
C O V E R F E A T U R E

0018-9162/07/$25.00 © 2007 IEEE58 Computer P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

circuit on an FPGA. In practice, area, clock rate, and
I/O are the primary constraints.

RECONFIGURABLE COMPUTERS
First proposed by Gerald Estrin6 in 1960, the RC is a

“fixed plus variable structure” computer that can be
“temporarily distorted into a problem-oriented special-
purpose computer.” The RC languished in relative obscu-
rity for more than 30 years. However, the FPGA has
precipitated a reawakening, and RCs that use general-
purpose processors (GPPs) and FPGAs as the fixed-plus-
variable structure have recently become available. The
fine-grained resolution of FPGAs allows reconfiguring
the hardware for the specific problem at hand. For appli-
cations that have some combination of large-strided or
random data reuse, streaming, parallelism, or computa-
tionally intensive loops, RCs can achieve higher perfor-
mance than GPPs.

High-level-language-to-HDL compilers provide fea-
tures such as pipelined loops and parallel code blocks
that allow migrating FPGA-based development out of
the hardware design world and into the HLL program-
ming world. The goal is to create deeply pipelined,
highly parallelized designs without, as SRC Computers’
CEO Jon Huppenthal terms it, “a hardware buddy.”
Huppenthal made this comment at the ARCS recon-
figurable computing conference in August 2005. In con-
cept, researchers can, for example, use C to develop an 
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R esearchers at the US Army Engineer Research
and Development Center and the University of
Southern California are focusing on algorithms
and architectures to facilitate high-performance,
reconfigurable computer-based scientific com-

puting. Examples of this research include IEEE Std. 754
floating-point units,1 molecular dynamics kernels,2 linear-
algebra routines,3 and sparse matrix solvers.4 Mapping
two sparse matrix solvers onto an FPGA-augmented
reconfigurable computers (RC) demonstrated more than
a twofold speedup over software.

FIELD-PROGRAMMABLE GATE ARRAYS
Ross Freeman invented the FPGA in the 1980s.5 These

semiconductor devices contain programmable logic ele-
ments, interconnections, and I/O blocks, which end
users configure to implement complex digital-logic cir-
cuits. For RCs, the focus is static random-access mem-
ory (SRAM)-based FPGAs, which can be reprogrammed
using a configuration bitstream.

The traditional FPGA design flow creates a hardware
description language representation of the design. A syn-
thesis tool translates the HDL into netlist files, which
are essentially text-based descriptions of the schematic.
Target-specific place-and-route (PAR) and bit-genera-
tion tools use netlists to create a configuration bitstream.
Simulation at each design stage verifies the functional-
ity. In theory, designers can place any digital logic 
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algorithm and then compile it into a hardware design.
In practice, they often must use a hybrid approach
involving both HLL and HDL. 

Sparse matrix performance
Applications involving sparse matrices can experience

significant performance degradation on GPPs. The clas-
sic example is sparse matrix-vector multiply (SMVM),
which has a high ratio of memory references to floating-
point arithmetic operations and suffers from irregular
memory access patterns. Further, the n-vector, x, can-
not fit in the GPP cache for large n, so there may be lit-
tle chance for data reuse. 

Over the past 30 years, researchers have tried to mit-
igate the poor performance of sparse matrix computa-
tions through various approaches such as reordering the
data to reduce wasted memory bandwidth,7 modifying
the algorithms to reuse the data,8 and even building spe-
cialized memory controllers.9 Despite these efforts,
sparse matrix performance on GPPs still depends on the
matrices’ sparsity structure.

In contrast, the runtime of pipelined FPGA-augmented
designs, which have single-cycle memory access, does
not depend upon the matrix’s sparsity structure. Thus,
if researchers develop pipelined architectures and extract
enough parallelism to realize runtime speedups, they can
show that sparse matrix computations have an affinity
for RCs.

Floating-point reduction problem
Reductions, which occur frequently in scientific com-

puting, are operations such as accumulation and dot
product that input one or more n-vectors and reduce
them to a single value. A binary tree of pipelined float-
ing-point cores is a high-performance parallel architec-
ture that accepts input vectors every clock cycle and,
after the pipeline latency, emits one result every clock
cycle. To accumulate, say, eight numbers, we can use a
binary tree with four adders in the first stage, two adders
in the second stage, and a single adder in the third stage.
However, because of FPGA area constraints, we can only
build relatively small trees.

Therefore, we must translate large parallel reductions
into a sequence of smaller reductions and reduce the
stream of values that are subsequently produced.
Consider the dot product architecture that Figure 1
shows. We partition the n-vectors, x and y, into k-vec-
tors, u and v. At each clock edge, one pair of k-vectors
enters the k-width dot product unit. When the pipeline
fills, the partial dot products, dj, stream out, one value
per clock cycle. 

The adder accumulates the values in this sequentially
delivered vector to produce the dot product, (x,y).
Unfortunately, since the adder is pipelined, the loop
introduces a multicycle stage. Further, to avoid inter-
mingling, the system must flush the adder after each vec-

tor. These stalls result in poor performance and can lead
to buffer overruns. 

Thus, solving the reduction problem requires reduc-
ing multiple sets of sequentially delivered floating-point 
vectors without stalling the pipeline or imposing unrea-
sonable buffer requirements.

CONJUGATE GRADIENT SOLVER
The conjugate gradient (CG) method shown in

Figure 2, developed by Magnus Hestenes and Eduard
Stiefel in 1952,10 is the best-known iterative method
for numerically solving linear equations, Ax � b,
whenever A is a symmetric positive-definite (SPD)
sparse matrix. As Figure 2 shows, a plot of f(x) �
xTAx – bTx, where A is an order n SPD matrix, 
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Figure 1. Reduction problem example.The dot product

architecture consists of the largest k-width dot product unit

that will fit on the FPGA, followed by a looped adder accumula-

tor. Because the adder is pipelined, the naive adder loop intro-

duces a multicycle pipeline and causes buffer overruns.
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Figure 2. Conjugate gradient algorithm.The loop calculates the

next value of x (estimated solution), r (residual), and p (search

direction). Each iteration yields a better x by “walking

downhill” in the A-orthogonal (conjugate) direction given by

vector p. A convergence test, as idealized by the while clause at

line 5, causes the CG algorithm to terminate.

1: algorithm CG (A, x, b )
2: x (0) ← x 0
3: p (0) ← r (0) ← b − A x (0)

4: δ ← 0
5: while (Δ is too big) do
6: q ← A p (δ)

7: α ← (r (δ), r (δ))/ (p (δ), q )
8: x(δ+1) ← x(δ) + αp(δ)

9: r (δ+1) ← r (δ) − αq
10: β ← (r (δ+1), r (δ+1))/ (r (δ), r (δ))
11: p (δ+1) ← r (δ+1) + βp(δ)

12: δ ← δ + 1
13: end while
14: end algorithm
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yields an (n � 1)-dimensional concave-up parabolic
surface. The x value that minimizes f(x) corresponds
to the solution to Ax � b, that is, the x value at the
lowest point in the “bowl” is the solution.

High-level CG design
A profile of CG4 shows that it spends more than 95

percent of the execution time in SMVM (line 6 of the
CG algorithm), so we targeted this module for the
FPGA. 

Figure 3 shows our high-level CG design. The main
routine measures how long it takes for CG to solve each
set of input equations, Aixi � bi. The result vectors, xi,
and performance statistics, �i, are written to output files.
Since the A matrix is invariant during the entire CG cal-
culation, the FPGA-based SMVM pulls a copy of A one
time and stores it in local memory for subsequent iter-
ations. Amortization of the matrix transfer cost across
all iterations of CG is a key design feature.

FPGA-based matrix-vector multiply
Figure 4 shows a block diagram of our FPGA-based

SMVM architecture. The diagram represents the input
sparse matrix, A, in compressed sparse row (CSR) for-
mat via the three vectors: val, the row-wise matrix val-
ues; col, the column index of each value; and ptr, the
position in the val vector where each row begins. The
basic algorithm for each row calculates a series of partial
dot products, dih, and reduces them to the single value,

The k-width dot product core accepts two double-pre-
cision floating-point k-vectors every clock cycle. The u
inputs from val correspond to the next k elements of the
A matrix. The corresponding k values from col ensure
that the matching k elements of x are sent to the v inputs.
After the latency, the core emits a sequential stream of
partial dot products.

To reduce the partial dot products, the architecture
has an �-stage pipelined adder and a constant-sized �-
row by �-column partial summation array, S. A round-
robin scheduling algorithm guarantees an �-cycle
interval between subsequent references to the same
memory location in S. The binary tree output accumu-
lator reduces completed rows of S to produce the com-
ponents of vector y. 

The easiest way to envision the round-robin partial
summation algorithm is to view the toroidal access pat-
tern of the S array shown in Figure 5. The accumulation
of a given input vector is restricted to a specific row—
such as the red row—within the S array.

Even if there are more than � elements in the input
vector, the major circumference of the torus—the num-
ber of columns—is �, thereby ensuring that any previ-
ous data at a given location—the black square, for
example—has already traversed the adder pipeline and
been written back by the time the adder again references
that location. If we must reduce a series of small vec-
tors, the minor circumference of the torus—its number
of rows—ensures that by the time the algorithm needs
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Figure 3. Conjugate gradient design. A compile-time decision

selects the software-only or FPGA-based version of SMVM.
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Figure 4. Sparse matrix-vector multiply module.The FPGA-

based architecture consists of a k-width dot product core, an �-

stage pipelined adder, a partial summation array, S, an output

accumulator core, and some on-chip and local memory banks.
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to reuse a row, the previous row contents already have
been sent to the accumulator and the row initialized to
zero. This toroidal access pattern makes S appear to be
an infinite two-dimensional array, which can handle
arbitrary sets of sequentially delivered vectors without
stalling the pipeline.

JACOBI SOLVER
Researchers can use the Jacobi iterative method to

solve linear equations, Ax = b, whenever A is a diago-
nally dominant (DD) matrix. Substituting A � L � U �
D into Ax � b yields the vector form of the Jacobi iter-
ation,

x(��1) � D	1 [b 	 (L � U) x(�)]

where L is the lower triangular matrix, U is the upper
triangular matrix, D is the diagonal matrix, and � is the
iteration index. The Jacobi component form is given by

(1)

High-level Jacobi design
The high-level Jacobi design in Figure 6 resembles the

high-level CG design, except the entire sparse matrix
Jacobi (SJAC) algorithm—a double-precision imple-
mentation of the standard Jacobi algorithm—is imple-
mented as either a software-only module or an
FPGA-based module. A compile-time decision selects
the appropriate version of SJAC. As with CG, the main
routine measures how long it takes to solve each set of
linear equations, then saves the results in output files for
subsequent comparison. Again, the FPGA module pulls
a copy of matrix A one time and stores it in local mem-
ory for subsequent iterations.

FPGA-based sparse matrix Jacobi
Figure 7 shows a block diagram of our FPGA-based

SJAC solver. The dot product core accepts two input k-
vectors, one per clock cycle. The u input corresponds
to the next k elements of A; notice that the aii term is
ignored, as required by Equation 1. The correspond-
ing k values from col ensure that the matching k ele-
ments of x(�) are sent to the v input. After the latency,
the core emits a stream of dot products, one per clock
cycle. The core has an �-stage pipelined subtracter and
an �-row by �-column partial summation array S. Each
array row is initially set to have bi in column one and
zero in all other columns; as the dot products stream in,
they are subtracted from bi as required by Equation 1.
The �-input binary tree output accumulator reduces
completed rows of S. The accumulator output is mul-
tiplied by the stored 1/ aii values to produce the x(� + 1)

values.
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IMPLEMENTATION AND RESULTS
A comparison of our FPGA-augmented implementa-

tions with off-the-shelf software-only implementations
and algorithms shows that the FPGA-augmented 
versions achieve greater than a twofold speedup over
software.

Target RC and implementation
We used an SRC-6 MAPStation11 as the target RC. It

has dual 2.8-GHz Xeon GPPs with a 512-Kbyte cache
and 1 Gbyte of RAM. The MAP Series MPC processor
contains two Xilinx Virtex II 6000 FPGAs running at
100 MHz. Each FPGA has 288 Kbytes of on-chip
BRAM. Six banks of local memory provide an addi-
tional 24 Mbytes of memory. For the FPGA modules,
we used the SRC Carte C compiler v2.1 and Xilinx ISE
v7.2; for the software modules, we used the Intel C com-
piler v8.1.
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Figure 6. Jacobi design. A compile-time decision selects the

software-only or FPGA-based version of SJAC.
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Figure 7. Sparse matrix Jacobi module.The FPGA-based archi-

tecture consists of a k-width dot product core, a modified accu-

mulator, a divider, an output multiplier, and some on-chip and

local memory banks.
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We used VHDL and the IEEE Std. 754 double-
precision floating-point cores1 to implement the dot
product unit and output accumulator. We used Synplify
Pro v8.1 to synthesize them and integrated them into
the Carte environment as user-defined macros.

Since CG is difficult to implement properly,12 we used
an off-the-shelf implementation from the Sparskit13

library as a baseline. We also used the optimized soft-
ware SMVM that came with Sparskit. We did not want
to build a poor software CG implementation and then
claim to beat it using an RC. 

The Jacobi implementation is based on an off-the-
shelf algorithm.14 As with CG, we wanted to base our
comparison on a solver recognized within the commu-
nity. We used the target RC to build CG for matrices
up to order n = 4,096, and we used Jacobi for matrices
up to order  n = 2,048. The limiting factor was the num-
ber of simultaneous local memory reads. It was neces-
sary to store some vectors, such as x, in the FPGA block
memories. 

Future RCs will likely have a larger number of local
memory banks. If we can put all the vectors into local
memory banks, we can expect the implementation to
handle significantly larger problems.

Description of test matrices
For each matrix order, 1000, 2000, 3000, and 4000,

we generated three SPD matrices that have sparsity val-
ues of two, four, and six percent. For example, the two-
percent sparsity test matrix for the n = 1000 case
contains nz = n2 � 2 percent = 106 � 0.02 = 20 K nonzero

entries. The resulting 12 SPD sparse matrices were used
as test inputs for the two versions of CG.

For each matrix order, 1000 and 2000, we generated
three DD matrices that also have sparsity values of two,
four, and six percent. We used the resulting six matrices
as test inputs for the two Jacobi versions.

Test results
To capture the entire system behavior, including data

transfer time to and from the FPGA-based modules, we
instrumented the main routines with microsecond-res-
olution timers. We ran both versions of the CG and
Jacobi solvers using the previously described matrices
to capture the entire application’s wall-clock runtime. 

Figure 8 compares the wall-clock runtime of the
FPGA-augmented versions to the software-only ver-
sions. For the 1K(*) cases, which fit in the Xeon’s 512-
Kbyte cache, the software-only version of CG showed
the best performance. However, for the remaining test
cases, the FPGA-augmented version of CG outperforms
software. For the *K(1) cases, the software-only version
of Jacobi offered the best performance. For the remain-
ing test cases, the FPGA-augmented Jacobi version ran
faster than software.

RELATED RESEARCH
Sreesa Akella and colleagues15 described a CSR-format

SMVM kernel for the SRC-6 reconfigurable computer.
Their implementation employs parallel floating-point
multiply accumulator (MAC) cores. As with our work,
they compared the wall-clock runtime of a software ver-
sion to the wall-clock runtime of the FPGA-augmented
version. They also used the Carte HLL- to-HDL compiler
to develop the FPGA-based modules. Unfortunately, their
implementation “is still 2 to 2.55 slower than software.”

Michael deLorimier and André DeHon16 described an
FPGA-only design of a CSR-format SMVM. Their
JHDL-based design uses MAC processing elements and
a bidirectional-ring communication mechanism. They
estimated 1.5 Gflops for a single FPGA. We converted
our CG wall-clock runtime results into Gflops. Since
each of the nz nonzero elements in the A matrix is mul-
tiplied by the corresponding element in the x vector, then
added to the other products in a row, we have nz dou-
ble-precision floating-point multiply operations and
approximately nz	1 floating-point add operations per
SMVM. Given the number of iterations, iter, and the
wall-clock runtime tfpga, we can approximate CG per-
formance as

Table 1 shows the results, which are based on the wall-
clock runtime of our complete CG implementation on
actual hardware. In contrast, deLorimier and DeHon
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(2 1

109

n iter

t
z − ×

×

)

fpga

Figure 8. Runtime comparison.The FPGA-based CG achieves a

speedup of up to 2.4 over software, and the FPGA-based Jacobi

achieves a speedup of up to 2.2 over software.
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based their results on post-PAR estimates of SMVM per-
formance and thus might not have included all costs.

In our research at USC, we have mapped several ker-
nels, including dense matrix-vector multiply, onto an
FPGA-augmented Cray XD1.3 The VHDL-based DMVM
design uses a dot product tree followed by a serial reduc-
tion circuit. Based on wall-clock runtime, it achieves a sus-
tained floating-point performance of 262 Mflops.
Obviously, the variable latency of that reduction circuit,
for the SMVM case, precludes a direct mapping into an
HLL-to-HDL environment because loops containing vari-
able-latency components cannot be pipelined.

In their investigation of RC benchmark suites, Melissa
Smith and colleagues17 mapped CG onto an SRC-6 RC
using parallel MAC units and the Carte HLL-to-HDL
compiler. This effort compares the wall-clock runtime
of the FPGA-augmented version with the software-only
version. Their FPGA-augmented implementation was
more than two times slower than software. 

Yousef El-Kurdi and colleagues18 described an FPGA-
based SMVM design for the banded matrices associated
with finite element methods. The architecture is a linear
array of processing elements minimized via a novel strip-
ing scheme. They estimated a sustained performance of
1.5 Gflops based on post-PAR statistics, which might
not have included all costs.

FUTURE WORK
The number of local memory banks needed to provide

the parallelism associated with high-performance FPGA
kernels presents a recurring limitation. We expect next-
generation RCs to have a significantly larger number of
memory banks. The soon-to-be-released SRC-7, for
example, supports 20 simultaneous memory reads, as
opposed to the six simultaneous reads in the SRC-6. In
addition, the deeply pipelined floating-point cores used
on FPGAs will make unlikely the 100-fold speedups that
have been demonstrated for integer applications.
However, tenfold overall speedups might be possible.

In our view, current related work demonstrates that
performance estimates based on post-PAR statistics
might be a bit optimistic because they do not include all
costs. When possible, future performance comparisons
should be based on actual runtimes on real hardware. 

The most obvious future work will be to reconsider the
current designs by moving the on-chip stores into the local
memory banks and to increase the data path width via par-
allelism. These two considerations should result in signif-
icant speedups and accommodate much larger matrices.

R econfigurable computers that combine GPPs with
FPGAs are now available. The FPGAs can be con-
figured to become, in effect, application-specific

coprocessors. Additionally, developers can use HLL-to-
HDL compilers to program RCs using traditional HLLs.

Our FPGA-augmented designs achieved more than a
twofold wall-clock runtime speedup over software.
Given that the software-only and FPGA-augmented ver-
sions use the same off-the-shelf code and algorithm, are
compiled with the same compiler, run on the same plat-
form, and use the same input sets, the comparisons accu-
rately indicate the improvements attributable to
FPGA-based acceleration. Despite the limitations in cur-
rent-generation RCs, our work and related research
efforts provide strong evidence that FPGA-augmented
RCs could be the next wave in the quest for higher float-
ing-point performance. ■
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