now is this—can we discriminate
between vehicle and tree pixels based on spectral ob-
servations alone? To answer this question, we select
two narrow spectral bands, centered on 0.7 µm and
1.25 µm. Figure 4 shows that it is not possible, using
any one band alone, to discriminate between the two
classes because they overlap completely. Fortunately,
this observation is not the final answer. If we plot the
two-band data as points in a two-dimensional space
with the reflectance values at the two bands as coordi-
nates, we obtain the scatter plot shown in Figure 5.

Surprisingly, it is now possible to separate the two
classes by using a nonlinear decision boundary, de-
spite the complete overlap in each individual band.

The fundamental difference between Figures 4 and
5 is that Figure 5 allows for the exploitation of the ex-
tra information in the simultaneous use of two bands.
This is the essence of multiple spectral-band data ex-
ploitation in remote sensing spectroscopy.

Spectral Variability Models

Unfortunately, a theoretically perfect fixed spectrum
for any given material doesn’t exist. The spectra ob-
served from samples of the same material are never
identical, even in laboratory experiments, because of
variations in the material surface. The amount of vari-
ability is even more profound in remote sensing ap-
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plications because of variations in atmospheric condi-
tions, sensor noise, material composition, location,
surrounding materials, and other factors. As a result,
measured spectra corresponding to pixels with the
same surface type exhibit an inherent spectral vari-
ability that prevents the characterization of homoge-
neous surface materials by unique spectral signatures,
as shown in Figure 6(a).

Another significant complication arises from the
interplay between the spatial resolution of the sensor
and the spatial variability present in the ground scene.
The sensor integrates the radiance from all materials
within the ground surface that are “seen” by the sen-
sor as a single image pixel, as shown in Figure 6(b).
Therefore, depending on the spatial resolution of the
sensor and the distribution of surface materials within
each ground resolution cell, the result is a hyperspec-
tral data cube comprised of “pure” and “mixed” pix-
els, where a pure pixel contains a single surface mate-
rial and a mixed pixel contains multiple materials.
Spectral variability and mixed-pixel interference are
the main obstacles that need to be addressed and
overcome by HSI data-exploitation algorithms.

In the spectral band space, spectra without vari-
ability (known as deterministic spectra) correspond to
a single fixed point, whereas the tips of vectors corre-
sponding to spectra with variability (known as ran-
dom spectra) produce a cloud of points. Determinis-

tic spectra are used in spectral libraries as idealized
prototype spectral signatures associated with different
materials. However, most spectra appearing in real
applications are random, and their statistical variabil-
ity is better described by using probabilistic models.

We next present three families of mathematical
models that can be used to characterize the spectral
variability of the pixels comprising a hyperspectral
data cube. To understand the basic ideas for the dif-
ferent models, we use as an example two spectral
bands from a Hyperspectral Digital Imagery Collec-
tion Experiment (HYDICE) cube.

Probability Density Models

Figure 7 shows a picture of the ground area imaged by
the HYDICE sensor and a scatter plot of the reflec-
tance values for two spectral bands. The scatter plot
can help determine areas on the ground that have
similar spectral reflectance characteristics. The result
shown in the scatter plot is a set of spectral classes that
may or may not correspond to distinct well-defined
ground-cover classes. This distinction between spec-
tral classes is illustrated in Figure 8, which uses color
coding to show several spectral classes in the scatter
plot and the corresponding ground-cover areas in the
image (these results were obtained by using the k-
means clustering algorithm with an angular distance
metric) [1].
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FIGURE 6. Illustration of spectral variability and mixed-pixel interference. (a) Measured spectra corresponding to pixels with
the same surface type exhibit an inherent spectral variability that prevents the characterization of homogeneous surface materi-
als with unique spectral signatures. The gaps in the spectra correspond to wavelengths near water absorption bands where the
data has been discarded because of low signal-to-noise ratio. (b) Radiance from all materials within a ground resolution cell is
seen by the sensor as a single image pixel. Therefore, depending on the spatial resolution of the sensor and the spatial distribu-
tion of surface materials within each ground resolution cell, the result is a hyperspectral data cube comprised of pure and
mixed pixels, where a pure pixel contains a single surface material and a mixed pixel contains multiple materials. Spectral vari-
ability and mixed-pixel interference are the main obstacles that need to be addressed and overcome by hyperspectral data-ex-
ploitation algorithms.
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A reasonable probabilistic model for such spectral
data is provided by the following probability mixture
density:

f fk k
k

M

( ) ( ; ) ,x x=
=
∑π θθ

1

where we assume that each observed spectrum x is
generated by first selecting a spectrally homogeneous
class k with probability πk, where πk ≥ 0 and

πk
k

M

=
∑ =

1

1,

and then selecting a spectrum x according to the con-
ditional probability law f (x ; θθk )  specified by the pa-
rameter vectors θθk .

The component densities f (x ; θθk )  are usually cho-
sen as multivariate normal distributions defined by

f e
K

T

( )
( )

,
/ /

( ) ( )
x

x x
=

− − −−1

2 2 1 2

1
2

1

π ΓΓ

µµ µµΓΓ

where µµ ≡ E{ }x is the mean vector,

ΓΓ µµ µµ≡ − −{ }E ( )( )x x T

FIGURE 7. Ground image from the Hyperspectral Digital Im-
agery Collection Experiment (HYDICE) sensor (top), and a
two-dimensional scatter diagram (bottom) illustrating joint
reflectance statistics for two spectral bands in the scene.

FIGURE 8. Color-coded example of the variety of spectral
classes obtained by clustering in the full-dimensional spec-
tral space (top), but illustrated in the scatter plot (bottom)
with only two spectral bands.
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is the covariance matrix, and | ΓΓ |  represents the de-
terminant of matrix ΓΓ . We use the notation x ~
N ( µµ ,ΓΓ)  to denote a multivariate normal distribu-
tion with mean vector µµ  and covariance matrix ΓΓ .
The quadratic expression in the exponent of the mul-
tivariate normal distribution,

∆2 1= − −−( ) ( ) ,x xµµ µµΓΓT

is a widely used statistical distance measure, known as
the Mahalanobis distance [2]. This quantity plays a
major role in the design and evaluation of target de-
tection algorithms.

Subspace Models

The point specified by the tip of a spectrum vector
can be anywhere in the K-dimensional band space.
The direction of this vector is specified by the shape
of the spectrum and the length of this vector is speci-
fied by the amplitude of the spectrum. Therefore,
changes in the illumination of a pixel alter the length
of its spectral vector but not its direction. In this
sense, we can say that the illumination-induced vari-
ability is confined into a one-dimensional subspace of
the band space.

In general, a subspace model restricts the spectrum
vector to vary in an M-dimensional subspace of the
band space, where M < K. Clearly, the variability in-
creases as M increases from one to K. The observed
subspace spectrum is described by

x s Sa= =
=
∑ ak k
k

M

1

. (1)

The vectors sk (assumed linearly independent), or
equivalently the matrix S (assumed full rank), provide
a basis for the spectral variability subspace. We can in-
troduce randomness to the subspace model in Equa-
tion 1 either by assuming that ak are random variables
or by adding a random error vector w to the right-
hand side:

x s w Sa w= + = +
=
∑ ak k
k

M

1

.

Subspace variability models can be obtained by using

either physical models and the Moderate Resolution
Transmittance (MODTRAN) code [3] or statistical
approaches such as principal-component analysis [4].

Linear Spectral Mixing Models

The most widely used spectral mixing model is the
linear mixing model [5], which assumes that the ob-
served reflectance spectrum, for a given pixel, is gen-
erated by a linear combination of a small number of
unique constituent deterministic spectral signatures
known as endmembers. The mathematical equation
and the constraints defining the model are

x s w Sa w= + = +
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where s1, s2, … , sM, are the M endmember spectra,
assumed linearly independent, a1, a2, … , aM, are the
corresponding abundances (cover material fractions),
and w is an additive-noise vector. Endmembers may
be obtained from spectral libraries, in-scene spectra,
or geometrical techniques [5].

A linear mixture model based on three or four end-
members has a simple geometrical interpretation as a
triangle or tetrahedron whose vertices are the tips of
the endmember vectors. In general, spectra satisfying
the linear mixture model with both sets of constraints
are confined in an K-dimensional simplex studied by
the mathematical theory of convex sets [6]. If there
are K bands in the mixture model there can be K + 1
or fewer endmembers. If M = K + 1 there is a unique
solution for the fractional abundances; however, we
usually assume that M ≤ K to allow the use of least-
squares techniques for abundance estimation.

Figure 9 uses three-band spectral vectors to illus-
trate the basic ideas of the probability density, sub-
space, and linear mixture models for the characteriza-
tion of spectral variability.

The linear mixture model holds when the materi-
als in the field of view are optically separated so there
is no multiple scattering between components. The
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combined spectrum is simply the sum of the frac-
tional area times the spectrum of each component.
However, when different materials are in close con-
tact or close proximity in a scattering surface, such as
the mineral grains in a soil or rock, the resulting spec-
trum—depending on the optical properties of each
component—is a highly nonlinear combination of
the endmember spectra. In such cases, a nonlinear
mixing model is needed to describe the spectrum of
mixed pixels.

More elaborate models can be obtained if the end-
member spectra are randomly and independently
drawn from multivariate normal distributions. Such
stochastic mixing models have been developed else-
where [7], but their applicability is limited because
the estimation of their parameters leads to highly
nonlinear optimization problems.

Dealing with spectral signature variability and
spectral compositions in mixed pixels are among the
most challenging problems in HSI data exploitation,
both theoretically and practically.

Design, Evaluation, and Taxonomy
of Target Detectors

In theory, the design and evaluation of detection algo-
rithms is facilitated by assuming some meaningful
probability distributions for the target and non-target
spectra. The key features of the adopted probabilistic
signal models and the used criterion of optimality de-
termine the nature of the obtained detectors and their
performance.

Theoretical Design and Performance Evaluation

The mathematical framework for the design and
evaluation of detection algorithms is provided by the
area of statistics known as binary hypothesis testing.
There are several approaches for the systematic design
of detection algorithms. However, it is well known
that detectors based on the likelihood ratio (LR) test
have certain advantages. First, in some sense LR tests
minimize the risk associated with incorrect decisions.
Second, the LR test leads to detectors that are opti-
mum for a wide range of performance criteria, in-
cluding the maximization of separation between tar-
get and background spectra.

For the purpose of theoretical analysis, spectra are
treated as random vectors with specific probability
distributions. Given an observed spectrum x we want
to choose between two competing hypotheses:

H
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target absent

target present .

Band 1

Band 2

Band 3 

Linear mixing model
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FIGURE 9. Illustration of models for the description of spectral variability. Probability density models provide the
probability for a spectrum to be at a certain region of the spectral space. Subspace models specify the linear vec-
tor subspace region of the spectral space in which spectral vectors are allowed to reside. Linear mixing models,
with the aid of positivity and additivity constraints, permit spectra only in a convex hull of the spectral space.

If p(x|H0) and p(x|H1) are the conditional probabil-
ity density functions of x under the two hypotheses,
the LR is given by

Λ( )
( |
( |

.x
x
x

≡
p
p

target present)
target absent) (2)

If Λ(x) exceeds a certain threshold η, then the target
present hypothesis is selected as true. Basically, the LR
test accepts as true the most likely hypothesis. This
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suggests the detector structure shown in Figure 10.
The LR test y = Λ(x), or any monotonic function of
it, provides the information that is used to decide
whether a target is present. For this reason, we often
refer to this function as a detection statistic.

A practical question of paramount importance to a
system designer is where to set the threshold to keep
the number of detection errors (target misses and false
alarms) small and the number of correct detections
high. Indeed, there is always a compromise between
choosing a low threshold to increase the probability
of (target) detection PD and a high threshold to keep
the probability of false alarm PFA low. For any given
detector, the trade-off between PD and PFA is de-
scribed by the receiver operating characteristic (ROC)
curves, which plot PD(η) versus PFA(η) as a function
of all possible values of the threshold η. Therefore,
ROC curves provide the means to evaluate detector
performance or compare detectors independently of
threshold selection. Figure 11 illustrates the trade-offs
in PD and PFA values for a typical ROC curve. Clearly,
any systematic procedure to determine ROC curves
or the threshold requires specifying the distribution
of the observed spectra x under each of the two
hypotheses.

If the conditional densities in Equation 2 are com-
pletely known (in which case the hypotheses are
called simple hypotheses), we can choose the thresh-
old to make the detector specified by the LR an opti-
mum detector according to several criteria. The Bayes
criterion, used widely in classification applications,

chooses the threshold in a way that leads to the mini-
mization of the probability of detection errors (both
misses and false alarms). In detection applications,
where the probability of occurrence of a target is very
small, minimization of the error probability is not a
good criterion of performance, because the probabil-
ity of error can be minimized by classifying every
pixel as background. For this reason, we typically seek
to maximize the target probability of detection while
keeping the probability of false alarm under a certain
predefined value. This approach is the celebrated
Neyman-Pearson criterion, which chooses the thresh-
old to obtain the highest possible PD while keeping
PFA ≤ α. Hence the ROC curve of the optimum
Neyman-Pearson detector provides an upper bound
for the ROC of any other detector.

In almost all practical situations, the conditional
probability densities in Equation 2 depend on some
unknown target and background parameters. There-
fore, the ROC curves depend on unknown param-
eters and it is almost impossible to find a detector

FIGURE 11. The standard performance metric for detection
applications is the receiver operating characteristic (ROC)
curve, which shows the probability of detection PD versus
the probability of false alarm PFA as the detection threshold
takes all possible values. The determination of ROC curves
in practice requires the estimation of PD and PFA. The accu-
racy of estimating probability as a ratio (PA = NA / N, where
NA is the number of occurrences of event A in N trials) de-
pends on the size of N. Roughly speaking, the accuracy ∆P
of P is in the range of 10/N.

FIGURE 10. Decomposition of optimum-likelihood-ratio de-
tector. Every detector maps the spectrum x of the test pixel
(a multidimensional vector) into a scalar detection statistic
y = ΛΛ(x). Then the detection statistic is compared to a
threshold η to decide whether a target is present.
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whose ROC curves remain an upper bound for the
whole range of the unknown parameters. A detector
with this property is known as a uniformly most pow-
erful (UMP) detector.

An intuitively appealing and widely used approach
to handle such situations is to replace the unknown
parameters in the LR shown in Equation 2 with their
maximum-likelihood estimates. The estimated LR is
called the generalized likelihood ratio (GLR), de-
noted by ΛG(x). The resulting detectors are known as
adaptive, or estimate-and-plug, detectors. In general,
there are no optimality properties associated with the
GLR test. In practice, however, the GLR test leads to
adaptive detectors that seem to work well in several
applications.

A practical problem in adaptive detection is that
the number of pixels in the target class is very small,
making the estimation of target density parameters
extremely difficult. This limitation is what sets apart
detection from classification algorithms in practice.
Figure 12 illustrates these differences between theo-
retical detection and classification problems and their
practical versions.

Constant False-Alarm-Rate Detectors

Practical target detection systems should function au-
tomatically, that is, without operator intervention.
This requires an automatic strategy to set a “proper”
detection threshold. A high false-alarm rate wastes
processing and reporting resources, and may result in
system overloading. Therefore, it is critical to keep
the false-alarm rate constant at a desirable level by us-

ing a constant false-alarm rate (CFAR) processor. The
task of a CFAR algorithm is to provide detection
thresholds that are relatively immune to noise and
background variation, and allow target detection with
a constant false-alarm rate. The design of CFAR pro-
cessors for adaptive detectors is a challenging prob-
lem. Figure 13 illustrates the key components and
processing steps in a practical CFAR detector. The
key problem is obtaining a good model for the back-
ground detection statistic.

The desirable performance characteristics of target
detection algorithms, in addition to efficient software
and effective hardware implementation, are (1) high
probability of detection, (2) low probability of false
alarm, (3) robustness to deviations from the assumed
theoretical model, and (4) CFAR operation under the
assumed statistical model. In practice, it is also im-
portant to evaluate performance under different tacti-
cal scenarios; seasonal changes; targets at various lev-
els of camouflage, concealment, and deception; and
different airborne conditions.

A key to quantifying the utility and applicability of
hyperspectral sensing to various target detection
problems is determining the detection and false-
alarm-rate performance of the detection process. Al-
though hyperspectral sensors have been collecting
data for many years, three difficulties arise when at-
tempting to derive detector ROC curves: (1) the
number of pixels in a hypercube is typically on the
order of 105, which limits empirical methods of PFA
estimation to less than 10–4 per cube; (2) the number
of targets of a particular type or class in a scene is usu-

FIGURE 12. In theory, when probability densities for the target and background classes are assumed known,
classification and detection problems can both be solved by using the same hypothesis-testing techniques. In
practice, however, we need to estimate the statistics of each class from data. This estimation presents some
unique challenges for detection applications because the target class is sparsely populated.
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ally small, which limits the accuracy that can be
achieved in estimating the detection performance;
and (3) ground truth for the entire scene is usually
limited, which makes confirmation of false alarms
difficult (for example, a particular false alarm could
be due to variation in the background or it could be
due to a spatially unresolved man-made object in the
pixel). Regarding the first two of these difficulties, it
is well known that as a rule of thumb, the minimum
number of pixels N used to estimate a probability P
should be 10/P or more preferably 100/P [8].

Detector Design Road Map

The signal models used to characterize the observed
spectra under the target-present and target-absent hy-
potheses have the most influence upon the design of
LR test (optimum) and GLR test (adaptive) detec-
tors. Furthermore, the ability of the models to cap-
ture the essential aspects of the data has a direct effect
on the performance of the obtained detectors.

For full-pixel targets, there is no significant interac-
tion between target and background other than sec-
ondary illumination, shading, and other subtle illu-
mination factors. Hence the spectrum observed by
the sensor is produced by either the target spectrum
or the background spectrum. In both cases, the ob-
served spectrum is corrupted by additive sensor noise.
However, we assume the sensor noise is insignificant
or can be accounted for by the target and background
distributions.

For subpixel targets, the spectrum observed by the
sensor results from a linear or nonlinear mixing of the
target and background spectra. The most important
consideration is that the background spectrum adds
an interference component that makes detection
more difficult. The problem of sensor noise is always
present as well, and can be incorporated in the target
and background signals or modeled as a separate
source.

In most surveillance applications, the size of the

FIGURE 13. A practical constant false-alarm rate (CFAR) adaptive detector maps the spectrum x of the test pixel (which is a
multidimensional vector) into a scalar detection statistic y = D(x). Then the detection statistics are compared to a threshold η,
provided by a CFAR threshold-selection processor, using a background detection statistic model to decide whether a target is
present or not present in the pixel data.
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objects (targets) we are searching for constitutes a very
small fraction of the total search area. Therefore, the
target class will be either empty or sparsely populated.
On the other hand, the general non-target class in-
cludes almost all pixels in the data cube and is the
union of the different specific background classes. We
use the term background to refer to all non-target pix-
els of a scene. Usually, targets are man-made objects
with spectra that differ from the spectra of natural
background pixels.

The detection problem is typically formulated as a
binary hypothesis test with two competing hypoth-
eses: background only (H0) or target and background
(H1). Since the two hypotheses contain unknown pa-
rameters (for example, the covariance matrix of the
background) that have to be estimated from the data,
the detector has to be adaptive, and it is usually de-
signed by using the generalized-likelihood-ratio test
(GLRT) approach. As we explain next, however,
some special aspects of the detection problem make
the estimation of the required model parameters
quite challenging.

The sparseness of the target class implies that there
are not sufficient data to estimate the parameters of a
statistical target model or statistically evaluate the
performance of a target detector. On the other hand,
the heavy population of the background class, in con-
junction with the emptiness of the target class, allows
us to use the “unclassified” hyperspectral data cube to
statistically characterize the background.

Two issues arise as a result of these observations:
(1) how do we specify the parameters of a reasonable
target model from a priori information, and (2) how
do we estimate the parameters of the background
model from the observed data? The key question is
whether the parameters of the background model re-
main constant within the region of support used for
the estimation.

In the following section we present detection algo-
rithms for full-pixel targets; in this case detection per-
formance is mainly determined by the variability of
target and background spectra. Detection algorithms
for subpixel targets are treated in a later section. In the
subpixel case, detection performance is affected by
background interference as well as by the variability
of target and background spectra.

Detectors for Full-Pixel Targets

In this section we assume that the pixels for the target
and background classes do not contain mixed spectra,
and each class can be described by a multivariate dis-
tribution with a single set of parameters across the
area of interest. First, we present detection algorithms
for target and background classes with known statis-
tics. Then we consider the case in which only the
background statistics are available. In both cases, we
discuss how to estimate the required statistics from
available data by using adaptive detectors.

Targets and Backgrounds with Known Statistics

Since statistical decision procedures, based on normal
probability models, are simple and often lead to good
performance, we model the target and background
spectra as random vectors with multivariate normal
distributions.

Consider the detection problem specified by the
following hypotheses:
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where the target and background classes follow multi-
variate normal distributions with different mean vec-
tors and different covariance matrices. For determin-
istic targets, ΓΓ1 = 0 and µµ1 = s, which implies x = s
with probability of one. Since the probability densi-
ties are completely specified under each hypothesis,
we can design a Neyman-Pearson detector. Indeed,
computing the natural logarithm of the LR in Equa-
tion 2 leads to the following quadratic detector:
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This detector makes a decision by comparing the
Mahalanobis distance of the observed spectrum from
the centers of the two target and background classes,
as shown in Figure 14. The required threshold η is de-
termined from the formula

P p y H dyFA = =
∞

∫ ( | ) ,0
η

α (5)
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where α is the desired probability of false alarm. Be-
cause of the quadratic form of the Mahalanobis dis-
tance, the distribution of the detection statistics y is
not normal and therefore difficult to determine.

However, if the target and background classes have
the same covariance matrix, that is, ΓΓ ΓΓ ΓΓ1 0= ≡ ,
the quadratic terms in Equation 4 disappear, and the
likelihood-ratio detector takes the form of a linear
processor

y D MF
T= =( ) ,x c x

where

cMF = −−κΓΓ µµ µµ1
1 0( ) , (6)

and where κ is a normalization constant. This detec-
tor, which is known as Fisher’s linear discriminant in
the statistical literature [9], is widely used in pattern
recognition applications. We use the term matched fil-
ter (MF), which is typically used in the communica-
tions and signal processing disciplines [8, 10]. Figure
15 provides a block diagram representation of a
matched-filter–based detector.

A further simplification occurs when the observed
spectra have uncorrelated components with equal
variances; that is, ΓΓ  = σ 2 I. Then the Mahalanobis
distance in Equation 4 is reduced to the Euclidean
distance. The matched filter becomes a correlation
detector that compares the correlations of the input

spectrum with the means of the target and back-
ground spectra.

The matched filter in Equation 6 can be also de-
rived by maximizing the following cost function:
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which measures the distance between the means of
two normal distributions in units of the common
variance. The maximum Jmax, which is obtained by
substituting Equation 6 into Equation 7, is found to
be

J T
max ( ) ( ) ,= ≡ − −−∆2

1 0
1

1 0µµ µµ µµ µµΓΓ (8)

which is the Mahalanobis squared distance between
the means of the target and background distributions.
The matched filter in Equation 6 with κ = 1/∆2 mini-
mizes the output variance cTΓΓc, subject to the linear
constraint cT µµ1 = 1. In the array processing literature
this matched filter is known as the minimum-vari-
ance distortionless-response beamformer [11].

Although the choice of the normalization factor
does not affect the performance of the matched filter,
in practice we use the formula
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because it takes the value y = 1 when x = µµ1.

FIGURE 15. Block diagram of an optimum matched filter de-
tector. The first part is a linear filter that computes the detec-
tion statistic for each pixel. The second part compares the
detection statistic to a predefined threshold to decide
whether a target is present or absent.

FIGURE 14. Illustration of Neyman-Pearson quadratic de-
tector for Gaussian distributions with unequal means and
covariances. The decision boundary splits the spectral ob-
servation space into two disjoint regions. A detection is de-
clared when spectrum x falls in the target-present region.
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A detection algorithm, which is often confused
with the matched filter given by Equation 6, is the
constrained energy minimization (CEM) algorithm
[12]. It is obtained by minimizing the total energy of
the output of the linear filter

y n nT( ) ( ) ,= c x

i.e.,
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subject to the constraint cT µµ1 = 1. The matrix R̂  is
the estimated correlation (not covariance) matrix of
the cube. The CEM filter is given by
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The CEM algorithm algorithm becomes the matched
filter if we remove the mean of the cube from all the
data pixels and the reference signature µµ1.

The matched-filter output is the projection of the
test spectrum x along the direction of the parameter

vector cMF. We wish to determine the direction that
provides the best separability between the two classes.
The direction of the optimum matched filter for a
spherical target and background distribution ΓΓ  = σ 2 I
is along the direction of µµ µµ1 0− . For elliptical distri-
butions this direction is modified by the transforma-
tion ΓΓ–1. If we use the square-root decomposition ΓΓ
= ΓΓ1/2ΓΓ1/2, the output of the matched filter is

y
T

= −[ ] −[ ]− −κ ΓΓ ΓΓµµ µµ µµ1 2
1 0

1 2
0

/ /( ) ( ) .x

The transformation z = ΓΓ–1/2x , known as whitening
or spherizing, creates a random vector with spherical
distribution. The output of the matched filter is the
projection of the whitened spectrum z along the di-
rection of ˜ ˜µµ µµ1 0− , where ˜ /µµ µµΓΓi i= −1 2 , i = 0, 1. Fig-
ure 16 illustrates the operation of the matched filter
in the original spectral space and the whitened space.
The term “matched” signifies that the detector evalu-
ates the amount of correlation (i.e., matching) be-
tween the background-centered reference target sig-
nature µµ µµ1 0−  and the test-pixel spectrum x − µµ0 in
the whitened space.

Under the assumption that x is normal, the output
y = D(x) of the matched filter in Equation 9 is nor-
mally distributed because it is a linear combination of
normal random variables. This result simplifies the
evaluation of the detector and the computation of de-
tection thresholds using Equation 5. Indeed, it can be
easily shown that

FIGURE 16. Optimum Neyman-Pearson detector for Gaussian distributions with equal covariance ma-
trices. The original spectral observation space is shown at the left, and the whitened space with spheri-
cal covariance, created by the whitening transformation z = ΓΓ –1/2x, is shown at the right.
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Therefore, to the degree that the normal model is ac-
curate, the performance of the matched filter is com-
pletely determined by the Mahalanobis distance be-
tween the target and background distributions.

The probability of detection and the probability of
false alarm are related by

P Q Q PD FA= −−[ ( ) ],1 ∆
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Q x t dt
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π

is the complementary cumulative distribution func-
tion [2, 8].

Figure 17 shows PD versus PFA ROC curves with
∆2 as a parameter, whereas Figure 18 shows PD versus
10log10 (∆

2) curves with PFA as a parameter.

Anomaly Detection

In many situations of practical interest, we do not
have sufficient a priori information to specify the sta-
tistics of the target class. Therefore, we can use neither
the quadratic detector nor the matched filter. We
clearly need a statistic exclusively based on µµ0  and

ΓΓ0. We consider only the case ΓΓ1 = ΓΓ0 = ΓΓ , which
leads to a mathematically tractable problem. The like-
lihood ratio test for the hypotheses in Equation 3,
when only µµ0  and ΓΓ0 are known, is given by

y D T= = − −−( ) ( ) ( ) ,x x xµµ µµΓΓ0 0
1 (10)

which is the Mahalanobis distance of the test pixel
spectrum from the mean of the background class [2].
This detector, illustrated in Figure 19, is known in the
remote sensing literature as the anomaly detector. We
notice that, even if the two covariance matrices are as-
sumed equal as in the matched-filter case, the lack of
knowledge about the target statistics makes the
anomaly detector nonlinear. Figure 20 shows a block
diagram representation of the anomaly detector given
by Equation 10. The distribution of the detection sta-
tistic is
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where χ βK
2 ( ) is a noncentral chi-squared distribution

with K degrees of freedom and noncentrality param-
eter β. We notice that the performance of the
anomaly detector depends on the Mahalanobis dis-
tance given by Equation 8 between the target and
background distributions. The threshold η is deter-
mined by substituting χK

2 0( ) into Equation 5.
Figure 21 shows PD versus PFA ROC curves with

FIGURE 17. ROC curves for the optimum matched filter with
the Mahalanobis distance ∆2 as a parameter.

FIGURE 18. ROC curves for the optimum matched filter with
PFA as a parameter.

PFA

P
D

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.9 1.00.40.3 0.5 0.6 0.70.1 0.8

∆2 
= 0

∆2 
= 3

∆2 
= 6

∆2 
= 9

∆2 
= 12

10 log(∆2)

P
D

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 4 18 2086 10 12 142 16

PFA = 10–4

PFA = 10–5

PFA = 10–6

PFA = 10–7

PFA = 10–8



• MANOLAKIS, MARDEN, AND SHAW
Hyperspectral Image Processing for Automatic Target Detection Applications

VOLUME 14, NUMBER 1, 2003 LINCOLN LABORATORY JOURNAL 97

FIGURE 21. ROC curves for the optimum anomaly detector
for K = 144 bands with the Mahalanobis distance ∆2 as a
parameter.

FIGURE 19. Operation of a CFAR detector for targets with unknown mean and covariance
(anomaly detection). This detector is optimum, in the Neyman-Pearson sense, if the unknown tar-
get covariance is equal to the covariance of the background class. The threshold, which depends
on the orientation in the band space, becomes orientation-independent in the whitened space.

FIGURE 20. Block diagram of optimum anomaly detector for
Gaussian distributions with the same covariance matrix and
different mean vectors.

∆2 as a parameter for K = 144 bands. Figure 22 shows
PD versus PFA ROC curves with ∆2 = 9 and the num-
ber of bands K as a parameter. Figure 23 shows PD
versus 10log10(∆

2) curves with PFA as a parameter.

Adaptive Detectors

In practice the background statistics are unknown
and they have to be estimated from the data. If the
detectors operate in a sparse target environment, we
can estimate the mean and covariance of the back-
ground by using all pixels within an area of interest.
The size of the area is chosen large enough to assure
the invertibility of the covariance matrix and small
enough to assure spectral homogeneity (stationarity).
This estimate-and-plug approach has two conse-
quences: (1) the obtained adaptive detectors lose their
Neyman-Pearson optimality, and (2) the detection
statistics do not have a normal distribution. Clearly,
as the quality of the estimated covariance matrix im-
proves, the performance of the adaptive detectors
should approach that of optimum detectors. It has
been shown that, if the distribution of the back-

ground and target classes is indeed normal and the
covariance matrix is estimated by using N ≥ 3K pixels,
the loss in detection performance is about 3 dB [13].

Detection Algorithms for Subpixel Targets

By definition, subpixel targets occupy only part of the
pixel area. The remaining part of the pixel is filled
with one or more materials, which are collectively re-
ferred to as background. In this section we discuss the
detection of compact and isolated subpixel-size ob-
jects characterized by a known spectral signature,
with or without variability. As a result of this material
mixing, the observed spectral signature can be mod-
eled reasonably well as a linear combination of the
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target and background spectra, as shown in Figure 24.
Furthermore, there is always an additive amount of
noise from various sources (primarily the sensor and
the atmosphere).

The choice of the mathematical model used to de-
scribe the variability of target and background spectra
(subspace versus statistical), leads to different families
of subpixel target detection algorithms.

The variability of the target spectral signature is al-
ways described by using a subspace model Sa. If the

columns of S are endmembers, the vector a provides
their abundances and should satisfy the constraints of
the linear mixing model. Otherwise, the vector a sim-
ply determines the position of a target in the column
space of S.

The variability of the background can be described
by using either a subspace model (structured back-
ground) or a statistical distribution (unstructured
background). Therefore, the choice of background
model leads to two different classes of subpixel target
detection algorithms.

Unstructured Background Models

In unstructured background models such as those
shown in Figure 25, we assume for convenience that
the additive noise has been included in the back-
ground v, which in turn is modeled by a multivariate
normal distribution with mean µµ0  and covariance
matrix ΓΓ0; that is, v ~ N ( , )µµ ΓΓ . (For simplicity, we
drop the subscript 0 from this point forward, and we
remove the mean µµ0  from the observations x.) The
competing hypotheses are

H

H
0

1

:

:

x v

x Sa v

=

= +

target absent

target present .

Hence, x ~ N(0, ΓΓ) under H0 and x ~ N(Sa, ΓΓ) under
H1. In addition, we assume that we have access to a
set of training background pixels x(n), 1 ≤ n ≤ N,

FIGURE 24. Linear mixing increases class variability be-
cause all mixed-pixel spectra always lie on the line that con-
nects the component spectra. This makes the discrimina-
tion more difficult between spectra including both target
and background pixels.

FIGURE 23. ROC curves for the optimum anomaly detector
for K = 144 bands with PFA as a parameter.

FIGURE 22. ROC curves for the optimum anomaly detector
for ∆2 = 9 with the number of bands K as a parameter.
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which are independently and identically distributed.
The test pixel x and the training pixels are assumed
statistically independent. It is important to note that,
since HSI data have a non-zero mean, we must re-
move the estimated mean from the data cube and the
target subspace vectors to comply with this model.

The key assumptions used for the detectors using
the covariance matrix of the background are (1) the
background is homogeneous and can be modeled by
a multivariate normal distribution, (2) the back-
ground spectrum interfering with the test-pixel spec-
trum has the same covariance matrix with the back-
ground training pixels, (3) the test and training pixels
are independent, and (4) the target and background
spectra interact in an additive manner (additive in-
stead of the replacement model), as illustrated in Fig-
ure 24. This means that we do not enforce the addi-
tivity and positivity constraints discussed earlier in
the section on linear spectral mixture models.

Using the GLR approach, E.J. Kelly obtained the
following detector [14, 15]:

 D
N

T T T

T
H

H
κ κη( )

ˆ ( ˆ ) ˆ

ˆ ,x
x S S S S x

x x
=

+ <>
− − − −

−

ΓΓ ΓΓ ΓΓ

ΓΓ

1 1 1 1

1
0

1

(11)

where Γ̂Γ  is the maximum-likelihood estimate of the
covariance matrix

ˆ ( ) ( ) .ΓΓ =
=
∑1

1
N

n nT

n

N

x x

Although there is no optimality criterion associated

with the GLR test approach [8], it leads to the design
of useful, practical detectors. The threshold param-
eter ηK determines both the probability of detection
PD and the probability of false alarm PFA.

The matrix S contains the available a priori vari-
ability information about the target. This informa-
tion decreases as we increase the number of columns
P (dimensionality of the target subspace) of S and be-
comes minimum when P = K. In this case, we simply
know that we are looking for deterministic targets
that lie in the data subspace. Since the matrix S has
full rank and therefore is invertible, Equation 11 leads
to the following detector:

DA A
T

H

H
( ) ˆ ,x x x= <>

−ΓΓ 1

0

1
η (12)

which was derived by Kelly [16] using the approach
presented here, and by I.S. Reed and X. Yu [17] using
a multivariate analysis of variance formulation. Basi-
cally, DA(x) estimates the Mahalanobis distance of the
test pixel from the mean of the background, which is
zero for demeaned data. The algorithm in Equation
12, which has the CFAR property, is the adaptive ver-
sion of Equation 10 and it is used extensively for
anomaly detection in multispectral and hyperspectral
imaging applications [7].

A key assumption in the derivation of Equation 11
was that the covariance matrix of the background is
the same under the two hypotheses. For subpixel tar-
gets, however, the amount of background covered
area is different under the two hypotheses. Therefore,
it is more appropriate to use the following hypotheses

FIGURE 25. Illustration of signal model for subspace targets in homogeneous normal background.

Target subspace Background distribution

+=

x = Σ aksk +    v = Sa +    v
k = 1

P

σ σ

Observed spectrum

Band 3

Band 2

Band 1

Sa
vσ

x



• MANOLAKIS, MARDEN, AND SHAW
Hyperspectral Image Processing for Automatic Target Detection Applications

100 LINCOLN LABORATORY JOURNAL VOLUME 14, NUMBER 1, 2003

H

H
0

1

:

:

x v

x Sa v

=

= +

target absent

target present ,σ

implying x ~ N(0, σ2ΓΓ) under H0 and x ~ N(Sa, σ2ΓΓ)
under H1. In other words, the background has the
same covariance structure under both hypotheses but
different variance. This variance is directly related to
the fill factor of the target, that is, the percentage of
the pixel area occupied by the target object. The GLR
approach leads to the following adaptive coherence/
cosine estimator (ACE) detector [18, 19]:

     

DACE
T T T

T
H

H
ACE

( )
ˆ ( ˆ ) ˆ

ˆ ,

x

x S S S S x

x x

=

<>
− − − −

−

ΓΓ ΓΓ ΓΓ

ΓΓ

1 1 1 1

1
0

1
η (13)

which can be obtained from Equation 11 by remov-
ing the additive term N from the denominator.

If we use the adaptive whitening transformation

z x≡ −ˆ ,/ΓΓ 1 2

where ˆ ˆ ˆ/ /ΓΓ ΓΓ ΓΓ= 1 2 1 2  is the square-root decomposi-
tion of the estimated covariance matrix, the ACE can
be expressed as

DACE

T T T

T

T

T
( )

˜(˜ ˜) ˜
,

˜
x

z S S S S z

z z

z P z

z z
S= =

−1

where ˜ ˆ /S S≡ −ΓΓ 1 2  and P S S S SS̃
˜(˜ ˜) ˜≡ −T T1  is the or-

thogonal projection operator onto the column space
of matrix S̃. Since P PS S˜ ˜

2 = , we can write Equation
13 as

DACE ( ) cos ,
˜

x
P z

z

S= =

2

2
2 θ

which shows that, in the whitened coordinate space,
y = DACE (x) is equal to the cosine square of the angle
between the test pixel and the target subspace.

With the whitening transformation, the anomaly
detector in Equation 12 can be expressed as

DA
T( ) ,x z z=

which is the Euclidean distance of the test pixel from
the background mean in the whitened space. We note
that, in the absence of a target direction, the detector
uses the distance from the center of the background
distribution.

For targets with amplitude variability, we have P =
1 and the target subspace S is specified by the direc-
tion of a single vector s. Then the formulas for the
previous GLR detectors are simplified to

y D
T

T T
H

H
= =

+ <>
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− −
( )

( ˆ )

( ˆ )( ˆ )
,x

s x

s s x x

ΓΓ

ΓΓ ΓΓ

1 2

1
1 2

1
0

1

ψ ψ
η

where (ψ1 = N, ψ2 = 1) for the Kelly detector and
(ψ1 = 0, ψ2 = 1) for the ACE. Kelly’s algorithm was
derived for real-valued signals and has been applied to
multispectral target detection [20]. The one-dimen-

FIGURE 26. Illustration of generalized-likelihood-ratio test (GLRT) detectors. These are the adaptive matched filter
(AMF) detector, which uses a distance threshold, and the adaptive coherence/cosine estimator (ACE) detector, which
uses an angular threshold. The test-pixel vector and target-pixel vector are shown after the removal of the background
mean vector.
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sional version of ACE has been derived elsewhere [21,
22]. Finally, we note that if (ψ1 = N, ψ2 = 0) we obtain
the adaptive matched filter (AMF) detector [23, 24].

The length of a spectral vector increases or de-
creases when the overall illumination increases or de-
creases, but its angular orientation remains fixed.
Equivalently, the shape of the spectrum remains the
same, but its amplitude changes proportionally to the
illumination. For this reason, angle distances play an
important role in HSI data processing. These issues,
and the operation of angle-versus-distance-based de-
tectors, are illustrated in Figure 26.

Determining the distribution of the various GLRT
detectors is an elaborate process [14, 16, 17, 19, 25].
It turns out that the distribution of the different de-
tector outputs involves a noncentral F-distribution.
The noncentrality parameter is the theoretical signal-
to-interference-plus-noise ratio (SINR) given by

SINR0
1= −( ) ( ) .Sa SaT ΓΓ

The performance of all GLRT detectors depends
only on the dimensional integer numbers K, P, and N,
and the optimum SINR0 parameter. Under the H0
hypothesis (target absent), SINR0 = 0, the output dis-
tribution becomes central, and the probability of false
alarm depends only on the parameters K, P, and N.
Therefore, all GLRT detectors discussed in this sec-
tion have the CFAR property. For a remote sensing
system with high signal-to-noise ratio, the detection

performance depends predominately on the fraction
of the target occupying the pixel, since this fraction
determines the SINR. Figure 27 illustrates the effects
of target dimensionality on detection performance for
Kelly’s GLRT detector. We see that as P increases
(that is, as a priori information about the target de-
creases) detection performance deteriorates. The
worst performance is obtained when P = K, which
corresponds to the adaptive anomaly detector in
Equation 12. Figure 28 illustrates performance as a
function of the number of training pixels. Clearly,
performance improves as N increases (that is, as the
estimate of the interference covariance matrix be-
comes more accurate). In both figures, we have in-
cluded the curve indicating the performance of the
optimum matched filter [8] (i.e., a known target in
noise with known covariance matrix) for comparison.

Structural Background Models

When the background variability is modeled by using
a subspace model, the target detection problem in-
volves choosing between the following competing hy-
potheses:

     
H

H
b

b

0 0

1 1

:

:
,

,

x Ba w

x Sa Ba w

= +

= + +

target absent

target present , (14)

where the K × P matrix S has to be specified by the
user, the K × Q matrix B is determined from the data,

FIGURE 27. ROC curves for probability of detection PD as a
function of SINR, showing the effect of target subspace di-
mensionality.

FIGURE 28. ROC curves for probability of detection PD as a
function of SINR, showing the effect of the number of train-
ing pixels.
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and w 0 I= N w( , )σ 2 . Figure 29 provides a geometri-
cal illustration of the structured background model.
Since we assume that the coefficient vectors a, ab,0,
and ab,1 are unknown constants, the only source of
randomness is the additive noise w with unknown
variance σw

2 .
If we compute the maximum-likelihood estimates

of the unknown quantities and substitute the likeli-
hood ratio, we obtain the following GLRT detector
[8, 26, 27]:

y DSB

T
B

T
SB

B

SB

= = =
⊥

⊥

⊥

⊥
( ) ,x

x P x

x P x

P x

P x

2

2 (15)

where P I PA A
⊥ = −  and P A A A AA

T T= −( ) 1  is the
projection matrix onto the column space of matrix A.
The matrix SB = [S B] denotes the matrix obtained
by combining the target and background subspaces.
We note that || ||P xB

⊥  and || ||P xSB
⊥  are the Euclidean

distances of the test pixel from the background sub-
space and the combined target and background sub-
spaces, respectively (see Figure 30).

From the orthogonal triangle TCB we have cos φ =
TC/TB, which implies that 1/DSB(x) = cos2φ. That is,
the detection statistic is based on the angle between
the perpendiculars drawn from the test pixel to the
target and the combined target-background sub-
spaces. Because any monotonic function of DSB(x)
can be used as a detection statistic, we often prefer the
ratio
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because its probability density function can be conve-
niently expressed in terms of the F-distribution. In-

FIGURE 29. Illustration of structured background model when we use linear mixing with positivity and additivity
constraints to describe the target and background subspaces (only the part within a convex hull of each sub-
space is allowed). For unconstrained linear mixing or statistically determined subspaces, the full subspace
ranges are permissible.

FIGURE 30. Geometrical illustration of GLRT subspace tar-
get detector. The length of TC measures the goodness of fit
for the full linear model (target plus background) to the test-
pixel spectrum x, whereas the length of TB measures the
goodness of fit for the reduced model (background). If
TC ≅ TB, the inclusion of target does not improve the fit, and
we decide that the target is not present. The length of TD
measures the goodness of fit of the target model to the test-
pixel spectrum; however, for subpixel targets, comparing TD
to TB cannot be used to decide whether a target is present
or not present.
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deed, the distribution of the detection statistics is
given by

D
P F

K P Q
P K P Q( ) ~

( )
,,x − −

− −

SINR0

where FP K P Q, ( )− − SINR0  is noncentral F-distribu-
tion with P numerator degrees of freedom, K – P – Q
denominator degrees of freedom, and noncentrality
parameter SINR0:

SINR0 2
=

⊥( ) ( )
,

Sa P SaT
B

wσ

which depends on the unknown variance σw
2 . Notice

that σw
2  is not required for the computation of the

detection statistics because it cancels out. In the statis-
tical literature DSB(x) is denoted by F(x) and is known
as the F test. The threshold ηSB is established by the
required probability of false alarm

P FFA P K P Q SB= − − −1 0, ( , ) ,η

because SINRo = 0 under H0. [With a slight abuse of
notation we use FP K P Q SB, ( , )− − SINR0 η  to denote
the cumulative distribution function of the noncen-
tral F random variable.] Since the distribution of D(x)
under H0 is known, we can set the threshold ηSB to at-
tain CFAR operation. The probability of detection

P FD P K P Q SB= − − −1 0, ( , )SINR η

depends on the unknowns at  and σw
2 , and therefore it

cannot be maximized to obtain an optimum detector
according to the Neyman-Pearson criterion.

It can be shown that, independent of the normality
assumption, the detector in Equation 15 maximizes
the SINR [8, 10]. Furthermore, it has been proven
that “within the class of invariant detectors which
have the same invariances as the GLRT, the GLRT is
uniformly most powerful (UMP) invariant. This is
the strongest statement of optimality one could hope
to make for a detector’’ [26, p. 2156].

When P = 1, it can be shown [27] that the ampli-
tude of the target signature in Equation 15 can be es-
timated by the formula

ˆ ~ [ , ( ) ].a N a
T

B
T

B
w

T
B=

⊥

⊥
⊥ −s P x

s P s
s P sσ 2 1

(16)

Detection algorithms based on estimating â  do not
have the CFAR property, because σw

2  is unknown,
and they are not optimum in the Neyman-Pearson
sense. We notice that the detection algorithm known
as the orthogonal subspace projector (OSP) [28] is
just the numerator of Equation 16. The GLRT detec-
tor in Equation 15 and the OSP detector use the
same signal model given in Equation 14. The GLRT
detector maximizes the SINR for any noise distribu-
tion and is CFAR in the case of Gaussian noise. The
OSP has none of these properties.

FIGURE 31. ROC curves for probability of detection PD as a
function of signal-to-interference-plus-noise ratio (SINR),
illustrating the effect of target subspace dimensionality P.

FIGURE 32. ROC curves for probability of detection PD as a
function of SINR, illustrating the effect of the number K of
spectral bands.
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To gain additional insight into the performance of
the adaptive GLRT subspace detector, we consider a
background subspace with Q = 5, K = 144 bands, and
the probability of false alarm fixed at PFA = 10–6. The
dimension of the target subspace is varied from P = 1
to P = 9 in steps of 2. Figure 31 shows plots of the
probability of detection as a function of the SINR for
fixed values of PFA, Q, P, and K. The family of curves,
which is parameterized with respect to P, shows that
performance deteriorates as the dimensionality of the
target subspace increases (that is, as the a priori infor-
mation about the target decreases), as is expected. We
see that for a given probability of detection, there is a
loss in SINR due to the need to estimate the target
abundance and the noise variance.

Figure 32 shows a similar family of curves param-
eterized with respect to the number of spectral bands
K, with all other parameters held fixed. As we intu-

itively expect, performance improves as the number
of bands increases (that is, as we supply more infor-
mation into the detector). Clearly, the improvement
is more dramatic when we start adding more bands
and becomes less significant after a certain point. The
performance of the optimum-matched-filter detector
does not depend on the number of bands. More de-
tails and experimental results regarding the perfor-
mance of detection algorithms based on subspace
background models can be found elsewhere [27].

As is evident from the preceding discussion, a vari-
ety of hyperspectral imaging detection algorithms
have been reported in the literature, many with a
heritage in radar detection algorithms. Since the no-
tation used by the various authors is not consistent,
and since the connection to earlier algorithm work in
radar is not always noted, we have created a taxonomy
of detection algorithms, employing a common nota-

Table 2. Taxonomy of Hyperspectral Imaging Target Detection Algorithms
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Table 3. Detection Algorithm Performance Metrics and Assessment

Desirable Features Empirical Evaluation

High PD and low PFA Detection performance
target-background separation

Robustness to model mismatches—similar performance detected target pixels at a given PFA

under similar situations PFA to detect all target pixels

Ease of use—minimal user interaction Sensitivity to
externally supplied parameters

Automated threshold selection covariance corruption by target pixels
covariance regularization

Reasonable robustness to supplied and estimated dimensionality reduction
parameters

Performance under different tactical scenarios;
Acceptable computational complexity seasonal changes; targets at various levels of

camouflage, concealment, and deception;
and different airborne conditions

tion, by using the following criteria: (1) the spectral
composition of the observed pixels (full pixels or
mixed pixels); (2) the mathematical approach used to
model the spectral variability of target and back-
ground spectra (subspace or statistical); and (3) the
available a priori information about target or back-
ground classes (signature-based detection versus
anomaly detection).

Table 2 lists this taxonomy of the most fundamen-
tal target detection algorithms discussed in this ar-
ticle. We focus on algorithms derived with well-estab-
lished statistical models and procedures. A number of
additional algorithms reported in the literature can be
obtained from this table through mathematical
approximations or simplifications. For example, low-
rank approximations or diagonal loading of the esti-
mated background covariance matrix lead to algo-
rithms that may provide improved performance
under certain practical circumstances. The use of un-
supervised classification techniques to derive more
homogeneous background segments followed by sub-
sequent application of the algorithms in Table 2 may
or may not lead to improved detection performance.

Practical Performance Evaluation

The successful implementation of automatic hyper-
spectral target detection algorithms requires contend-

ing with many practical details and challenges that
arise because of departures of the data from the theo-
retical assumptions made in deriving the various algo-
rithms. For example, the scene reflectances may not
conform to the assumed probability distribution and,
even if they do, atmospheric effects, sensor errors, and
sampling artifacts can corrupt the data.

Table 3 provides a list of desirable features for tar-
get detection algorithms, as well as several perfor-
mance metrics that need to be quantified when we
evaluate these algorithms for practical applications. In
this section, we touch upon some of these issues to
provide a flavor of the difficulties encountered in the
practical performance assessment of HSI target detec-
tion algorithms.

Hyperspectral Imaging Data and Ground Truth

Airborne hyperspectral imagery data collected by the
HYDICE [29] sensor at the U.S. Army Aberdeen
Proving Grounds, Maryland, on 24 August 1995 are
used to illustrate various issues and algorithms dis-
cussed in this article. HYDICE collects calibrated
(post-processed) spectral radiance data in 210 wave-
lengths spanning 0.4 to 2.5 µm in nominally 10-nm-
wide bands. The image in Figure 33 is a color repre-
sentation of this data. We also use data from the
NASA Hyperion sensor to illustrate the detection of
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subpixel targets. The Hyperion sensor covers the
range from 0.4 to 2.5 µm, with 220 wavebands and a
spatial resolution of thirty meters.

A quantitative evaluation of the performance of
HSI detectors using real data is complicated. We
would like to have calibrated data free of sensor arti-

facts, since these artifacts degrade detector perfor-
mance. Furthermore, we would like to have compre-
hensive a priori knowledge of all the materials in the
scene in order to score the performance of the various
detectors. This comprehensive a priori knowledge, or
ground truth, involves information such as precise lo-
cation, size, and orientation of the materials in the
scene. For spatially resolved target materials, some
pixels will be entirely filled by the material, some may
be partially filled, and some may be in shadow. There-
fore, for the purpose of assessing the performance of
automated detection algorithms, it is useful to care-
fully review all the data and manually label the pixels
in the vicinity of a target as full, mixed, shadow, and
guard pixels, to distinguish the performance differ-
ences among different detectors. This approach in-
volves developing target masks, as illustrated in Figure
34, which are created by a laborious manual review of
the imagery. Figure 35 shows the reflectance spectra
of the four types of pixels specified by the target mask
in Figure 34. The mean value of the full-pixel spectra
is shown by a thick black line in all four plots.

The data were analyzed in units of calibrated spec-
tral radiance for the characterization of joint statistics
and surface reflectance for the modeling of target de-
tection statistics. While it is known that data artifacts
exist in the calibrated spectral radiance because of an

FIGURE 33. Color image representing the hyperspectral data
from the HYDICE sensor data cube, showing the division of
the data cube into rectangular blocks to reduce spatial inho-
mogeneity. These data are used to illustrate the empirical
performance of different target detection algorithms.

FIGURE 34. Example of a target mask, illustrating the vari-
ous types of pixels identified in the canonical data sets.
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interpolation process used to replace dead pixels, no
special screening for these anomalies was performed.
For the multivariate analysis examples, only 144 of
the 210 channels were used to avoid regions of low
signal-to-noise ratio (water-vapor bands).

Empirical Investigation of Detection Performance

We now present some typical results regarding the
performance of different detection algorithms, using
hyperspectral imaging data obtained by the HYDICE
and Hyperion sensors for both full-pixel and subpixel
targets.

As we have already mentioned, the preeminent
performance metric for target detection applications
is an ROC curve. However, the relatively modest size
of the available data cubes (about 2 × 105 pixels) and
the very small number of target pixels (usually fewer
than 102 pixels) make the use of reliable ROC curves
questionable. To avoid this problem, we used the
plots illustrated in Figure 36. The top plot shows the
probability of exceedance as a function of the detector
output (detection statistics). The probability of
exceedance Py(η) is defined as the probability that the
value of a random variable y with probability density
function f y(y )  exceeds a threshold η , such that

P f y dy f y dy Fy y y y( ) ( ) ( ) ( ) ,η η

η

η

= = − = −
∞

∞
∫ ∫1 1

where Fy(η) is the cumulative distribution function.
Since ground truth is available, we can exclude the

FIGURE 36. Example of plots used to evaluate detection per-
formance. The top plot shows the probability of exceedance
as a function of threshold. This information can be used to
select a threshold for a desired false-alarm rate. The histo-
gram in the lower plot shows the number of target pixels as a
function of detector statistics, for both full-pixel and sub-
pixel targets.

FIGURE 35. Reflectance spectra of the four types of pixels
specified by a target mask such as the one shown in Figure
33. The thick line shown in all plots is the mean spectrum of
the full-target pixels.
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FIGURE 39. Performance of the AMF detector for target A. FIGURE 40. Performance of the GLRT detector for target A.

FIGURE 41. Performance of the ACE detector for target B. FIGURE 42. Performance of the ACE detector for target C.

FIGURE 37. Performance of Mahalanobis distance-based
anomaly detector for target A.

FIGURE 38. Performance of the ACE detector for target A.
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FIGURE 43. Summary of detection performance of the vari-
ous detectors for three different target signatures. Each bar
shows the number of detected targets for a 10–4 probability
of false alarm.

FIGURE 44. Summary of detection performance of the vari-
ous detectors for three different target signatures. Each bar
shows the probability of false alarm for a threshold that as-
sures the detection of all full-pixel targets.

target pixels. The exceedance curve with targets ex-
cluded shows the probability of false alarm as a func-
tion of threshold and can be used to select a threshold
for a desired false-alarm rate. Inspection of exceed-
ance curves with and without target pixels included
shows that even a small number of targets can change
the tail of the distribution significantly. This rein-
forces the argument that estimates of PFA are inaccu-
rate when PFA < 10/N, where N is the number of
available pixels. This limit is more profound when we
deal with the probability of detection, where the
number of target pixels may be as low as one pixel.
Since stating probabilities could be misleading in
such cases, we plot a histogram, such as the lower plot
in Figure 36, which shows the number of target pixels
as a function of the detector output, including both
full pixel and subpixel targets.

From Figure 36 we can conclude that the perfor-
mance of a detector improves as the body of the target
histogram moves toward and beyond the tail of the
background probability of exceedance curve. In this
sense, careful inspection of Figures 37 through 40 in-
dicates the following: (1) the three detectors (ACE,
AMF, GLRT), searching for a target A with known
spectral signature, outperform the Mahalanobis dis-
tance-based anomaly detector (AD), which does not
use the spectral signature of target A; (2) the ACE al-
gorithm performs better than the AMF and GLRT

algorithms because its target histogram is mostly lo-
cated outside the range of the background probability
of exceedance curve; (3) the performance for subpixel
targets is inferior to that for full-pixel targets. Indeed,
the response for full-pixel targets typically exceeds
that for subpixel targets in all detectors.

Figures 41 and 42 illustrate the performance of the
ACE detector for two additional targets, labeled B
and C, in the same Forest Radiance I background. As
Figure 41 shows, target B is more difficult to detect
than target A (Figure 38) and target C (Figure 42).

To provide a synoptic performance comparison of
the main algorithms discussed in this article, Figure
43 shows the number of correctly detected target pix-
els for three spectrally different targets. The threshold
in each case was chosen to attain a false-alarm rate of
10–4. Similarly, Figure 44 shows the resulting false-
alarm rate when the threshold is chosen to assure the
detection of all target pixels in each case. These fig-
ures indicate that the ACE algorithm typically pro-
vides better performance than any other algorithm.
Although this performance may not be significantly
better than other algorithms, it is consistent across
different targets and backgrounds.

Another point of practical significance, which be-
comes apparent from Figures 38 through 42, is the
difficulty of selecting a threshold to attain a given
probability of false alarm when PFA < 10/N. In order
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to set the CFAR threshold in a real-time system, the
data must conform to some underlying statistical
model, and the parameters of the model must be in-
ferred from the data. We have seen that the presence
of target pixels (even a very small number) lifts the tail
of the exceedance curve significantly. Clearly, estimat-
ing the CFAR threshold using data containing targets
will lead to the choice of an unnecessarily high thresh-
old. There are remedies to this problem, such as
methods that exclude outliers in estimating CFAR
threshold. A more important consideration, however,
is the accuracy of the underlying statistical model.

Figure 45 shows the actual background statistics
and the theoretically predicted statistics for the ACE
detector algorithm, assuming that the hyperspectral
data follow a multivariate normal distribution. We see
that there is a significant discrepancy at the tail of the
distributions, where the model tends to underesti-
mate the false-alarm rates for thresholds above 0.1.
Therefore, we need models that can provide a more
accurate description of the background statistics at
very low probabilities of false alarm. This topic is ad-
dressed in the next section.

The reader should be warned that the results pre-
sented are indicative of the typical performance we

FIGURE 46. Camp Pendleton, California, test area, imaged by the Hyperion sensor (left). The two de-
tailed views of the target site are a color image (center), indicative of the spatial resolution of the
Hyperion data sensor, and a high-resolution panchromatic image (right). The desired target material
of interest is a rooftop in the scene, as shown in the target buffer area.

FIGURE 45. Experimental and theoretically expected back-
ground probabilities of exceedances for the ACE detector.

have seen in several experiments. It is possible that
fine-tuning an algorithm may provide better perfor-
mance in certain situations; however, it is not guaran-
teed that this improvement will hold in general.

Evaluation of detection performance for subpixel
targets is even more challenging because it is costly to
deploy many targets. Furthermore, detection is more
difficult if the target fills only a small fraction of the
pixel—say, less than fifty percent. Consider, for ex-
ample, the Hyperion hyperspectral sensor, which has
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a spatial resolution of 30 × 30 meters. An automobile,
which covers an area less than ten square meters,
would be very difficult to detect with such a sensor,
since the pixel fill factor is only 11%. The article by
John P. Kerekes and Jerrold E. Baum in this issue,
“Hyperspectral Imaging System Modeling,” examines
the sensitivity to fill factor in more detail.

Figure 46 shows an area from the Camp Pendle-
ton, California, test site, imaged with the NASA
Hyperion sensor. The target-site area, shown in a
color image and in a high-resolution panchromatic
image, includes a rooftop that constitutes the desired
target. The ground truth regarding the location of the
target was derived from Airborne Visible Infrared Im-
aging Spectrometer (AVIRIS) sensor data for the
same site, as shown in Figure 47. We define a 10 × 6
pixel buffer in the Hyperion data that is certain to in-
clude the target pixels. The spectral signature for the
rooftop, required by the three detectors, was obtained
from the AVIRIS data cube.

To compare the three detectors (ACE, AMF, and
GLRT), we compute the detection statistics for the

data cube and determine the maximum value within
the target buffer. Then we set the threshold to this
maximum value and determine the number of false
alarms, as shown in Figure 48 for the ACE detector.
Figure 49 shows the detection statistics in the target
buffer for the ACE, AMF, and GLRT algorithms. All
three algorithms can detect the target (circled pixel)
with fewer than forty false alarms over the entire im-
age. The ACE algorithm has the smallest number of
false alarms, but the numbers for all algorithms
change even with a small change of the threshold.

Background Modeling with Elliptically
Contoured Distributions

To date, analytic derivation of hyperspectral target
detectors has been based on signal models involving
multivariate normal distributions. In many practical
cases, however, the actual response of a detector to the
background pixels differs from the theoretically pre-
dicted distribution for Gaussian backgrounds. In fact,
the empirical distribution usually has heavier tails
compared to the theoretical distribution (see Figure
50), and these tails strongly influence the observed
false-alarm rate of the detector. Clearly, the detection
problem cannot be addressed in an optimum manner
until the departures of the background distribution
from normality are understood. The focus of this sec-
tion is to introduce a non-Gaussian model for the
background statistics and discuss the implications for
detector design.

A key characteristic of normal random vectors is
the elliptical shape of their equal probability con-
tours. It has been shown [30] that multiplying a nor-
mal random vector z 0~ ( , )N ΓΓ  with a non-negative
random variable α produces a random vector

x z= α , (17)

whose contours of equal probability still have ellipti-
cal shape. The density of the contours is controlled by
the probability density of the random variable α.
When Equation 17 is applied to hyperspectral data
modeling, the normal vector z can be used to account
for the intrinsic spectral variability, whereas the scalar
random variable α can be used to model environmen-
tal effects associated with the illuminated pixel area.
The conditional probability density of x given α is

FIGURE 47. Ground truth for the location of the rooftop tar-
get shown in Figure 45, obtained by the AVIRIS sensor. Its
reference spectral signature, which corresponds to rooftop
material, was obtained from a spectral library.
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Using Equation 18 we can express Equation 19 as

f h dp
K( ) ( ) ( ) ,/ /

x = − −
2 2 1 2
π ΓΓ (20)

where d = ∆2 is the Mahalanobis distance of x from
µµ  = 0, and

h d
d

f dK
K( ) exp ( )= −









−
∞

∫ α α
α αα

1
2 2

0

is a positive, monotonically decreasing function for
all K. We say that the random vector x with probabil-
ity density in Equation 20 has an elliptically contoured
distribution (ECD) function. This is denoted by using
the shorthand notation EC( , , )µµ ΓΓ h . Note that the
normal distribution is a special case of Equation 20
with

h d dK ( ) exp .= −








1
2

In addition, the class of ECDs includes the multivari-
ate t , the multivariate Cauchy, and the double expo-
nential distributions. Many of the properties of the
multivariate normal distribution extend also to the
class of ECDs. Thus all the marginals of an ECD, and
the conditional distributions of some variables, given
the values of the others, are also ECDs. Given this
property, we can use the linear mixing model and el-
liptically contoured distributed random vectors to
create more accurate subpixel spectral models.

FIGURE 48. Illustration of the threshold-selection process for the ACE algorithm. ACE detection statistics
for the Hyperion red-green-blue (RGB) color image are computed, and the maximum value within the target
buffer (inside the target site) is used to set the threshold value and to determine the number of false alarms.
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FIGURE 49. Detection statistics in the target buffer area for
the ACE, AMF, and GLRT target detection algorithms. All
three algorithms can detect the target (circled pixel) with
fewer than forty false alarms in the entire cube of about
200,000 pixels.

the maximum-likelihood estimates. When the num-
ber of pixels N is greater than about 10K , the esti-
mated Mahalanobis distance, for all practical pur-
poses, follows a chi-squared distribution.

From the multitude of ECDs discussed in statistics
literature, the elliptically contoured t-distribution [2]
has been shown to provide a good model for many
hyperspectral data sets [32]. This distribution is de-
fined by

t
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where E(x ) = µµ , Cov(x )  = v
v−2 C , υ is the number of

degrees of freedom, and C is known as the scale ma-
trix. The Mahalanobis distance is distributed as

1 1

K
FT

K( ) ( ) ~ ,,x C x− −−µµ µµ υ (22)

where FK ,v is the F-distribution with K and v degrees
of freedom. The integer v controls the tails of the
distribution: v = 1 leads to the multivariate Cauchy

The random vector x ~ ( , , )EC µµ ΓΓ h  can be gener-
ated by

x z= +ΓΓ µµ1 2/ ( ) ,α (21)

where z ~ N(0, I ) and α is a non-negative random
variable independent of z. The density of the ECD is
uniquely determined by the probability density of α,
which is known as the characteristic probability den-
sity function of x. Note that fα(α)  and ΓΓ  can be
specified independently.

One of the most important properties of random
vectors with ECDs is that their joint probability den-
sity is uniquely determined by the probability density
of the Mahalanobis distance

f d
K

d h dd K
K

K( )
( / )

( ) ,
/

( / )= −1

2 22
2 1

Γ

where Γ(K /2) is the Gamma function. As a result,
the multivariate probability density identification
and estimation problem is reduced to a simpler
univariate one. This simplification provides the cor-
nerstone for our investigations in the statistical char-
acterization of hyperspectral background data.

If we know the mean and covariance of a multi-
variate random sample, we can check for normality
by comparing the empirical distribution of the
Mahalanobis distance against a chi-squared distribu-
tion. However, in practice we have to estimate the
mean and covariance from the available data by using

FIGURE 50. Modeling the distribution of the Mahalanobis
distance for the HSI data blocks shown in Figure 33. The
blue curves correspond to the eight equal-area subimages
in Figure 33. The green curves represent the smaller areas in
Figure 33 and correspond to trees, grass, and mixed (road
and grass) materials. The dotted red curves represent the
family of heavy-tailed distributions defined by Equation 22.
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distribution (heavier tails), whereas as v → ∞ the t-
distribution approaches the multivariate normal dis-
tribution (lighter tails). Random vectors from any EC
t distribution can be generated by Equation 21, if the
random variable α has a ( ) /χK

2 1 2− distribution.
To identify the joint spectral distribution of hyper-

spectral backgrounds, we compute the probability of
exceedance of Mahalanobis distance for various
HYDICE data sets. The empirical distributions are
compared to the theoretical chi-squared and F-distri-
butions corresponding to the multivariate normal
and t-distributions. To reduce the effects of spatial in-
homogeneity, we divide the data cube into rectangu-
lar blocks, as shown earlier in Figure 33. We also con-
sider three regions, identified by the white boxes in
the figure, which define three classes that were se-
lected by their spatial proximity. In the upper right is
a grass region, in the middle left is a tree region, and at
the bottom is a mixed region of road and grass. These
regions define the pixels selected for three of the
classes considered. Figure 50 shows the distribution
of the Mahalanobis distance for all blocks, plus the
three spatially determined classes.

The results in Figure 50, which are representative
of several other data sets, indicate that the distribu-
tion of HYDICE and AVIRIS data cubes cannot be
accurately modeled by the multivariate normal distri-
bution. However, the elliptically contoured multi-
variate t-distribution provides a promising model.
We note that the t-distribution tends to the normal
distribution when the number of degrees of freedom
increases.

These models can be used to select the threshold
for CFAR detectors more accurately, develop detec-
tion algorithms that better exploit the statistics of
hyperspectral background data, and test the robust-
ness of detectors designed under the normality as-
sumption. Indeed, it has been shown [33] that the
structure of the GLRT, AMF, and ACE algorithms re-
mains mathematically unchanged, and they retain the
CFAR property for any hK(d ). However, their prob-
ability of detection depends on the form of the func-
tion hK(d).

In summary, ECD models are more flexible and
provide a better fit to hyperspectral data than the sim-
pler Gaussian distribution. Furthermore, the fact that

the GLRT, AMF, and ACE detectors for ECD and
normal distributions have the same structure explains
their robustness to deviations from normality. The re-
finement and application of ECD models in order to
enhance performance of hyperspectral CFAR detec-
tors is an important new area of research.

Conclusions

This article presents a tutorial review of the state of
the art in target detection algorithms for hyperspec-
tral imaging applications, providing a consistent
mathematical notation and framework for algorithms
drawn from many disparate sources in the literature.
The main obstacles in the development of effective
detection algorithms are the inherent variability in
target and background spectra. The use of adaptive
algorithms deals quite effectively with the problem of
unknown backgrounds; the lack of sufficient target
data, however, makes the development and estima-
tion of target variability models challenging. Hyper-
spectral target detection is a multidisciplinary prob-
lem that draws results from different scientific and
engineering areas. There is a significant signal pro-
cessing component, however, and expertise from the
areas of array processing, radar, and detection theory
will provide crucial contributions to future progress.

The empirical performance assessments presented
in this article hint at the detection and false-alarm
performance achievable with automated matched-fil-
ter detection algorithms. However, additional effort
in modeling the variability of targets and the non-
Gaussian behavior of backgrounds is needed to pro-
duce accurate ROC curves for a greater variety of tar-
get and background classes.
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