
Activity Estimation for Field-Programmable Gate Arrays

Julien Lamoureux, Steven J.E. Wilton

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, B.C., Canada.
email: julienl@ece.ubc.ca, stevew@ece.ubc.ca

ABSTRACT

This paper examines various activity estimation techniques in
order to determine which are most appropriate for use in the
context of field-programmable gate arrays (FPGAs).
Specifically, the paper compares how different activity
estimation techniques affect the accuracy of FPGA power
models and the ability of power-aware FPGA CAD tools to
minimize power.

After comparing various existing techniques, the most
suitable existing techniques are combined with two novel
enhancements to create a new activity estimation tool called
ACE-2.0. Finally, the new publicly available tool is compared
to existing tools to validate the improvements. Using activities
estimated by ACE-2.0, the power estimates and power savings
were both within 1% of the results obtained using simulated
activities.

1. INTRODUCTION
Advancements in process technologies, programmable
architectures, and CAD tools are enabling the implementation
of large applications on FPGAs. Although FPGA
implementations provide significant speedups and power
reductions compared to software implementations,
programmable devices still consumes significantly more power
and are slower than Application Specific Integrated Circuit
(ASICs). Thus, careful delay and power modeling of
programmable devices is critical to ensure that the system
meets its speed and power requirements. In this paper, we
focus on power since it is quickly becoming the limiting factor
for many systems implemented on FPGAs.

In addition to being accurate, it is also important that FPGA
power models are fast. FPGAs are often used because their
programmability allows designers to quickly implement and
debug their application. If the power models are too slow, the
design cycle becomes cumbersome and FPGAs loose some of
their appeal. The power models currently provided by FPGA
vendors typically rely on simulation-based activity estimation
techniques [1,2]. Although the accuracy inherent in these
techniques is important for hardware designers, they are not as
useful in FPGAs since they are slow for large system-level
applications and require input vectors. In many cases, power
estimates are needed when designing a system but realistic
input vectors are not available.

 Instead, probabilistic-based techniques provide power
estimates very quickly at the expense of a small amount of
accuracy. Probability-based activity estimation has been well
studied [3,4,5,6,7,8], with techniques that range in terms of
speed and accuracy; however, there have been no studies
which determine which of the previously published techniques
are appropriate in FPGAs. This is the objective of this paper.
Specifically, we answer the following questions:

1. How does the accuracy of the switching activity estimates
affect the accuracy of the final power estimates in FPGAs?
If the accuracy of the power estimate is not overly sensitive
to the accuracy of the activity estimates, then a faster
technique may be sufficient.

2. How does the accuracy of the switching activity estimates
affect the ability of power-aware CAD tools to minimize
power in FPGAs? Knowing how sensitive the power-
aware CAD tools are to the accuracy of the activities will
help to determine what techniques are most appropriate.

3. Should different activity estimation techniques be used for
different applications? Estimating activities for circuits
with many state storage elements (flip-flops) is more
difficult than for circuits with fewer state storage elements.
Perhaps accurate techniques should be used for circuits
with many flip-flops and faster techniques can be used
otherwise.

Once these questions have been answered, we present a
new activity estimation tool called ACE-2.0, which was
developed based on the answers to the above three questions.
The tool is compatible with the Versatile Place and Route [9]
and the power model from [10], and is publicly available.

This paper is organized as follows. Section 2 summarizes
existing activity estimation techniques and describes an
existing power model and power-aware CAD flow for FPGAs.
Section 3 then examines the accuracy of the power model and
the performance of the power-aware CAD flow when various
activity estimation techniques are employed. In doing so, it
answers the three questions listed above. Section 4 first
describes a new activity estimation tool called ACE-2.0, which
incorporates the techniques found suitable in Section 3 and
then compares the new activity estimation tool to an existing
activity estimation tool called ACE-1.0. Finally, Section 5
describes our conclusions and future work. Instructions for
downloading our new tool are provided in the appendix.

2. BACKGROUND
2.1 Terminology
Switching information is required when estimating static and
dynamic power dissipated by integrated circuits. Three
statistical values are commonly used to describe the switching
behavior of circuit wires, namely: static probability, switching
probability, and switching activity. The static probability of a
wire x, denoted P1(x), is the probability that the value of a wire
is logic high. This value is used in static power calculations to
determine how long transistors are in a particular leakage state.
The switching probability of a wire x, denoted Ps(x), is the
probability that the steady-state value of the wire will transition

from logic high to logic low or from logic low to logic high
during a given clock cycle. Since the steady-state value of a
wire x transitions either once or not at all during a clock cycle,
0 ≤ Ps(x) ≤ 1. This value can be used to determine the
switching activity at the output of flip-flops. Finally, the
switching activity of a wire x, denoted As(x), refers to the
average number of times that the wire will transition from
logic high to logic low or from logic low to logic high during a
clock period. Although its steady-state value can only change
once per cycle, a wire can actually transition multiple times
before reaching steady-state since the arrival times at the inputs
of a logic gate may be different, Ps(x) ≤ As(x). These spurious
transitions are called glitches. Switching activities are used in
dynamic power calculations.

2.2 Simulation-Based Activity Estimation
Simulation-based activity estimation can be employed at
various levels of abstraction, which include: switch-level, gate-
level, and block-level. In this paper, we only consider gate-
level simulation since it provides very accurate activity
estimates and is significantly faster than switch-level
simulation, which simulates transitions at the transistor level.
Block-level simulation, which considers larger blocks such as
registers, adders, multipliers, memories, and state machines, is
not considered.

Gate-level simulation-based activity estimation involves
simulating a Boolean network consisting of logic gates and
latches while keeping track of transitions in order to determine
P1, Ps, and As for each node in the network. During a
simulation, the value at the output of a gate is determined from
the values at the input of the gate each time an input changes.
Gate-level simulation is a well studied problem and much
effort has been placed on improving its speed [11,12]. Despite
many innovations, such as Monte Carlo techniques, gate-level
simulation for large system-level designs can still take as long
as days. Moreover, simulation requires input vectors, which
are often not available when designing a new system.

2.3 Probabilistic-Based Activity Estimation
Probabilistic-based (or vectorless) activity estimation is
typically faster than simulation since it involves a one-time
calculation for each node of a circuit. The most
straightforward way of calculating P1(n), Ps(n) and As(n) is to
visit the nodes one at a time, starting from the primary inputs,
as shown in Figure 1. For each node, the Lag-one model from
[6] and the Transition Density model from [8] can be used to
calculate P1(n), Ps(n) and As(n), based on P1(f), Ps(f) and As(f)
of each fan-in node f of n, and the function implemented by
node n. These quantities can then be used to estimate the
power using standard power models [10].

calculate_switching_activities(network)
{
 foreach node n ∈ network { // topological order (PIs to POs)
 calculate P1(n), Ps(n), As(n) using techniques from [5,8]
 }
}

Figure 1: Pseudo-code of activity calculation.
The probabilistic method shown in Figure 1 is less accurate

than simulation-based estimates for two reasons. First, it
ignores the effects of wire and gate delays. These delays affect

the arrival times of gate inputs. Techniques to take these
delays into account have been described in [4]; however, these
techniques are not considered in this paper since delay
information may not be available.

The second reason that the probabilistic method above is
less accurate than simulation-based estimates is that it ignores
the correlation between signals. There are two types of
correlation: spatial correlation and temporal correlation.
Spatial correlation occurs when the logic value of a wire
depends on the value of another wire. Spatial correlation can
be introduced directly at the primary inputs or can occur
between internal nodes when gates fan-out to multiple gates
and later reconverge, as illustrated in Figure 2 (a). Temporal
correlation occurs when the value of a wire depends on
previous values of the same wire. This can also be introduced
directly at primary inputs or can occur within sequential
circuits which have feedback, as illustrated in Figure 2 (b).
From [13], ignoring temporal correlation introduces between
15% and 50% error, and ignoring spatial correlation introduces
between 8% and 120% error.

Probabilistic techniques that consider signal correlation
have been described in previous works [4,6]. Unlike previous
techniques, which estimate the activity of each gate output
separately, error introduced by reconvergent fan-out can be
eliminated by collapsing nodes with its predecessors into a
larger node. In this technique, each time a node is visited, it is
collapsed with all its predecessors to form a new (larger) node
c. The inputs of c consist of some, or all, of the primary inputs
of the circuit, and no other signals. The switching activity at
the output of node c (and hence the output of node n) are then
calculated as before. Typically, a binary decision diagram
(BDD) representation of c is used, since this representation is
efficient for large nodes.

Figure 2: (a) Spatial correlation (b) Temporal correlation.
Techniques that consider temporal correlation have also

been described in previous works. In [5,6,7], internal temporal
correlation is captured by “unrolling” next state logic (see
Figure 3) and iteratively estimating switching activities until
the activities converge. By unrolling the next logic ∞ times, all
temporal correlation can be captured. Although unrolling ∞
times is infeasible, [5] found that 3 times produced good
results.

Figure 3: Example of unrolling next-state logic.

2.4 Existing Activity Estimation Tools
Despite a large number of activity estimation techniques
described in the literature, very few fully functional activity
estimation tools are available since many of the techniques are
specific to a certain type of circuit (sequential or
combinational) or are simply enhancements of existing
algorithms. Commercial gate-level simulation tools can be
used; however, as described above, this method requires
realistic input vectors and is not fast enough for system-level
designs. To our knowledge, the only available tool that are
suitable are ACE-1.0 [10] and the activity estimator in Sis [7]
(the estimator is called Sis-1.2 is this paper).

ACE-1.0 estimates P1, Ps, and As for combinational and
sequential gate-level circuits using probabilistic techniques.
The static and switching probabilities are calculated using the
techniques in [3], and switching activities are calculated using
the Transition Density model [8] and the analytical low-pass
filter model described in [14]. For circuits with sequential
feedback, a simplistic iterative technique is used to update the
switching probabilities at the output of flip-flops using the
simplistic expressions P1(Q) = P1(D) and Ps(Q) = 2*P1(D)*(1-
P1(D)) as described in [3]. ACE is fast but inaccurate for large
and/or sequential circuits.

The activity estimator in Sis estimates P1 and Ps, but does
not estimate As. For circuits with sequential feedback, static
and switching probabilities are calculated using the iterative
solution described in [7]. The Sis activity estimator is only
accurate for circuits that do not have a large glitching
component. Furthermore, the estimator can become very slow
for circuits with large BDD representations such as multipliers.

2.5 Power Model and Power-Aware CAD tools
The FPGA power model described in [10] and the power-
aware FPGA CAD flow described in [15] are used to answer
questions 1 and 2 from the introduction. The power model and
the power-aware CAD flow are both built on top of the VPR
CAD tool. VPR models FPGAs at a low-level, taking into
account specific switch patterns, wire lengths, and transistor
sizes. Once a circuit is routed onto the FPGA, VPR extracts
the resistance and capacitance information for each net. The
power model uses this resistance and capacitance information
to estimate dynamic, short-circuit, and leakage power.
Activity information needed for each wire in the circuit is read
from file and thus can be obtained using any activity estimator.
The power-aware CAD flow includes power-aware technology
mapping, clustering, placement, and routing. Each power-
aware algorithm minimizes power by reducing the capacitance
of high-activity wires.

3. FPGA-SPECIFIC ACTIVITY ESTIMATION
This section examines the questions described in the
introduction regarding the effect of switching activities on
power models and power-aware CAD tools for FPGAs. This is
important; the activity estimation techniques described in
Section 2 are general since they do not target any specific
implementation. Without using the activities in the context of
FPGAs, it is impossible to determine with confidence which
techniques are most suitable.

3.1 Accuracy and Speed
Before examining the effect of activities on power modeling
and power-aware CAD tools, we begin by comparing the
activities directly to highlight the strengths and weaknesses of
the techniques employed in the ACE-1.0 and Sis-1.2 tools and
to provide insight into the behavior of the power model and
CAD tools when driven by these activities later on.

Figure 4 illustrates how the activities are obtained for each
activity estimator. Twenty large MCNC benchmarks circuits
(alu4, apex2, apex4, bigkey, clma, des, diffeq, elliptic, ex1010,
ex5p, frisc, misex3, pdc, s298, s38417, seq, spla, tseng) and
one ISCAS multiplier circuit (C6288) were used to empirically
determine the speed and accuracy of the each activity
estimation method. The multiplier was included since it is
known to be a challenging circuit for activity estimation. For
each circuit, static probabilities and switching probabilities are
pseudo-randomly determined for each primary input of every
circuit. A custom vector generator routine was then used to
generate pseudo-random test vectors that matched these static
and switching probabilities. All input vectors are first-order
temporally correlated but not spatially correlated. The pseudo-
random static and switching probabilities were then used to
drive ACE-1.0 and Sis-1.2, and the corresponding vectors were
used to drive the Verilog XL® gate-level simulator and circuit
delay information was obtained using the VPR place and route
tool.

Figure 4: Activity comparison framework.

Three statistical measurements are used to examine
accuracy. The first is average relative error, which is zero for
perfectly accurate estimates. For each circuit, this
measurement involves taking the average of the absolute of the
relative error of every node within that circuit, as described in
the expression below:

(1)
)(

)()(

).(..

circuit

nA

nAnA

circuiterrrelavg

circuitn s

ss

simulated

simulatedestimated∑
∈

−

=

The second measurement is the activity ratio, which
divides the sum of the estimated activities by the sum of the
simulated activities, as described by the expression below:

(2)
)(

)(

)(

∑

∑

∈

∈=

circuitn
s

circuitn
s

nA

nA

circuitatioactivity r
Simulated

estimated

where an activity ratio of one is ideal. Finally, the third
accuracy measurement is r2 correlation, which measures the
quality of a least squares fitting to the exact data, as described
in the expression below:

(3)
2

2

yyxx

xy

ssss

ss
r

⋅
=

where ssxy, ssxx, and ssyy are the sum of squared values of a set
of n data points (xi, yi) about their respective mean [16]. For
each circuit, n is the number of nodes in that circuit, xi is the
estimate activity of the ith node in that circuit, and yi is the
simulated activity of the ith node in that circuit. An r2 of one
indicates that there is a perfectly linear relationship between
the estimated results and the simulated results; an r2 of zero
indicates no relationship.

Each measurement has a purpose. The average relative
error gives an intuitive feel for how much error is occurring
for individual nodes; however, the measurement does not give
insight to the nature of the error. As an example, the average
relative error is the same if an estimator tends to overestimate
or underestimate activities by a factor of two. The activity
ratio, on the other hand, does indicate if the estimator tends to
over or under estimate activities but is not a good measure of
accuracy since the error of one activity can cancel out the error
of another activity. Finally, r2 is useful for measuring the
fidelity of the activities. In other words, it measures how well
the estimator can determine if one node has a higher activity
than another node. Intuitively, fidelity is important for power-
aware CAD tools, which need to determine which wires to
optimize.

Table 1 compares the accuracy and run-time of ACE-1.0
and Sis-1.2. Many observations can be made from the results.
Firstly, the table shows that some results are missing for Sis-
1.2 due to insufficient memory or extremely long execution
time. This problem occurred in all but the smallest sequential
circuit (dsip) but in only one of the combinational circuits
(C6288), which is a multiplier. The likely origin of the
problem is the use of BDDs, which tend to grow exponentially
in size with the number of logic inputs. ACE-1.0 was able to
produce results for all the circuits; however, the accuracy for
sequential circuits is not acceptable for power-aware CAD
tools or power models with a correlation of 0.47 and activity
ratio of 2.37.

Table 1: Accuracy and speed of each activity estimator.
Simulation Sis-1.2 ACE-1.0

Comb Seq Comb Seq Comb Seq
Activity Ratio 1.0 1.0 1.17 1.40 1.21 2.37

Avg. Rel. Error 0.0 0.0 0.02 0.09 0.07 0.08
R2 1.0 1.0 0.88 0.72 0.89 0.47

Run-time (s) 122 191 - - 31 108

Secondly, it can be seen that the accuracy of ACE-1.0 and
Sis-1.2 are similar for the combinational circuits, with
correlation close to 0.89 and average relative errors of 2% and
7%, respectively. These results are likely acceptable for
power-aware CAD tools; however, the activity ratio indicates
that both estimators tend to overestimate activities, which may
translate to power overestimations.

Finally, the table shows the run-time of each estimator.
The average Sis-1.2 run-times are not shown since it was not

able to process many of the circuits, which makes the average
meaningless. By inspection of the circuits that did pass,
however, we observed that the tool is relatively efficient
compared to simulation. ACE-1.0, on the other hand, is
somewhat slower with average run-times that are
approximately 4 and 2 times faster than simulation for
combinational and sequential circuits, respectively.

3.2 FPGA Power Modeling
Comparing activities directly is useful since it reveals how
accurate the activities are, if there are any trends such as over
or underestimation, and if accuracy depends on circuit types.
However, in order to determine the level of accuracy needed in
the context of FPGAs, this subsection examines how the
activities affect detailed power measurements of circuits
implemented on FPGAs.

Figure 5 illustrates the experimental framework used to
compare the effect of the activities on power estimates. The
framework employs the none power-aware VPR tool to
implement benchmarks circuits onto an FPGA and then uses
the FPGA power model described in [10] to estimate the power
of each implementation. All experiments target island-style
FPGAs implemented in a 0.18µm TSMC CMOS process.

Figure 5: Power modeling framework.

Power estimates are obtained three times for the each
benchmark circuit using activities produced using ACE-1.0,
Sis-1.2, and gate-level simulation. Table 2 compares power
estimates obtained using ACE-1.0 and Sis-1.2 to the power
estimates obtained using simulation.

Table 2: Power using ACE, Sis, and Simulation.
Sim Sis-1.2 ACE-1.0 Benchmark

Type Avg.
Power

Avg.
Power

Avg.
|% Diff|

Avg.
Power

Avg.
|% Diff|

Comb. 1.18 1.39 19.8 1.38 18.6
Seq. 0.93 0.88 29.9 2.82 220

From the table, it is clear that both activity estimators tend
to overestimate power as predicted by the activity ratio metric
in Section 3.1. The most severe cases occur in the results
obtained using ACE-1.0 for sequential circuits (by as much as
3X). This trend follows for the observation made in Section
3.1 regarding the overestimation of the switching activities.
Clearly, another technique must be used in sequential circuits.
The ACE-1.0 results suggest that filter function employed to
reduce glitching is not accurate enough in this context. The
Sis-1.2 results were higher than expected since Sis-1.2
estimates switching probabilities (ignores glitching) instead of
switching activities. The most likely explanation why Sis-1.2
overestimates power is that the tool reads in static probabilities

(P1) for primary inputs nodes and assumes that switching
probabilities (Ps) are equal to 2*P1*(1-P1), which is the upper
bound. The pseudo-randomly generated activities used in our
framework chooses probabilities between 0 and 2*P1*(1-P1).
Thus, on average, the Sis-1.2 activity estimator assumes higher
activities at the primary inputs of each circuit, which lead to
overestimation throughout the circuit.

3.3 Power-Aware CAD for FPGAs
This section examines how the accuracy of the various activity
estimation techniques affects power-aware CAD tools that use
switching activities to minimize power of circuits implemented
on FPGAs. Intuitively, the most important characteristic of the
activities being used to minimize power is fidelity since the
tools must know which wire to optimize for power.

Figure 6 illustrates the framework used to compare the
effect of the activities on the power-aware version of VPR
described in Section 2, by implementing each benchmark three
times using activities generated using ACE-1.0, Sis-1.2, and
gate-level simulation. The power of all three implementations
of the circuit is then estimated using the power model
described in Section 2 and the activities obtained using
simulation.

Figure 6: Power-aware CAD framework.

Table 3 reports the power savings obtained by the power-
aware version of VPR using the three different activity
estimators. Intuitively, the greatest power savings should be
obtained when power-aware VPR is guided by the simulated
activities since they are exactly the same as the activities used
to estimate power.

Table 3: Power savings using each activity estimator.
Average Power Savings (%) Benchmark

Type Simulation Sis-1.2 ACE-1.0
Comb. 9.8 9.0 8.8
Seq. 13.6 - 5.3

On average, the power-aware CAD flow reduces power
9.8% for combinational circuits and 13.6% for sequential
circuits when driven by the simulated activities. Although no
average is available for Sis-1.2, careful inspection reveals
power savings achieved using activities from Sis-1.2 and ACE-
1.0 are approximately 9%, which is relatively good. This
follows from the good correlation results measured in Section
3.1. For sequential circuits; however, the savings using ACE-
1.0 activities are only 5.3% compared to 13.6%, which is not
acceptable. These results again suggest that more accurate
techniques must be employed to improve the performance of
power-aware CAD tools.

4. ACE-2.0 : A NEW ACTIVITY ESTIMATOR
The previous section served to highlight the strength and
weaknesses of existing activity estimation tools in the context
of FPGAs. Specifically it found that the technique used in Sis-
1.0 for circuits with sequential feedback does not scale well
enough for larger circuits and the technique in ACE-1.0 was
inaccurate, causing significant error in power estimates and
degraded power savings from the power-aware CAD tool. The
previous section also showed that the Transition Density model
combined with a low-pass analytical filter were somewhat
accurate but still caused power model to overestimate power.

Using this information, this section describes a new activity
estimation tool called ACE-2.0, which addresses these
weaknesses. Figure 7 outlines the ACE-2.0 algorithm, which
has three phases. The first phase begins by simulating static
and switching probabilities for logic within sequential
feedback loops, if there are any. The second phase then
employs the Lag-one model, described in [6], to calculate static
and switching probabilities for the remaining logic that has not
been simulated. Finally, the third phase calculates switching
activities using a novel probabilistic technique that considers
glitching. Each phase is described below.

ACE-2.0 (network, vectors, activities) {
 // Phase 1
 feedback_latch = find_feedback_latches (network);
 feedback_logic = find_feedback_logic (feedback_latches);
 if (vectors == NULL) vectors = gen_vectors (activities);
 simulate_probabilities (feedback_logic, vectors);

 // Phase 2
 foreach node n ∈ network
 if (Status(n) != SIMULATED) {
 bdd = get_partially_collapsed_and_pruned_bdd (n);
 Static_Prob(n) = calc_static_prob (bdd);
 Switch_Prob(n) = calc_switch_prob (bdd);
 }
 }
 // Phase 3
 foreach node n ∈ network {
 bdd = get_local_bdd(n);
 Switch_Act(n) = calc_switch_activity (bdd):
 }
}

Figure 7: ACE-2.0 pseudo-code.
4.1 Phase 1
This phase determines the static and switching probability for
logic and flip-flops within sequential feedback loops in a
circuit. The previous section demonstrated that sequential
feedback is the greatest source of error and long execution
times for existing tools. The existing probabilistic solutions
proposed in the literature use BDDs or involve solving systems
of non-linear equations. In either case, the techniques are not
feasible for large circuits. Thus, the solution used within ACE-
2.0 is to use a simplified form of simulation.

Two simplifications are made to improve the efficiency of
the simulation. The first simplification is to simulate only the
logic within sequential feedback loops. In most circuits with
sequential feedback, the logic within feedback loops accounts
for only a fraction of the circuit. Simulating this logic
produces accurate probabilities within the feedback loops
which can then be used to calculate probabilities for the
remaining logic in the circuit.

The second simplification is to simulate switching
probabilities instead of switching activities. In circuits with
many levels of logic or with many exclusive-or gates, glitching
accounts for a significant proportion of all transitions. As
opposed to simulating activities, which involves processing
each transition in each gate for every cycle, simulating
probabilities only involves processing the final value of each
gate for every cycle. The simulation routine used in ACE-2.0
is described in Figure 8.

simulate_probabilities (feedback_logic, vectors) {
 foreach vector ∈ vectors {
 update_primary_inputs (vector);
 evaluate_logic (feedback_logic);
 update_flip_flops ();
 }
}

evaluate_logic (logic) {
 foreach node n ∈ feedback_logic
 if (get_status_of_inputs (n) == NEW) {
 value = evaluate (n);
 if (value == 1) Num_ones(n)++;
 if (value != Value(n)) {
 Value(n) = value;
 Status(n) = NEW;
 Num_transitions(n)++;
 } else {
 Status(n) = OLD;
 }
 } else {
 Status(n) = OLD;
 }
 }
}

Figure 8: Simplified simulation pseudo-code.
Each cycle of the simulation begins by updating the values

of the primary inputs with the next input vector. If vectors are
not supplied, ACE-2.0 pseudo-randomly generates vectors
which match the specified input activities. Once the input
values are specified, the routine determines the output value of
each gate in the feedback logic in topological order from the
primary inputs to the primary outputs. Finally, at the end of
each cycle, the routine updates the value at the output of each
flip-flop based on the input value. To further improve
performance, the evaluate logic routine only evaluates when at
least one fanin of the gate has changed.

4.2 Phase 2
Although ACE-2.0 uses simulation to obtain static and
switching probabilities for logic and flip-flops within
sequential feedback loops, switching probabilities are also
required for logic and flip-flops not within sequential feedback
loops. These remaining probabilities are calculated using the
Lag-one model [6], which produces exact switching
probabilities (assuming that inputs are not correlated).

For a Boolean function f, the Lag-one model can be
calculated by summing probabilities over all pairs of input
states {xi, xj} such that f(xi) =f(xj). Intuitively, you can think
of an input state as a single row of the truth table
representation of function f. Explicitly, the switching
probability Ps can be calculated using the following
expression:

∑ ∑∑ ∑
∈ ∈∈ ∈ 















⋅+
















⋅=

0 11 0

),()(),()(11
Xx Xx

jisi
Xx Xx

jisis
i ji j

xxPxPxxPxPP
 (4)

where X1 is the set of input states such that f(xi) = 1 ∀xi ∈ X1,
X0 is the set of input states such that f(xj) = 0 ∀xj ∈ X0, P(xi) is
the probability that the current input state is xi, and P(xi, xj) is
the probability that the input state will be xj at the end of a
clock cycle given that the input state was xi at the beginning of
the clock cycle.

The probability that the current input state is xi can be
determined by taking the product of the static probabilities for
each input literal, as expressed below:







=

=
== ∏

= 0][)(-1

1][)(
])[,(])[,()(

1

 1

1
1 kxfP

kxfP
kxfPkxfPxP

ik

ik
ik

n

k
iki

 (5)

where n is the number of inputs that fan into function f, fk is the
function of the kth input that fans into f, and xi[k] is the value of
the kth

 literal of input state xi.
Similarly, the probability that the input state will change

from xi to xj can be determined by taking the product of the
switching probabilities for each input literal, as expressed
below:

(7)

1][1][)(

0][1][)(

0][0][)(

1][][)(

])[],[(

(6)])[],[()(














==−

==

==−

==

=

=

→

→

→

→

=
∏

k , xk xfP1

k, xk x fP

k, xkx fP1

k0, xk x fP

 k xk, xfP

 k xk, xfP,xxP

jik01

ji k01

ji k10

ji k10

jik

n

ki
jikjis

where P0→1(fk) is the probability that fk will transition from 0 to
1 and P1→0(fk) is the probability that fk will transition from 0 to
1. These probabilities can be determined with the following
expressions:

)(2
)(

)(and
))(-(12

)(
)(

1
01

1
10

k

ks
k

k

ks
k fP

fP
fP

fP
fP

fP
⋅

=
⋅

= →→
 (8)

The most efficient known implementation of the Lag-one
model involves using a BDD. However, as observed in
Section 3, using BDDs become infeasible for large circuits
because of the exponential relationship between BDD size and
the number of inputs. As a solution, ACE-2.0 combines the
partial collapsing technique described in [17] with BDD
pruning as an approximation to improve the speed of the
calculation.

Partial Collapsing
The activity estimation techniques described in [6,7] suffer in
that they require collapsing a large number of nodes. During
activity estimation, each node is collapsed with all of its
predecessors. Although this takes into account spatial
correlation within the circuit, the technique is infeasible for
large circuits. In [17], an alternative is proposed; rather than
collapsing each node with all its predecessors, only smaller
portions of the logic are collapsed, as shown in Figure 9. This
results in smaller BDDs, leading to faster activity estimation
time. The cost of doing this is that not all spatial correlation
can be captured. There is a tradeoff between the amount of
partial collapsing (the size of each collapsed node) and the

error introduced by not taking into account all spatial
correlation.

Figure 9: Example of a partially collapsed network.

The partial_collapse routine collapses nodes with only
some (as apposed to all) of its predecessors such that the BDD
representation of the collapsed logic contains at most
max_nodes nodes. The max_nodes parameter can be used to
tradeoff accuracy with run-time.

BDD Pruning
An alternative to partial collapsing is BDD pruning. By
pruning low-probability branches of a BDD, the size of a BDD
can be significantly reduced with minimal impact on the
accuracy of the activity estimation. In logic synthesis
applications (which also often use BDDs to represent logic
nodes), such pruning is not possible since it would be
unacceptable to change the behavior of the circuit. For activity
estimation, however, the BDDs can be pruned since some
degree of approximation is acceptable. Although pruning
BDDs is not a new idea, pruning BDDs to improve the
execution time of activity calculations is novel.

The proposed BDD pruning technique involves removing
BDD branches with probabilities smaller than a pruning
threshold probability, min_prob. An example is illustrated in
Figure 10. In the example, the static probability of the
function’s four inputs are P1(a)=0.5, P1(b)=0.9, P1(c)=0.2, and
P1(d)=0.5, and the probability of each branch is shown next to
each node. The grey nodes are pruned from the BDD since
their probabilities are smaller than min_prob=0.03.

Figure 10: Example of BDD pruning.

 After a branch is pruned, it must be replaced by either a ‘0’
or a ‘1’ terminal in order for the BDD to remain valid. A naïve
approach is to arbitrarily use a ‘0’ or a ‘1’ terminal; however,
this produces more error later on when the BDDs are used to
calculate activities. A better approach is to replace the branch
with a ‘0’ terminal when the value of the branch being pruned
is more likely to be ‘0’ and a ‘1’ terminal when the value is
more likely to be ‘1’

Figure 11 describes the BDD pruning routine. The routine
begins at the root node (top) and recursively traverses the BDD
until it reaches the BDD terminals (‘0’ or ‘1’ nodes) or BDD
nodes with a branch probability less than the threshold value.
When the probability is less than the threshold value, the
branch is pruned away.

get_partially_collapsed_pruned_bdd (n, max_size, min_prob) {
 bdd = partially_collapse (n, max_size); // see [17]
 pruned_bdd = bdd_prune (bdd, 1.0, min_prob);
 return (pruned_bdd);
}

bdd_prune (bdd, prob, min_prob) {
 if (bdd is a ‘0’ or ‘1’ terminal) return (bdd);

 if (prob < min_prob) {
 if (Prob(bdd) < 0.5) {
 return (‘0’); // replace branch with ‘0’
 } else {
 return (‘1’); // replace branch with ‘1’
 }
 }
 n = literal (bdd);
 true_prob = prob · P1(n);
 false_prob = prob · (1.0 – P1(n));
 true_bdd = bdd_prune (bdd->true, true_prob, min_prob);
 false_bdd = bdd_prune (bdd->false, false_prob, min_prob);
 bdd ’ = build_bdd (n, true_bdd, false_bdd);
 return (bdd’);
}

Figure 11: BDD pruning pseudo-code.
The threshold probability parameter, min_prob, controls

the tradeoff between accuracy and execution time. Increasing
min_prob increases pruning and results in smaller BDDs, faster
execution times, but reduced accuracy.

Combining Partial Collapsing and BDD Pruning
Partial collapsing and BDD pruning can be combined. In
Figure 11, the BDD generated by the partial_collapse
routine is then pruned using the bdd_prune routine. The
resulting routine has two parameters: max_size and
min_prob. Intuitively, the max_size parameter limits the
BDD size of the collapsed node and the min_prob
parameter controls the amount of pruning that occurs on the
BDD representation of the collapsed node. A max_size of
125 and a min_prob of 0.004 were found empirically to
produce good results.

4.3 Phase 3
The final phase of the ACE-2.0 algorithm addresses the issue
of accurately and efficiently modeling the glitch component of
switching activities. This subsection introduces the novel
switching activity calculation that we used. The calculation is
a simple generalization of the Lag-one model, yet performs
well compared to existing techniques.

A transition at the output of a gate is normally caused by a
transition occurring at a single input of that gate; however,
transitions can also occur (or be canceled out) when two or
more inputs transition at nearly the same time. Consider a
two-input XOR gate with inputs A and B. If A is ‘0’ and B
transitions from ‘0’ to ‘1’, this transition will probably cause a
transition at the output. Similarly, a second transition, this
time of input ‘A’, will probably cause a second transition at the
output. However, these two input transitions might not cause a
transition at the output if they happen close enough together
since the glitch generated by these two input transition may be
filtered out by the resistance and capacitance of the gate. In
other words, the amount of glitching that occurs depends on
the minimum pulse width of the gate.

The new calculation adds the notion of minimum pulse
width to the Lag-one model described in Section 4.2.
Explicitly, the switching activity As is calculated using the
following expressions:

(9))()(fPTfA ss ⋅
τ

=

(10)
)(2

)()(and
))(-(12

)()(
1

01
1

10 TfP
fPfP

TfP
fPfP

k

ks
k

k

ks
k

τ⋅
⋅

=τ⋅
⋅

= →→

where T is the maximum delay from the primary inputs to the
output of the function f and τ is some period of time less than
or equal to T. Intuitively, the calculation determines the
switching probability during period τ, assuming that that input
arrival times are normally distributed, and then multiplies this
probability by T/ τ, the number times that period τ occurs
during T.

It is interesting to note that when τ = T the new switching
activity model reduces to the Lag-one model since output
transitions caused by any number of input transitions are
equally weighted. Conversely, when τ → 0, the model reduces
to the Transition Density model since only single input
transitions carry any weight in the calculation. The best results
are obtained when τ is set to approximately the physical delay
of the gate.
4.4 ACE-2.0 Results
Table 4 summaries the results obtained using ACE-2.0. The
activities are very accurate for both combinational and
sequential circuits. The correlation for combinational circuits
is 0.97, which is close to ideal. For sequential circuits, the
correlation is 0.86, which is significantly better than ACE-1.0
with 0.47. Moreover, the activity ratio and average relative
error are also close to ideal.

In terms of power estimates, the ACE-2.0 activities
translated into very accurate power estimates, with less than
1% error compared to simulation. Similarly, the power-aware
CAD achieved power savings that closely matches those
achieved using simulated activities. Finally, the average run-
times are 53 and 7.4 times faster than simulation for
combinational and sequential circuits, respectively.

Table 4: ACE-2.0 results.
ACE-2.0 Power

Model

Power-
Aware
CAD Circuit

Type Avg.
R2

Avg.
Act.
Rat.

Avg.
Rel.
Error

Avg.
Run-

time (s)
%

Diff.
%Power
Savings

Comb. 0.97 0.97 0.03 2.3 -0.1 8.8
Seq. 0.86 1.00 0.02 25.9 0.6 14.0

5. CONCLUSIONS AND FUTURE WORK
This paper examined various activities estimation techniques in
order to determine which are most appropriate for use in the
context of FPGAs. It found that existing probabilistic
techniques were either too slow or too inaccurate for circuits
with sequential feedback; causing inaccurate power
estimations and poor power savings for power-aware CAD
tools. It also found that using fully collapsed logic to calculate
probabilities is not feasible for large circuits because of
execution time. Finally, it found that calculating switching
activities using the Transition Density and the associated low-
pass filter caused the power model to overestimate power.

Given the above findings, a new activity estimation tool
called ACE-2.0 that incorporates the techniques found most
suitable was described. The new tool begins by calculating
static and switching probabilities for every node in the circuit.
For circuits with sequential feedback, a simplified simulation
technique is used for the feedback logic and the Lag-one model
is used for the remaining logic. To improve the speed of the
Lag-one calculation with only a slight loss of accuracy, BDD
sizes were reduced using partial collapsing and BDD pruning.
Once the static and switching probabilities are obtained, ACE-
2.0 employs a novel probabilistic-based technique to calculate
the switching activities.

Finally, the new tool was validated in the context of
FPGAs. Using activities estimated by ACE-2.0, power
estimates and power savings were both within 1% of results
obtained using simulated activities. Moreover, the new tool
was 53 and 7.4 times faster than simulation for combinational
and sequential circuits, respectively.

APPENDIX
Source code and instructions for downloading ACE-2.0 are

available at http://www.ece.ubc.ca/~julienl/activity.htm.
REFERENCES

[1] Altera Corporation, Quartus II Handbook, Chapter : PowerPlay Power
Analyzer, vol. 3, 2005.

[2] Xilinx, Inc., XPower: Online Documentation, http://www.xilinx.com/
ise/power_tools/quick_start.htm, 2005.

[3] Q. Wu, M. Pedram, and X. Wu, A Note on the Relationship Between
Signal Probability and Switching Activity, in Proc. Asia and South Pacific
Design Automation Conf., pp. 117-120, 1997.

[4] C.Y. Tsui, M. Pedram, A.M Despain,, Efficient estimation of dynamic
power consumption under a real delay model, in IEEE Intl. Conf.
Computer-Aided Design (ICCAD), pp. 224-228, 1993.

[5] C.Y. Tsui, M. Pedram, A.M. Despain, Exact and approximate methods for
calculating signal and transition probabilities in FSMs, in ACM/IEEE
Design Automation Conference (DAC), pp. 18-23, 1994.

[6] R. Marculescu, D. Marculescu, M. Pedram, Switching Activity Analysis
Considering Spatiotemporal Correlations, in the IEEE Intl. Conf.
Computer-Aided Design (ICCAD), pp. 294-299, 1994.

[7] J. Monteiro, S. Devadas, A methodology for efficient estimation of
switching activity in sequential logic circuits, in ACM/IEEE Design
Automation Conference (DAC), pp. 12-17, 1994.

[8] F. Najm, Transition density: A new measure of activity in digital circuits,
in IEEE Trans. Computer-Aided Design, vol 12, no. 2, pp. 310-323, 1993.

[9] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, Kluwer Academic Publishers, 1999.

[10] K.K.W Poon, S.J.E Wilton, A detailed power model for field-
programmable gate arrays, ACM Transactions on Design Automation of
Electronic Systems (TODAES), April 2005, Vol. 10, Issue 2, 2005, pp.
279-302.

[11] R. Burch, F. Najm, P. Yang, T. Trick, A Monte Carlo approach to power
estimation, in IEEE Trans. on VLSI Systems., vol. 1, no. 1, pp. 63-71,
1993.

[12] J.N. Kozhaya, F. Najm, Accurate power estimation for large sequential
circuits, in IEEE Intl. Conf. Computer-Aided Design (ICCAD), pp. 488-
493, 1997.

[13] P.H. Schneider, S. Krishnamoorthy, Effects of Correlation on Accuracy of
Power Analysis – An Experimental Study, ACM/IEEE Intl. Symp. of
Low Power Electronics and Design (ISLPED), pp. 113-116, 1996.

[14] F. Najm, Low-pass filter for computing the transition density in digital
circuits, in IEEE Trans. Computer-Aided Design, vol. 13, no. 9, pp. 1123-
1131, 1994.

[15] J. Lamoureux, S.J.E. Wilton, On the Interaction Between Power-Aware
Computer-Aided Design Algorithms for Field-Programmable Gate
Arrays, Journal of Low Power Electronics (JOLPE), Vol. 1, No. 2, pp.
119-132(14), Aug. 2005.

[16] Mathworld, http://mathworld.wolfram.com/Correlation Coefficient.html,
2006.

[17] B. Kapoor, Improving the Accuracy of Circuit Activity Measurement,
ACM Design Automation Conference, pp. 734-739, 1994.

