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METHOD AND APPARATUS FOR
IDENTIFYING CONNECTIONS BETWEEN
CONFIGURABLE NODES IN A
CONFIGURABLE INTEGRATED CIRCUIT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to the following applications
with the same filing date: U.S. patent application Ser. No.
10/882,713 filed on Jun. 30, 2004; U.S. patent application
Ser. No. 10/882,945 filed on Jun. 30, 2004; and U.S. patent
application Ser. No. 10/882,848 filed on Jun. 30, 2004.

FIELD OF THE INVENTION

The present invention is directed towards method and
apparatus for identifying connections between configurable
nodes in a configurable integrated circuit.

BACKGROUND OF THE INVENTION

The use of configurable integrated circuits (“IC’s”) has
dramatically increased in recent years. One example of a
configurable IC is a field programmable gate array
(“FPGA”). An FPGA is a field programmable IC that has an
internal array of logic circuits (also called logic blocks) that
are connected together through numerous interconnect cir-
cuits (also called interconnects). In an FPGA, the internal
array of logic and interconnect circuits is typically sur-
rounded by input/output blocks. Like some other config-
urable IC’s, the logic and interconnect circuits of an FPGA
are configurable.

FIG. 1 illustrates an array structure 100 of a prior art
FPGA. As shown in this figure, the array 100 includes
numerous logic circuits 105 and interconnect circuits 110. In
this architecture, the logic circuit 105 are referred to con-
figurable logic blocks (CLB’s). Each CLB is formed by
several configurable look-up tables (LUT’s), where each
LUT is a configurable logic circuit.

As shown in FIG. 1, the FPGA array structure 100 has two
types of interconnect circuits 110a and 1105. Interconnect
circuits 110a are connection boxes that connect CLB’s 105
and interconnect circuit 1105 to other CLB’s 105 and
interconnect circuits 1105. Interconnect circuits 1105, on the
other hand, are switchboxes that connect the connection
boxes 1104 to other connection boxes 110a.

Although not explicitly illustrated in FIG. 1, a CLB 105
can connect to CLB’s that are several columns or several
rows away from it in the array. FIG. 2 illustrates several such
connections in a prior configurable node architecture. Spe-
cifically, this figure illustrates an array 205 of CLB’s 210
without showing any of the intervening switch and connec-
tion boxes. As shown in this figure, a CLB 210a connects to
CLB’s that are one, two, three and six rows above and below
it, and to CLB’s that are one, two, three, and six columns to
its right and left.

The advantage of the connection architecture illustrated in
FIG. 2 is that it allows one CLB to connect to another CLB
that is much farther away where the distance is measured in
terms of connection between two CLB’s. On the other hand,
this architecture requires the use of multiple connections to
connect two CLB’s that are in two different rows and
columns. This requirement makes the connection architec-
ture illustrated in FIG. 2 inefficient and expensive as each
connection requires the use of transistor switching logic.
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Also, the connection architecture illustrated in FIG. 2 is
not designed to optimize the number of CLB’s reachable
from any given CLB. Specifically, this architecture employs
the same connection scheme for each CLB. Hence, as shown
in FIG. 3, this architecture can result in a cycle between two
CLB’s 305 and 310 in the same column, or two CLB’s 315
and 320 in the same row. Such cycles are undesirable as they
come at the expense of reachability of other CLB’s. The
uniform connection architecture of FIG. 2 is also inefficient
as it provides more ways than necessary for reaching one
CLB from another CLB. This redundancy is illustrated in
FIG. 3, which illustrates that the CLB 325 can connect to
CLB 330 through two different sets of connections, one that
goes through CLB 335 and one that goes through CLB 340.
This redundancy is undesirable as it comes at the expense of
reachability of other CLB’s.

There is a need in the art for a configurable IC that has a
wiring architecture that increases the interconnectivity
between its configurable nodes. Ideally, this wiring archi-
tecture is optimized for the interconnectivity between the
configurable nodes of the configurable IC. There is also a
need for a method that identifies optimal connection
schemes for connecting the configurable nodes of a config-
urable IC.

SUMMARY OF THE INVENTION

Some embodiments provide a method that defines a set of
connections that connect the nodes in a configurable node
array. The method identifies different sets of connections for
connecting a set of the nodes. For each identified set of
connections, the method computes a metric score that quan-
tifies a quality of the identified set of connections. The
method then selects one of the identified sets of connections
to connect the configurable nodes in the array.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purpose of explanation,
several embodiments of the invention are set forth in the
following figures.

FIG. 1 illustrates an array structure of a prior art FPGA.

FIG. 2 illustrates several direction connections in a prior
configurable node architecture.

FIG. 3 illustrates shortcomings of the architecture pre-
sented in FIG. 2.

FIG. 4 illustrates an example of a configurable logic
circuit that can perform a set of functions.

FIG. 5 illustrates an example of a configurable intercon-
nect circuit.

FIG. 6 illustrates an example of a configurable node array.

FIGS. 7-10 illustrate several examples of configurable
nodes in a configurable node array.

FIGS. 11 and 12 illustrate examples of two direct con-
nections with intervening buffer circuits.

FIG. 13 presents topologic illustrations of several direct
connections in a configurable node array of some embodi-
ments of the invention.

FIGS. 14A-14B illustrate examples of different geometric
realizations for some of the direct connections topologically
illustrated in FIG. 11.

FIG. 15 illustrates an example of two long-offset direct
connections.

FIG. 16 illustrates a configurable node array that use two
different direct-connection schemes for two similar nodes in
a configurable node array.
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FIG. 17 illustrates a portion of a configurable node array
that has four different direct-connection schemes.

FIGS. 18-21 provide topological illustrations of four
direct connection schemes that can be used as the four
schemes illustrated in FIG. 17.

FIG. 22 pictorially illustrates the symmetrical relationship
between the four connection schemes illustrated in FIGS.
18-21.

FIG. 23 pictorially illustrates another possible symmetri-
cal relationship that can be used by four symmetrically
related connection schemes.

FIGS. 24 and 25 illustrate an optimization process that
generates and examines different direct-connection schemes
for different configurable nodes in a configurable node array.

FIGS. 26-30 illustrate several examples of configurable
nodes with built-in turns.

FIG. 31 illustrates an example of a built-in turn in a
traditional island style architecture.

FIG. 32 illustrates a configurable node array with a nested
set of built-in turns.

FIG. 33 illustrates a configurable node array that has a set
of' asymmetrical built-in turns that are repeated throughout a
portion or the entire array.

FIG. 34 illustrates a configurable IC of some embodi-
ments of the invention.

FIG. 35 illustrates a configuration data pool of a config-
urable IC of some embodiments of the invention.

FIG. 36 illustrates an alternative configurable IC of some
embodiments of the invention.

FIG. 37 conceptually illustrates a more detailed example
of'a computing system that has a configurable IC according
to some embodiments of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, numerous details are set
forth for purpose of explanation. However, one of ordinary
skill in the art will realize that the invention may be
practiced without the use of these specific details. For
instance, not all embodiments of the invention need to be
practiced with the specific number of bits and/or specific
devices (e.g., multiplexers) referred to below. In other
instances, well-known structures and devices are shown in
block diagram form in order not to obscure the description
of the invention with unnecessary detail.

1. Definitions

A logic circuit is a circuit that can perform a function on
a set of input data that it receives. A configurable logic
circuit is a logic circuit that can be configured to perform
different functions on its input data set. FIG. 4 illustrates an
example of a configurable logic circuit 400 that can perform
a set of functions. As shown in this figure, the logic circuit
400 receives a set of input data 410 and a set of configuration
data 415, and provides a set of output data 420. The
configuration data determines the function that the logic
circuit performs on its input data. In other words, the
configuration data 415 causes the logic circuit to perform a
particular function within its set of functions on the input
data set 410. Once the logic circuit performs a function on
its input data set, the logic circuit 400 provides the result of
this function as its output data set 420. The logic circuit 400
is said to be configurable, as the configurable data set
“configures” the logic circuit to perform a particular func-
tion. Other examples of configurable logic circuits can be
found in the United States Patent Application entitled “Con-
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4

figurable Circuits, IC’s, and Systems,” filed concurrently
with this application, with Ser. No. 10/882,583, This appli-
cation is incorporated in the present application by refer-
ence.

A configurable interconnect circuit is a circuit that can
configurably connect an input set to an output set in a variety
of manners. FIG. 5 illustrates an example of a configurable
interconnect circuit 500. This interconnect circuit 500 con-
nects a set of input terminals 505 to a set of output terminals
510, based on a set of configuration data 515 that the
interconnect circuit receives. In other words, the configura-
tion data specify how the interconnect circuit should connect
the input terminal set 505 to the output terminal set 510. The
interconnect circuit 500 is said to be configurable, as the
configuration data set “configures” the interconnect circuit
to use a particular connection scheme that connects the input
terminal set to the output terminal set in a desired manner.
Other examples of configurable interconnect circuits can be
found in the above-incorporated application.

A configurable node array is an array with numerous
configurable nodes that are arranged in several rows and
columns. FIG. 6 illustrates an example of a configurable
node array 600 that includes 208 configurable nodes 605 that
are arranged in 13 rows and 16 columns. Each configurable
node in a configurable node array is a configurable circuit
that includes one or more configurable sub-circuits.

FIGS. 7-10 illustrate several examples of configurable
nodes in an array. Specifically, FIG. 7 illustrates a config-
urable node 700 that is a configurable interconnect circuit
500. Such an interconnect circuit can be any of the inter-
connect circuits disclosed in the above-incorporated appli-
cation, or any switchbox, connection box, switching or
routing matrix, full- or partial-cross bar, etc. Alternatively, as
shown in FIG. 8, a configurable node 800 can be a simple
configurable logic circuit 400. Such logic circuits can be any
look-up table (LUT), universal logic module (ULM), sub-
ULM, multiplexer, PAL/PLA, etc., or any logic circuit
disclosed in the above-incorporated application.

FIG. 9 illustrates yet another configurable node. This node
is a complex logic circuit 900. This logic circuit is formed
by multiple logic circuits (e.g., multiple LUT’s) 905 and an
interconnect circuit 910. One example of such a complex
logic circuit is a CLB. One of ordinary skill will realize that
the illustration of the logic circuit 900 is a simplification that
does not show other circuit elements (e.g., fast-carry logic,
etc.) that might be used in complex logic circuits. This
illustration is provided only to convey the principle that
more complex logic circuits are often formed by combining
simpler logic circuits and interconnect circuits. Examples of
simple and complex logic circuits can be found Architecture
and CAD for Deep-Submicron FPGAs, Betz, et al., ISBN
0792384601, 1999. Other examples of logic circuits are
provided in the above-incorporated application.

FIG. 10 illustrates still another configurable node. This
node 1000 is formed by a combination of a complex logic
circuit (in this example, the complex logic circuit 900) and
a complex interconnect circuit 1010 (e.g., a switchbox or
connection box).

In some embodiments, some or all configurable nodes in
the array have the same or similar circuit structure. For
instance, in some embodiments, some or all the nodes have
the exact same circuit elements (e.g., have the same set of
logic gates and blocks and/or same interconnect circuits),
where one or more of these identical elements are config-
urable elements. One such example would be a set of nodes
in the array that are each formed by a particular set of LUT’s
and interconnects. Having nodes with the same circuit
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elements simplifies the process for designing and fabricating
the IC, as it allows the same circuit designs and mask
patterns to be repetitively used to design and fabricate the
IC.

In some embodiments, the similar configurable nodes not
only have the same circuit elements but also have the same
exact internal wiring between their circuit elements. For
instance, in some embodiments, a particular set of LUT’s
and interconnects that are wired in a particular manner forms
each node in a set of nodes in the array. Having such nodes
further simplifies the design and fabrication processes as it
further simplifies the design and mask making processes.

In some embodiments, each configurable node in a con-
figurable node array is a simple or complex configurable
logic circuit. In some embodiments, each configurable node
in a configurable node array is a configurable interconnect
circuit. In such an array, a configurable node (i.e., a config-
urable interconnect circuit) can connect to one or more logic
circuits. In turn, such logic circuits in some embodiments
might be arranged in terms of another configurable logic-
circuit array that is interspersed among the configurable
interconnect-circuit array.

Several figures below illustrate several “direct connec-
tions” between nodes in an array. A direct connection is an
electrical connection between two nodes that is achieved by
(1) a set of wire segments that traverse through a set of the
wiring layers of the IC, and (2) a set of vias when two or
more wiring layers are involved.

In some embodiments, a direct connection might also
include a set of buffer circuits in some cases. In other words,
two nodes are directly connected in some embodiments by
a set of wire segments that possibly traverse through a set of
buffer circuits and a set of vias. Buffer circuits are not logic
or interconnect circuits. In some embodiments, buffer cir-
cuits are part of some or all direct connections. Buffer
circuits might be used to achieve one or more objectives
(e.g., maintain the signal strength, reduce noise, delay sig-
nal, etc.) along the wire segments that establish the direct
connections. Inverting buffer circuits also allow an IC design
to reconfigure logic circuits less frequently and/or use fewer
types of logic circuits. In some embodiments, buffer circuits
are formed by one or more inverters (e.g., two or more
inverters that are connected in series).

FIGS. 11 and 12 illustrate examples of two direct con-
nections with intervening buffer circuits. Specifically, FIG.
11 illustrates an example of a direct connection 1115
between two nodes 1105 and 1110. As shown in this figure,
this direct connection has an intervening buffer circuit 1120.
In some embodiments, the buffer circuit 1120 is a inverter.
Accordingly, in these embodiments, the direct connection
1115 inverts a signal supplied by one of the nodes 1105 or
1110 to the other node.

FIG. 12 illustrates an example of a direction connection
1215 between two nodes 1205 and 1210. As shown in this
figure, this direct connection 1215 has two intervening
buffer circuits 1220 and 1225. In some embodiments, the
buffer circuits 1220 and 1225 are inverters. Hence, in these
embodiments, the direct connection 1215 does not invert a
signal supplied by one of the nodes 1205 or 1210 to the other
node.

Several figures below “topologically” illustrate several
direct connections between nodes in an array. A topological
illustration is an illustration that is only meant to show a
direct connection between two nodes without specitying a
particular geometric layout for the wire segments that estab-
lish the direct connection.
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II. Direct Connections Between Offset Nodes

FIG. 13 illustrates a configurable node array 1300 of some
embodiments of the invention. This array is a part of a
configurable IC that has multiple wiring layers. This array
includes numerous configurable nodes 1305 that are
arranged in numerous rows and columns. In some embodi-
ments, this array has numerous (hundreds, thousands, mil-
lions, etc.) of configurable nodes that are arranged in numer-
ous (e.g., tens, hundreds, thousands, etc. of) rows and
columns.

FIG. 13 provides a topological illustration of several
direct connections between a configurable node 13054 and
several other nodes in the array 1300. As shown in this
figure, the configurable node 13054 has direct connections
with several nodes 1305/ that are horizontally/vertically
aligned with it in the array. In addition, the configurable
node 13054 has direct connections with nodes 13055, 1305¢,
13054, and 1305e¢ that are not horizontally/vertically aligned
with node 1305a. As shown in FIG. 13, nodes 13055, 1305¢,
13054, and 1305¢ are one row and one column away from
the node 1305a.

As mentioned above, the illustrations of the direct con-
nections in FIG. 13 are only topological illustrations. Each
of these direct connections can be achieved by a variety of
geometric realizations. In some instances, the set of wire
segments that establish a direct connection are all on the
same layer. For example, as shown in FIG. 14A, four wire
segments 1402, 1404, 1406, and 1408 can establish the
direct connection between nodes 13054 and 1305d4. These
four segments might be on a layer (e.g., the second wiring
layer) that is different from the layer (e.g., the first wiring
layer) that has the input/output terminals 1410 and 1412 of
nodes 13054 and 1305d. Hence, in these cases, the direct
connection between nodes 1305a and 13054 also require a
set of vias 1414 and 1416 to connect the wire segments 1402
and 1408 to the terminals 1410 and 1412.

In other instances, the set of wire segments that establish
a direct connection between two nodes are on several wiring
layers. For example, in some cases, the direct connection
between nodes 1305a and 13055 has a geometric realization
that is similar to the representation illustrated in FIG. 13.
FIG. 14B illustrates an example of this geometric realiza-
tion. As shown in this figure, a geometric realization can be
established by two wire segments on two different wiring
layers, which are: (1) a vertical segment 1420 (on layer 2)
that connects to horizontal terminal 1422 (on layer 1) of the
node 1305a through a via connection 1424, and (2) a
horizontal segment 1426 (on layer 3) that connects to
vertical terminal 1428 (on layer 1) of the node 13054
through a stacked via connection 1430 and connects to the
vertical segment 1420 through a via connection 1432.

When the IC uses a wiring model that allows occasional
or systematic diagonal wiring, a direct connection between
two nodes can be established by one or more diagonal wire
segments possibly in conjunction with one or more Man-
hattan (i.e., horizontal or vertical) segments. For the direct
connection between nodes 13054 and 1305¢, FIG. 14C
illustrates an example of a geometric realization that is
achieved by using a diagonal segment 1440. This diagonal
segment is in the 60°-direction on a third wiring layer, which
has the 60°-direction as its preferred wiring direction. This
segment connects to the vertical terminal 1442 (on layer 1)
of node 1305¢ and the vertical terminal 1444 (on layer 1) of
node 1305a through stacked via connections 1446 and 1448.

Some embodiments allow “long-offset” direct connec-
tions between two nodes in the array. A “long-offset” con-
nection is a direct connection between two nodes in the array
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that are offset by more than one row and at least one column,
or more than one column and at least one row. As mentioned
above, a direct connection might include one or more buffer
circuits that are connected to the wire segments of the direct
connection. In some embodiments, such buffer circuits are
more likely to be used for longer connections than for the
shorter connections, as signal strength is a more pressing
issue for longer connections.

FIG. 15 illustrates an example of two long-offset direct
connections. This figure illustrates a configurable node array
1500 that has a configurable node 1505. This configurable
node 1505 has two long-offset direct connections 1510 and
1515, which are topologically illustrated in FIG. 15. The first
direct connection 1510 connects node 1505 to node 1520,
which is above node 1505 by three rows and is to the left of
the node 1505 by one column. The second direct connection
1515 connects node 1505 to node 1525, which is below node
1505 by two rows and is to the right of the node 1505 by two
columns.

Table 1 below identifies the direct connections of node
1505. This table identifies a direct connection between node
1505 and one of its neighboring nodes in terms of two
coordinates. These two coordinates are a delta-column coor-
dinate and a delta-row coordinate, which specify the column
and row offset between the particular node and the con-
nected neighboring node.

TABLE 1

Direct Connections of Node 1505

Delta-Column Delta-Row
2 0
3 0
1 1
0 1
0 2
-1 1
-1 3
-1 0
-2 0
-1 -1

2 -2

1I1. Different Direct-Connection Schemes

Some embodiments of the invention use several different
direct connection schemes for same types of nodes in a
configurable node array. FIG. 16 illustrates one such
embodiment. Specifically, this figure illustrates a config-
urable node array 1600 that use two different direct-connec-
tion schemes for two nodes 1605 and 1610 in the array.

The nodes 1605 and 1610 are of the same type. In some
embodiments, two nodes are of the same type when they
have the same circuit elements with one or more of these
identical elements being configurable. In some embodi-
ments, two nodes of the same type also have the same
internal wiring between their identical circuit elements. For
instance, in some embodiments, the nodes 1605 and 1610
are two switchboxes that have the same component circuit
elements and interconnect wiring between the circuit ele-
ments.

Table 2 and 3 below respectively identify the direct
connections of nodes 1605 and 1610. Like Table 1, each of
these tables identifies a direct connection between a particu-
lar node and one of its neighboring nodes in terms of two
coordinates, a delta-column coordinate and a delta-row
coordinate. For instance, the third record in Table 2 specifies
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a delta-column coordinate of —1 and a delta-row coordinate
of 0. This record specifies a direct connection between node
1605 and the node 1615 directly to the left of it. Alterna-
tively, the fifth record in Table 3 specifies a delta-column
coordinate of 2 and a delta-row coordinate of 2. This record
specifies a direct connection between node 1610 and the
node 1620, which is two rows above and two columns to the
right of node 1610.

TABLE 2

Direct Connections of Node 1605

Delta-Column Delta-Row
1 0
0 1

-1 0
0 -1
2 0
3 3

-3 2

-1 1

-1 -2
1 -3

TABLE 3

Direct Connections of Node 1610

Delta-Column Delta-Row
1 0
0 1

-1 0
0 -1
2 2
1 1

-1 1

-2 -1

-1 -1
1 -2

Some embodiments of the invention use several different
direct connection schemes for similar node types in a
configurable node array. One such embodiment is illustrated
in FIG. 17. This figure illustrates a portion of a configurable
node array 1700 that has four different direct-connection
schemes. Specifically, each node in this array has one of four
direct connection schemes, as illustrated by the labels 1, 2,
3, and 4 in FIG. 17.

FIGS. 18-21 provide topological illustrations of four
direct connection schemes that can be used as the four
schemes illustrated in FIG. 17. Table 4 below identifies the
four direct connection schemes illustrated in FIGS. 18-21.
This table identifies each connection scheme in terms of
eight vectors, where each vector is specified as a pair of
delta-column and delta-row coordinates. For instance, the
eighth column, third row of Table 4 identifies the seventh
direct-connection vector of the second connection scheme as
a vector with the coordinates—1,2. This vector specifies a
direct connection between a node 1905 and a node 1910 that
is one column to the left of and two rows above the node
1905.
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Direct Connection Schemes 1800-2100

Connection 1 ond 3+ 4 5t 6™ 7 g™
Scheme Vector Vector Vector Vector Vector Vector Vector Vector
1 (1800) 1,0 0,1 -1, 0 0, -1 1, 1 -3, 0 2,1 8, 8
2 (1900) 0,1 -1, 0 0, -1 1, 0 -1, 1 0, -3 -1,2 -8, 8
3 (2000) -1, 0 0, -1 1, 0 0,1 1, -1 -3,0 2, -1 8, -8
4 (2100) 0, -1 1, 0 0, 1 -1, 0 -1, -1 0,3 -1, -2 -8, -8

As indicated in Table 4, each of the four connection
schemes illustrated in FIGS. 18-21 has direct connections
with its four closest horizontally and vertically aligned
neighbors. Each of these connection schemes also has four
long-offset direct connections. These connections are iden-
tified as the fifth, sixth, seventh, and eighth vectors in Table
4.

As apparent from the numerical values of the vectors
specified in Table 4, the connection schemes illustrated in
FIGS. 18-21 have a symmetrical relationship with respect to
each other. According to this symmetrical relationship, each
vector (a, b) in the first connection scheme (illustrated in
FIG. 18) has a corresponding symmetrically related vector
in each of the other three connection schemes. These sym-
metrically related vectors in the second, third, and fourth
connection schemes respectively are: (-b,a), (a,-b), and
(-b,—a). For example, the seventh vector (2, 1) in the first
connection scheme is symmetrically related to the following
vectors in the second, third, and fourth connection schemes:
(-1, 2), (2, -1), and (-1, -2).

FIG. 22 pictorially illustrates the symmetrically related
seventh vectors in these four connection schemes. FIG. 22
also illustrates another way of expressing the symmetrical
relationship between vectors in the four connection schemes
of FIGS. 18-21. As shown in FIG. 22, (1) each vector (e.g.,
the 5™ vector) in the second connection scheme 1900 is 90°
rotated in the counterclockwise direction with respect to its
corresponding vector (e.g., the 5% vector) in the first con-
nection scheme 1800, (2) each vector in the third connection
scheme 2000 is 45° rotated in the clockwise direction with
respect to its corresponding vector in the first connection
scheme 1800, and (3) each vector in the fourth connection
scheme 2100 is 135° rotated in the clockwise direction with
respect to its corresponding vector in the first connection
scheme 1800.

Other embodiments use other symmetrical relationships
to generate other sets of symmetrical connection schemes.
FIG. 23 illustrates an alternative symmetrical relationship
between four connection schemes. According to this sym-
metrical relationship, each vector in a first connection
scheme has a corresponding symmetrically related vector in
each of three other connection schemes. Specifically, a
vector 2305 in the first connection scheme has (1) a corre-
sponding vector 2310 in the second connection scheme,
which is identical to vector 2305 except that it has been
rotated by an angle A in the clockwise direction, (2) a
corresponding vector 2315 in the third connection scheme,
which is identical to vector 2305 except that it has been
rotated by an angle B (where B equals (360-A)/3) in the
counterclockwise direction, and (3) a corresponding vector
2320 in the fourth connection scheme, which is identical to
vector 2305 except that it has been rotated by an angle 2*B
in the counterclockwise direction.
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One of ordinary skill will realize that other embodiment
might use fewer or more connection schemes for nodes of
the same type in a configurable node array. For instance,
some embodiments might only use two connection schemes.
Also, in other embodiments, some or all of the connection
schemes are not symmetrically related to the other connec-
tions schemes. In addition, some embodiments do not
include unit vectors or the same set of unit vectors in each
connection scheme. Furthermore, in some embodiments, the
different connection schemes define different number of
long-offset direct connections for the same type of config-
urable nodes.

IV. Process for Specifying Different Direct-Connection
Schemes

Some embodiments of the invention provide a method
that defines a set of connections for connecting nodes in a
configurable node array, which, in some embodiments, are
the same type of nodes. This method examines several
different sets of connections for connecting a set of the
nodes. In each of the identified sets, the method then
computes a metric score that quantifies a quality of the
identified set of connections in connecting the configurable
nodes. The method then selects at least one of the identified
sets of connections for connecting the configurable nodes in
the array.

Different embodiments might use different metric scores
that optimize different qualities of the connection sets. For
instance, in some embodiments, the metric score might
express the number of nodes reachable from a node. This
metric score optimizes the overall reachability. In other
embodiments, the metric score might express length con-
straints, reconvergence, reachability within a particular
number of “hops,” prioritized reachability, etc. (where a hop
is a direct connection between two nodes).

Different embodiments use different optimization tech-
niques to optimize the metric score that quantifies the quality
of the identified set of connections. For instance, some
embodiments use complex constrained optimization tech-
niques, such as local optimization, simulated annealing, etc.
Other embodiments use less complex techniques. One
example of a simple constrained optimization technique is
illustrated in FIG. 24. Specifically, this figure illustrates a
process 2400 that randomly generates and examines differ-
ent direct-connection schemes for different configurable
nodes in a configurable node array. This process tries to
identify a set of connection schemes that enables a maxi-
mally dispersed exploration of a node graph that corre-
sponds to a configurable node array.

As shown in this figure, the process 2400 initially gen-
erates (at 2405) a candidate connection-vector set for a
single direct-connection scheme. In some embodiments, the
candidate-vector set generated at 2405 includes only the
direct-connection vectors that will differ among the direct-
connection schemes specified by the process 2400. For
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instance, the process does not generate any unit vectors at
2405 when each direct-connection scheme is to have the
same set of unit vectors. In some embodiments, the process
generates (at 2405) the candidate connection-vector set
randomly based on a set of constraints, such as the number
of vectors in the set, the maximum length for any given
vector, etc.

After 2405, the process determines (at 2410) whether the
candidate set generated at 2405 is an acceptable candidate
set. In some embodiments, the process makes this determi-
nation by checking whether the specified set meets a set of
constraints. These constraints can relate to some desired
numerical attribute or attributes of the candidate vector set
(such as the average length of vectors in the set, the
maximum edge length, the total edge length) or some other
constraint related to the candidate vector set (e.g., conges-
tion based metrics based on the expected congestion caused
by a candidate vector set). Some embodiments use only one
constraint (e.g., the average vector length) while other
embodiments use multiple constraints. Also, some embodi-
ments compute vector lengths by assuming a FEuclidean
(“all-angle”) wiring, while other embodiments compute
lengths based on other wiring models, such as a Manhattan
model, an octilinear model, a hexalinear model, etc.

When the process determines (at 2410) that the candidate
vectors set is acceptable, the process evaluates (at 2420) the
candidate vector set. One example of such an evaluation will
be described below by reference to FIG. 25. As further
described below, the evaluation process of FIG. 25 generates
other candidate vector sets that have a symmetrical relation-
ship to the vector set specified at 2405, and then uses all the
candidate sets to compute a metric score that relates to the
number of unique nodes that are reachable from other nodes
through different number of hops, where, as mentioned
above, a hop refers to a direct connection between two
nodes.

After evaluating the candidate vector set, the process
determines (at 2425) whether the candidate vector set
resulted in the best solution that it has generated thus far. In
some embodiments, the process makes the determination at
2425 based on the metric score computed by the evaluation
process at 2420. If the process determines (at 2425) that the
candidate vector set did not result in the best solution, the
process transitions to 2415, which will be further described
below. On the other hand, when the candidate vector set
results in the best solution, the process records (at 2430) the
candidate vector set as the best solution. In some embodi-
ments, the process records (at 2430) not only the candidate
vector set specified at 2405 but also its symmetrically related
vector sets that the evaluation process 2500 of FIG. 25
generates. After 2430, the process transitions to 2415. The
process also transitions to 2415 when it determines (at 2410)
that the candidate vector set is not acceptable.

At 2415, the process determines whether it has examined
sufficient number of candidate vector sets. When the process
determines (at 2415) that it has examined a sufficient number
of candidate vector sets, the process returns to 2405 to start
its operation again. Otherwise, the process ends. In some
embodiments, the process 2400 loops automatically without
the stopping criteria at 2415, until the process is stopped by
an operator or another process.

FIG. 25 illustrates a process 2500 that some embodiments
use to perform the evaluation operation 2420 of the process
2400. As shown in this figure, the process 2500 initially
generates (at 2505) other candidate vector sets that have a
symmetrical relationship to the vector set specified at 2405.
In some embodiments, the process 2500 generates the vector
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sets by using one of the symmetrical relationships that were
described above by reference to FIGS. 18-23.

Next, in some embodiments, the process adds (at 2510) to
each vector set the set of vectors that are common among the
vectors sets. For instance, in some embodiments, each
vector set will include the four unit vectors in the horizontal
and vertical directions (i.e, will include (1,0), (0,1), (-1,0),
and (0,-1)). Accordingly, in these embodiments, the process
adds (at 2510) these four unit vectors to each vector set.

After 2510, the process selects (at 2515) a node in the
array as its origin. In some embodiments, this node is the
node that is closest to the center of the array. Based on the
candidate vector sets generated at 2505 and completed at
2510, the process then calculates (at 2520) all nodes that can
be reached from the designated node origin in different
number of hops (e.g., 1, 2, 3, etc.). Some embodiments use
a breadth-first search to perform this calculation.

Based on the calculated numbers, the process then com-
putes a metric score at 2525. Some embodiments use the
following equation to compute a metric score.

M

X
i+ RG) - Ri-1)
=0

i

Secore = ——M8¥ ————
R(X)

where R is the calculated number of nodes that are reachable
within one to i hops, n is the number of rows or number of
columns, in a node array that may or may not be a square
array, and X is an integer (e.g., 5, 10, 100, 1000, etc.). This
score approximates the expected length from the origin (i.e.,
the node selected at 2515) to a random node in the array.

Other embodiments use either of the following equations
in place of, or in conjunction with, the equation (1) above.

10 o 2
Score = Z @,

i=0

R 3

Score =
=0

where R and i are as defined above for equation (1). To use
the scores of several of the above equations in conjunction
with each other, some embodiments compute a blended sum
of these scores.

After 2525, the process 2500 ends.

Table 5 provides metric scores that are generated by
equation (1) for different connection schemes that are pro-
duced by using the processes 2400 and 2500 of FIGS. 24 and
25 under different sets of constraints for different sized node
arrays. The constraints are the number of non-unit/offset
vectors in the connection scheme and the total length of the
non-unit/offset vectors. Each of these connections schemes
also has four unit vectors connecting the node to its four
nearest neighboring nodes in the horizontal and vertical
directions. Table 5 also illustrates the number of nodes that
are reachable from a given node in three hops on average.
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TABLE 5

Number of Total Length Score Score Score Nodes
Offset or of Offset or ina 100 x ina70x ina40x reach-
Non-Unit  Non-Unit 100 node 70 node 40 node able in
Vectors Vectors array array array 3 hops
4 80 7.95 6.64 4.89 115.5

4 128 6.81 5.65 4.26 340
4 176 6.06 5.17 3.92 471.5

Table 6 provides a comparable set of numbers for a
configurable node array that is interconnected through the
prior art connection scheme illustrated in FIG. 2. Specifi-
cally, the second row in this table identifies the equation (1)
metric score and hop data for a connection scheme that
connects each node to nodes that are one, two, or three units
away from it in the horizontal or vertical directions. The
third row identifies the score and hop data for a connection
scheme that connects each nodes to nodes that are one, two,
siX units away from it in the horizontal or vertical directions.
The fourth row identifies the score and hop data for a
connection scheme that connects each node to nodes that are
one, two, three, or six units away from it in the horizontal or
vertical directions.

TABLE 6
Total
Length
of Off- Score in Score in Score in
set/ al00Ox a70x a40x Nodes
Non- 100 70 40 reach-
Unit node node node  able in
Vectors Vectors  array array array 3 hops
(0,1) (1,0) (0,-1) (-1,0) 80 17.3 12.3 7.35 145
(0,2) (2,0) (0,-2) (-2,0)
(0,3) (3,0) (0,-3) (-3,0)
(0,1) (1,0) (0,-1) (-1,0) 128 10.1 7.7 5.12 241
(0,2) (2,0) (0,-2) (-2,0)
(0,6) (6,0) (0,—6) (-6,0)
(0,1) (1,0) (0,-1) (-1,0) 176 9.82 7.33 4.8 321

(0,2) (2,0) (0,-2) (-2,0)
(0,3) (3,0) (0,-3) (-3,0)
(0,6) (6,0) (0,-6) (-6,0)

The second, third, and fourth rows in Table 6 are com-
parable to the second, third, and fourth rows in Table 6 as the
total length of vectors of the connection schemes of these
rows are equal. As it can be seen by comparing the score and
hop data of the comparable rows in Tables 5 and 6, the
connection schemes that result from the constraints specified
in Table 5 result in distinctly better scores and hop values.
Such better scores and hop values are because the processes
2400 and 2500 examine numerous connection schemes and
select the one that results in the best metric score.

Although the processes 2400 and 2500 was described
above, one of ordinary skill will realize that the embodi-
ments can use a variety of other processes to specify
different direct-connection schemes for different config-
urable nodes in a configurable node array. As mentioned
above, these processes might use a variety of other optimi-
zation techniques, such as local optimization, simulated
annealing, etc. Also, some embodiments use several differ-
ent connection schemes for a configurable node array, with
at least two of the connection schemes specifying a different
number of long-offset direction connections (e.g., one con-
nection scheme might specify four long-offset direct con-
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nections, while another connection scheme might specify six
long-offset direct connections).

Instead of generating a first connection scheme and gen-
erating the other connection schemes based on the first
scheme, some embodiments might partially generate two or
more of the connection schemes and then generate the
remaining connections based on symmetrical relationships
with the partially generated connections of the two or more
connection schemes. For instance, some embodiments might
generate one vector for each connection scheme, and then
rotate each of these vectors through the various symmetrical
angles in order to generate the additional vectors of the
connection schemes. Alternatively, some embodiments
might completely generate two or more of the connection
schemes independently from each other.

As mentioned above, the process 2500 selects (at 2515)
one node in the array and computes (at 2520) the number of
nodes reachable from the selected node in a set number of
hops. This process then uses the computed number of nodes
in calculating its metric score at 2525. Other embodiments,
however, select (at 2515) several different nodes in the array,
calculate (at 2520) the number of nodes reachable from
these selected nodes, and then compute (at 2525) the metric
score based on the number calculated at 2520. For instance,
some embodiments calculate (at 2520) the number of reach-
able nodes for each node in the array. Some of these
embodiments then (at 2520) generate an average of these
numbers, and use (at 2525) this generated average to gen-
erate their metric scores at 2525.

V. Configurable Node Array with Built-in Turns

Some embodiments of the invention are IC’s with con-
figurable node arrays that have a systematic series of build-
in turns. Such turns can be arranged in a variety of different
architectural schemes, such as symmetrical schemes, asym-
metrical schemes, nested schemes, any combination of sym-
metrical, asymmetrical, and/or nested schemes, etc.

FIGS. 26-30 illustrate several examples of symmetrical
schemes. FIG. 26 illustrates a configurable node array 2600
that has numerous configurable nodes 2605, which are
arranged in numerous rows and columns. In some embodi-
ments, the configurable nodes 2605 are all the same type of
nodes. For instance, in some embodiments, all the nodes
have the same circuit structure (e.g., the same circuit ele-
ments). In some embodiments, similar type nodes have the
same circuit elements and the same internal wiring between
the circuit elements.

In some embodiments, the array 2600 has numerous
direct connections (not shown) between pairs of neighboring
nodes that are horizontally or vertically aligned (i.e., that are
in the same row or column in the array). FIG. 27 illustrates
one such set of direct connections 2710 for a node 2705 in
the array 2600. Some embodiments have such direct con-
nections between each pair of horizontally or vertically
aligned nodes in the array. In conjunction or instead of such
connections between pairs of neighboring aligned nodes, the
configurable node array 2600 in some embodiments also has
direct connections between horizontally or vertically aligned
nodes that are not neighboring nodes in the array. For
instance, FIG. 27 illustrates that the array 2600 has, in some
embodiments, a node 2715 that connects to non-neighboring
nodes 2720, 2725, and 2730 that are horizontally aligned
with node 2715. This figure also illustrates that the node
2720 connects to non-neighboring nodes 2735, 2740, and
2745 that are vertically aligned with it.

In addition to the direct connections between horizontally
and vertically aligned nodes, the array 2600 includes numer-
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ous direct connections 2610 between nodes that are offset in
the array. Specifically, as shown in FIG. 26, the array
includes numerous direction connections 2610, where each
such connection couples two nodes that are two columns and
three rows separated in the array.

Such connections 2610 are referred to as “built-in turns.”
Built-in turns allow two offset nodes to be connected by
relying on wiring architecture that reduces the number of
interconnect circuits necessary for establishing the connec-
tion between the two nodes. For instance, as shown in FIG.
26, a built-in turn 2610a couples two offset nodes 2605a and
26055 without using any intervening interconnect circuit.

In some cases, built-in turns do not eliminate the need to
rely on intervening interconnect circuits, but instead reduce
the number of intervening interconnect circuits. For
instance, in FIG. 27, nodes 2715 and 2750 can be connected
through (1) the horizontal connection 2755 that connects
nodes 2715 and 2720, (2) node 2720’s interconnect circuit
(not shown) that allows a change of direction in the set of
connecting hops, (3) the vertical connection 2760 that con-
nects nodes 2720 and 2740, (4) node 2740’s interconnect
circuit (not shown) that relays the signal on its input terminal
connected to connection 2760 to its output terminal con-
nected to connection 2765, and (5) the vertical connection
2765 between neighboring nodes 2740 and 2750.

Alternatively, as shown in FIG. 27, nodes 2715 and 2750
can be connected through (1) the built-in turn connection
2770 that connects nodes 2715 and 2740, (2) node 2740’s
interconnect circuit that relays the signal on its input termi-
nal connected to connection 2770 to its output terminal
connected to connection 2765, and (3) the vertical connec-
tion 2765 between neighboring nodes 2740 and 2750.
Accordingly, this alternative connection scheme connects
the two nodes 2715 and 2750 in two hops instead of the three
hops that are required to connect these two nodes through
nodes 2720 and 2740. Such a reduction typically reduces the
length, and associated delay, of the wire segments necessary
to establish the connection between two offset nodes.

Also, the alternative connection scheme that uses the turn
connection 2770 reduces reliance on intervening intercon-
nect circuits by eliminating node 2720’s interconnect circuit
from the connection path. Reducing the number of inter-
vening interconnect circuits is often desirable. The use of
interconnect circuits adversely affects the IC’s operational
speed, because it requires signals (1) to traverse from the
higher wiring layers to the IC’s substrate for processing by
the relatively slow transistor-level logic and then (2) to
traverse back to the higher wiring layers from the IC’s
substrate. Interconnect circuits also take valuable real estate
on an IC. Therefore, it is often desirable to minimize the use
of interconnect circuits so that they can be used only in
situations were they are required.

Each built-in turn 2610 in FIGS. 26 and 27 is established
by (1) a set of wire segments that traverse through a set of
the IC’s wiring layers, (2) a set of vias when two or more
wiring layers are involved, and (3) possibly a set of buffer
circuits. In some embodiments, all the wire segments of all
built-in turns 2610 are on the same wiring layer (e.g., layer
4). In these embodiments, no built-in turn 2610 requires a
via to connect the turn’s four wire segments to each other.
(The turns, however, might still require vias to connect to the
input and output terminals of nodes in the array.)

Alternatively, different wire segments of the built-in turns
2610 might be on different wiring layers. For instance,
FIGS. 28 and 29 illustrate an alternative architecture for the
array 2600 where all the horizontal segments 2800 and 2805
of the turns 2610 are on one wiring layer (e.g., the fourth
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layer), while all the vertical segments 2810 and 2815 of the
turns 2610 are on another wiring layer (e.g., the fifth layer).
Such an arrangement would require each turn 2610 to have
several (e.g., three) vias to connect its four wire segments
2800, 2805, 2810, and 2815 to each other.

Yet other alternative arrangements can be used in other
embodiments, where the wire segments of different built-in
turns 2610 of the array 2600 are arranged differently. For
instance, in some embodiments, different turns 2610 might
have their wiring segments on different wiring layers (e.g.,
some might have their horizontal segments on layer 4, while
others might have their horizontal segments on layer 5).
Also, in some embodiments, some turns 2610 might have all
their segments on the same wiring layer, while other turns
2610 might have their wiring segments on different wiring
layers.

As illustrated in FIGS. 26 and 27, the built-in turns 2610
are a set of turns that are systematically arranged across the
entire node array or a portion of this array. These turns are
arranged symmetrically in some embodiments. For instance,
as illustrated FIG. 26, the turns 2610 can be categorized into
four sets of turns that are horizontally and/or vertically
symmetrically laid out in the array 2600 about an origin
2680 in the array. These four sets are in four quadrants 2650,
2655, 2660, and 2665 of a coordinate system that is specified
by an x- and y-axes 2670 and 2675 running through the
origin 2680. Each particular set has a symmetrical relation-
ship with the other three sets, as flipping the particular set
about the origin in the horizontal and/or vertical directions
can generate the other three sets.

Some embodiments define multiple sets of built-in turns
that have multiple sets of symmetrical relationships with
each other. For instance, in addition to the four sets of
symmetrically arranged turns 2610 of FIG. 26, some
embodiments define another set of turns that are symmetri-
cal to each other and perhaps to the turns 2610. For the array
2600, FIG. 30 illustrates another set of symmetrically
arranged turns 3010. Each of the turns 3010 connects two
nodes 2605 in the array that are separated by three columns
and two rows.

Like each turn 2610, each turn 3010 can be established by
(1) a set of wire segments that traverse through a set of the
1C’s wiring layers, (2) a set of vias when two or more wiring
layers are involved, and (3) possibly one or more buffer
circuits. Like the turns 2610, the turns 3010 can also be
categorized into four sub-sets of turns that are laid out
horizontally and/or vertically symmetrically in the array an
origin 3015 in the array. In addition, the turns 3010 are
symmetrically related to the turns 2610 as they are rotated
versions of the turns 2610.

As mentioned above, the configurable nodes 2605 are all
the same type of nodes in some embodiments. For instance,
in some embodiments, all the nodes have the same circuit
structure (i.e., the same circuit elements) and perhaps the
same internal wiring. One example of such nodes would be
switch boxes in a traditional island style architecture. FIG.
31 illustrates an example of a built-in turn 2610 in this
architecture.

Although several sets of built-in turns were described
above by reference to FIGS. 26-31, one of ordinary skill will
realize that other embodiments might use numerous other
styles of built-in turns, as well as numerous other architec-
tural layouts of such turns. For instance, the configurable
node array 2600 does not have the direct connections
between nodes 2715, 2720, 2725, and 2730, and/or between
nodes 2720, 2735, 2740, and 2745 in some embodiments.
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Also, FIG. 32 illustrates a configurable node array 3200
with a nested set of built-in turns. This set of turns includes
five turns 3205, 3210, 3215, 3220, and 3225 that connect
five pairs of nodes. FIG. 33 illustrates a configurable node
array 3300 that has a set of asymmetrical built-in turns that
are repeated throughout a portion or the entire array. This
asymmetrical set includes three turns 3305, 3310, and 3315.

Like the turns illustrated in FIGS. 26-30, the turns illus-
trated in FIGS. 32 and 33 can defined by (1) a set of wire
segments that traverse through a set of the IC’s wiring
layers, (2) a set of vias when two or more wiring layers are
involved, and (3) possibly a set of buffer circuits. For
instance, in some embodiments, the turns in FIGS. 32 and 33
are on the same wiring layer (e.g., layer 4). In these
embodiments, no built-in turn requires a via to connect the
turn’s wire segments to each other. (The turns, however,
might still require vias to connect to the input and output
terminals of nodes in the array.) Alternatively, in some
embodiments, different wire segments of the built-in turns
are on different wiring layers. Also, as mentioned above,
some embodiments use a combination of symmetrical,
asymmetrical, and/or nested turns.

V1. Configurable IC and System

FIG. 34 illustrates a portion of a configurable IC 3400 of
some embodiments of the invention. As shown in this figure,
this IC has a configurable node array 3405 and I/O circuitry
3410. The node array 3405 can be any of the invention’s
configurable nodes arrays that were described above. The
1/O circuitry 3410 is responsible for routing data between
the configurable nodes 3415 of the array 3405 and circuits
outside of the array (i.e., circuits outside of the IC, or within
the IC but outside of the array 3405). As further described
below, such data includes data that needs to be processed or
passed along by the configurable nodes.

The data also includes in some embodiments configura-
tion data that configure the nodes to perform particular
operations. FIG. 35 illustrates a more detailed example of
this. Specifically, this figure illustrates a configuration data
pool 3505 for the configurable IC 3400. This pool includes
N configuration data sets (CDS). As shown in FIG. 35, the
input/output circuitry 3410 of the configurable IC 3400
routes different configuration data sets to different config-
urable nodes of the IC 2600. For instance, FIG. 35 illustrates
configurable node 3545 receiving configuration data sets 1,
3, and J through the 1/O circuitry, while configurable node
3550 receives configuration data sets 3, K, and N-1 through
the I/O circuitry. In some embodiments, the configuration
data sets are stored within each configurable node. Also, in
some embodiments, a configurable node can store multiple
configuration data sets so that it can reconfigure quickly by
changing to another configuration data set. In some embodi-
ments, some configurable nodes store only one configuration
data set, while other configurable nodes store multiple such
data sets.

A configurable IC of the invention can also include
circuits other than the configurable node array and 1/O
circuitry. For instance, FIG. 36 illustrates one such IC 3600.
This IC has a configurable block 3650, which includes a
configurable node array 3405 and I/O circuitry 3410 for this
array. It also includes a processor 3615 outside of the array,
a memory 3620, and a bus 3610, which conceptually rep-
resents all conductive paths between the processor 3615,
memory 3620, and the configurable block 3650. As shown
in FIG. 36, the IC 3600 couples to a bus 3630, which
communicatively couples the IC to other circuits, such as an
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off-chip memory 3625. Bus 3630 conceptually represents all
conductive paths between the components of the IC 3600.

This processor 3615 can read and write instructions
and/or data from an on-chip memory 3620 or an offchip
memory 3625. The processor 3615 can also communicate
with the configurable block 3650 through memory 3620
and/or 3625 through buses 3610 and/or 3630. Similarly, the
configurable block can retrieve data from and supply data to
memories 3620 and 3625 through buses 3610 and 3630.

FIG. 37 conceptually illustrates a more detailed example
of a computing system 3700 that has an IC 3705, which
includes one of the invention’s configurable node arrays that
were described above. The system 3700 can be a stand-alone
computing or communication device, or it can be part of
another electronic device. As shown in FIG. 37, the system
3700 not only includes the IC 3705, but also includes a bus
3710, a system memory 3715, a read-only memory 3720, a
storage device 3725, input devices 3730, output devices
3735, and communication interface 3740.

The bus 3710 collectively represents all system, periph-
eral, and chipset interconnects (including bus and non-bus
interconnect structures) that communicatively connect the
numerous internal devices of the system 3700. For instance,
the bus 3710 communicatively connects the IC 3710 with
the read-only memory 3720, the system memory 3715, and
the permanent storage device 3725.

From these various memory units, the IC 3705 receives
data for processing and configuration data for configuring
the IC’s configurable logic and/or interconnect circuits.
When the IC 3705 has a processor, the IC also retrieves from
the various memory units instructions to execute. The read-
only-memory (ROM) 3720 stores static data and instructions
that are needed by the IC 3710 and other modules of the
system 3700. The storage device 3725, on the other hand, is
read-and-write memory device. This device is a non-volatile
memory unit that stores instruction and/or data even when
the system 3700 is off. Like the storage device 3725, the
system memory 3715 is a read-and-write memory device.
However, unlike storage device 3725, the system memory is
a volatile read-and-write memory, such as a random access
memory. The system memory stores some of the instructions
and/or data that the IC needs at runtime.

The bus 3710 also connects to the input and output
devices 3730 and 3735. The input devices enable the user to
enter information into the system 3700. The input devices
3730 can include touch-sensitive screens, keys, buttons,
keyboards, cursor-controllers, microphone, etc. The output
devices 3735 display the output of the system 3700.

Finally, as shown in FIG. 37, bus 3710 also couples
system 3700 to other devices through a communication
interface 3740. Examples of the communication interface
include network adapters that connect to a network of
computers, or wired or wireless transceivers for communi-
cating with other devices. One of ordinary skill in the art
would appreciate that any other system configuration may
also be used in conjunction with the invention, and these
system configurations might have fewer or additional com-
ponents.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other
specific forms without departing from the spirit of the
invention. Thus, one of ordinary skill in the art would
understand that the invention is not to be limited by the
foregoing illustrative details, but rather is to be defined by
the appended claims.
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We claim:

1. A method of designing a configurable node array
comprising a plurality of configurable nodes, the method
comprising:

a) identifying different sets of direct connections between

configurable nodes;

b) computing a cost for each of a plurality of the identified

direct connections; and

c) selecting a set of direct connections based on the

computed costs, wherein none of the direct connections
in the identified sets of direct connections comprise an
intervening interconnect circuit.

2. The method of claim 1, wherein the identifying and the
computing are part of an optimization process that tries to
identify an optimal set of direct connections for connecting
the configurable nodes in the configurable node array.

3. The method of claim 2, wherein the optimal set of direct
connections defines a dispersed connection graph for con-
necting the configurable nodes.

4. The method of claim 3, wherein the dispersed connec-
tion graph is a topological graph.

5. The method of claim 1, wherein the configurable node
array comprises at least fifty configurable nodes arranged
along a plurality of rows and a plurality of columns.

6. The method of claim 1, wherein the identified set of
direct connections defines a set of direct connections for
each configurable node in the configurable node array.

7. The method of claim 1, wherein the identified set of
direct connections comprises different sub-sets of direct
connections, wherein each sub-set specifies a plurality of
direct connections for each of a plurality of configurable
nodes.

8. The method of claim 7, wherein the configurable nodes
that comprise the same sub-set of direct connections com-
prise a similar structure.

9. The method of claim 1 further comprising defining at
least one direct connection by using a set of wire segments.

10. The method of claim 9, wherein said defining at least
one direct connection also uses at least one via.

11. The method of claim 1 further comprising defining at
least one direct connection by using at least one via.

12. The method of claim 1, wherein no direct connection
comprises any intervening circuit.

13. The method of claim 1, wherein each of at least two
direct connections comprises a buffer circuit.

14. The method of claim 1, wherein no direct connection
comprises any intervening circuits other than intervening
buffer circuits.

15. For a configurable node array comprising a plurality
of configurable nodes, a method of defining connections for
connecting the plurality of configurable nodes in the con-
figurable node array, the method comprising:

a) identifying different sets of connections between con-

figurable nodes;

b) computing a cost for each of a plurality of the identified

sets of connections; and

c) selecting a set of connections between the configurable

nodes based at least partly on the computed costs,
wherein the cost of each identified set of connections is
based at least partly on how many configurable nodes
would be reachable under a specified set of conditions
from a set of configurable nodes.

16. The method of claim 15, wherein the set of config-
urable nodes comprises all the configurable nodes of the
configurable node array.
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17. The method of claim 15, wherein the set of config-
urable nodes does not comprise all the configurable nodes of
the configurable node array.

18. The method of claim 17, wherein the set of config-
urable nodes comprises a configurable node at a center of the
configurable node array.

19. The method of claim 15, wherein the specified set of
conditions comprises a maximum number of connections.

20. The method of claim 15, wherein the specified set of
conditions comprises a maximum connection length.

21. The method of claim 15, wherein the specified set of
conditions comprises a maximum connection length and a
maximum number of connections.

22. A method of defining a set of connections for con-
necting a plurality of configurable circuits of an integrated
circuit (IC), the method comprising:

a) iteratively

identifying at least one direct connections for connect-
ing at least two configurable circuits;

computing a metric score that quantifies a quality of the
identified direct connection; and

b) based on the computed metric scores, selecting a
plurality of direct connections for connecting the con-
figurable circuits in the IC, wherein a plurality of the
selected direct connections do not comprise an inter-
vening interconnect circuit.

23. The method of claim 22, wherein the metric scores

quantify a reachability criterion.

24. The method of claim 22, wherein the plurality of
configurable circuits comprises at least three hundred con-
figurable circuits arranged along a plurality of rows and a
plurality of columns.

25. The method of claim 22, wherein the configurable
circuits comprise the same structure.

26. The method of claim 25, wherein the configurable
circuits comprise the same circuit elements and the same
wiring between a set of elements.

27. A method of designing an integrated circuit (IC)
comprising an arrangement of configurable circuits, the
method comprising:

a) performing an optimization process to examine a
plurality of direct connections for connecting the con-
figurable circuits; and

b) defining at least two direct connections for connecting
the configurable circuits based at least partly on the
examination during the optimization process;
wherein said defining does not entail configuring said

configurable circuits of said IC.

28. The method of 27, wherein said performing an opti-
mization process comprises computing metric costs to
evaluate different sets of direct connections for connecting
the configurable circuits of said IC.

29. The method of claim 28, wherein computing a metric
cost comprises determining how many configurable circuits
can be reached within a given number of hops, wherein a
hop comprises passing through one direct connection.

30. The method of claim 27, wherein at least two direct
connections do not comprise intervening configurable cir-
cuits.

31. The method of claim 27, wherein at least two direct
connections do not comprise intervening interconnect cir-
cuits.

32. The method of claim 27, wherein at least two direct
connections do not comprise intervening interconnect cir-
cuits but do comprise intervening buffer circuits.

33. The method of claim 27, wherein at least two direct
connections do not comprise intervening circuits.



US 7,284,222 Bl

21

34. The method of 27, wherein said defining the direct
connections comprises defining a layout of wire segments to
implement the direct connections.

35. The method of claim 27, wherein said optimization
process comprises:

a) generating a plurality of direct connection schemes;

and

b) evaluating each of said plurality of direct connection

schemes to determine its quality.

36. The method of claim 35, wherein evaluating a direct
connection scheme comprises determining how many cir-
cuits can be reached from a given circuit through a given
number of direct connections of the direct connection
scheme.

37. The method of claim 27, wherein said performing an
optimization process identifies a wiring architecture for the
IC that increases the interconnectivity between said config-
urable circuits in the arrangement.

38. A method of designing an integrated circuit (IC)
comprising an arrangement of configurable circuits, the
method comprising:
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a) performing an optimization process to examine a
plurality of direct connections for connecting the con-
figurable circuits; and
b) specifying at least two direct connections for connect-
ing the configurable circuits based at least partly on the
examination performed during the optimization pro-
cess;
wherein a plurality of the specified direct connections
do not comprise an intervening interconnect circuit.
39. The method of 38, wherein none of the specified direct
connections comprise an intervening interconnect circuit.
40. The method of 38, wherein a plurality of the specified
direct connections do not comprise any intervening circuit.

41. The method of 38, wherein a plurality of the specified
direct connections comprise an intervening buffer circuit.



