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ABSTRACT 

This paper examines various activity estimation techniques in 
order to determine which are most appropriate for use in the 
context of field-programmable gate arrays (FPGAs).  
Specifically, the paper compares how different activity 
estimation techniques affect the accuracy of FPGA power 
models and the ability of power-aware FPGA CAD tools to 
minimize power. 

After comparing various existing techniques, the most 
suitable existing techniques are combined with two novel 
enhancements to create a new activity estimation tool called 
ACE-2.0.  Finally, the new publicly available tool is compared 
to existing tools to validate the improvements.  Using activities 
estimated by ACE-2.0, the power estimates and power savings 
were both within 1% of the results obtained using simulated 
activities. 

1. INTRODUCTION 
Advancements in process technologies, programmable 
architectures, and CAD tools are enabling the implementation 
of large applications on FPGAs.  Although FPGA 
implementations provide significant speedups and power 
reductions compared to software implementations, 
programmable devices still consumes significantly more power 
and are slower than Application Specific Integrated Circuit 
(ASICs).  Thus, careful delay and power modeling of 
programmable devices is critical to ensure that the system 
meets its speed and power requirements.  In this paper, we 
focus on power since it is quickly becoming the limiting factor 
for many systems implemented on FPGAs. 

In addition to being accurate, it is also important that FPGA 
power models are fast.  FPGAs are often used because their 
programmability allows designers to quickly implement and 
debug their application.  If the power models are too slow, the 
design cycle becomes cumbersome and FPGAs loose some of 
their appeal.  The power models currently provided by FPGA 
vendors typically rely on simulation-based activity estimation 
techniques [1,2].  Although the accuracy inherent in these 
techniques is important for hardware designers, they are not as 
useful in FPGAs since they are slow for large system-level 
applications and require input vectors.  In many cases, power 
estimates are needed when designing a system but realistic 
input vectors are not available. 

 Instead, probabilistic-based techniques provide power 
estimates very quickly at the expense of a small amount of 
accuracy.  Probability-based activity estimation has been well 
studied [3,4,5,6,7,8], with techniques that range in terms of 
speed and accuracy; however, there have been no studies 
which determine which of the previously published techniques 
are appropriate in FPGAs.  This is the objective of this paper.  
Specifically, we answer the following questions: 

1. How does the accuracy of the switching activity estimates 
affect the accuracy of the final power estimates in FPGAs? 
If the accuracy of the power estimate is not overly sensitive 
to the accuracy of the activity estimates, then a faster 
technique may be sufficient. 

2. How does the accuracy of the switching activity estimates 
affect the ability of power-aware CAD tools to minimize 
power in FPGAs?  Knowing how sensitive the power-
aware CAD tools are to the accuracy of the activities will 
help to determine what techniques are most appropriate.   

3. Should different activity estimation techniques be used for 
different applications?  Estimating activities for circuits 
with many state storage elements (flip-flops) is more 
difficult than for circuits with fewer state storage elements.  
Perhaps accurate techniques should be used for circuits 
with many flip-flops and faster techniques can be used 
otherwise. 

Once these questions have been answered, we present a 
new activity estimation tool called ACE-2.0, which was 
developed based on the answers to the above three questions.  
The tool is compatible with the Versatile Place and Route [9] 
and the power model from [10], and is publicly available. 

This paper is organized as follows.  Section 2 summarizes 
existing activity estimation techniques and describes an 
existing power model and power-aware CAD flow for FPGAs.  
Section 3 then examines the accuracy of the power model and 
the performance of the power-aware CAD flow when various 
activity estimation techniques are employed.  In doing so, it 
answers the three questions listed above. Section 4 first 
describes a new activity estimation tool called ACE-2.0, which 
incorporates the techniques found suitable in Section 3 and 
then compares the new activity estimation tool to an existing 
activity estimation tool called ACE-1.0.  Finally, Section 5 
describes our conclusions and future work.   Instructions for 
downloading our new tool are provided in the appendix. 

2. BACKGROUND 
2.1 Terminology 
Switching information is required when estimating static and 
dynamic power dissipated by integrated circuits.  Three 
statistical values are commonly used to describe the switching 
behavior of circuit wires, namely: static probability, switching 
probability, and switching activity.  The static probability of a 
wire x, denoted P1(x), is the probability that the value of a wire 
is logic high.  This value is used in static power calculations to 
determine how long transistors are in a particular leakage state.  
The switching probability of a wire x, denoted Ps(x), is the 
probability that the steady-state value of the wire will transition 



from logic high to logic low or from logic low to logic high 
during a given clock cycle.  Since the steady-state value of a 
wire x transitions either once or not at all during a clock cycle, 
0 ≤ Ps(x) ≤ 1.  This value can be used to determine the 
switching activity at the output of flip-flops.  Finally, the 
switching activity of a wire x, denoted As(x), refers to the 
average number of times that the wire will transition from 
logic high to logic low or from logic low to logic high during a 
clock period.  Although its steady-state value can only change 
once per cycle, a wire can actually transition multiple times 
before reaching steady-state since the arrival times at the inputs 
of a logic gate may be different, Ps(x) ≤ As(x).  These spurious 
transitions are called glitches.  Switching activities are used in 
dynamic power calculations. 

2.2 Simulation-Based Activity Estimation 
Simulation-based activity estimation can be employed at 
various levels of abstraction, which include: switch-level, gate-
level, and block-level.  In this paper, we only consider gate-
level simulation since it provides very accurate activity 
estimates and is significantly faster than switch-level 
simulation, which simulates transitions at the transistor level.  
Block-level simulation, which considers larger blocks such as 
registers, adders, multipliers, memories, and state machines, is 
not considered. 

Gate-level simulation-based activity estimation involves 
simulating a Boolean network consisting of logic gates and 
latches while keeping track of transitions in order to determine 
P1, Ps, and As for each node in the network.  During a 
simulation, the value at the output of a gate is determined from 
the values at the input of the gate each time an input changes.  
Gate-level simulation is a well studied problem and much 
effort has been placed on improving its speed [11,12].  Despite 
many innovations, such as Monte Carlo techniques, gate-level 
simulation for large system-level designs can still take as long 
as days.  Moreover, simulation requires input vectors, which 
are often not available when designing a new system.   

2.3 Probabilistic-Based Activity Estimation 
Probabilistic-based (or vectorless) activity estimation is 
typically faster than simulation since it involves a one-time 
calculation for each node of a circuit.  The most 
straightforward way of calculating P1(n), Ps(n) and As(n) is to 
visit the nodes one at a time, starting from the primary inputs, 
as shown in Figure 1.  For each node, the Lag-one model from 
[6] and the Transition Density model from [8] can be used to 
calculate P1(n), Ps(n) and As(n), based on P1(f), Ps(f) and As(f) 
of each fan-in node f of n, and the function implemented by 
node n. These quantities can then be used to estimate the 
power using standard power models [10]. 

calculate_switching_activities( network )  
{ 
    foreach node n ∈ network {  // topological order (PIs to POs) 
        calculate P1(n), Ps(n), As(n) using techniques from [5,8] 
    } 
} 

Figure 1: Pseudo-code of activity calculation. 
The probabilistic method shown in Figure 1 is less accurate 

than simulation-based estimates for two reasons.  First, it 
ignores the effects of wire and gate delays.  These delays affect 

the arrival times of gate inputs.  Techniques to take these 
delays into account have been described in [4]; however, these 
techniques are not considered in this paper since delay 
information may not be available. 

The second reason that the probabilistic method above is 
less accurate than simulation-based estimates is that it ignores 
the correlation between signals.  There are two types of 
correlation: spatial correlation and temporal correlation.  
Spatial correlation occurs when the logic value of a wire 
depends on the value of another wire.  Spatial correlation can 
be introduced directly at the primary inputs or can occur 
between internal nodes when gates fan-out to multiple gates 
and later reconverge, as illustrated in Figure 2 (a).  Temporal 
correlation occurs when the value of a wire depends on 
previous values of the same wire.  This can also be introduced 
directly at primary inputs or can occur within sequential 
circuits which have feedback, as illustrated in Figure 2 (b).  
From [13], ignoring temporal correlation introduces between 
15% and 50% error, and ignoring spatial correlation introduces 
between 8% and 120% error. 

Probabilistic techniques that consider signal correlation 
have been described in previous works [4,6].  Unlike previous 
techniques, which estimate the activity of each gate output 
separately, error introduced by reconvergent fan-out can be 
eliminated by collapsing nodes with its predecessors into a 
larger node.  In this technique, each time a node is visited, it is 
collapsed with all its predecessors to form a new (larger) node 
c.  The inputs of c consist of some, or all, of the primary inputs 
of the circuit, and no other signals.  The switching activity at 
the output of node c (and hence the output of node n) are then 
calculated as before.  Typically, a binary decision diagram 
(BDD) representation of c is used, since this representation is 
efficient for large nodes.  

 
Figure 2: (a) Spatial correlation  (b) Temporal correlation. 
Techniques that consider temporal correlation have also 

been described in previous works.  In [5,6,7], internal temporal 
correlation is captured by “unrolling” next state logic (see 
Figure 3) and iteratively estimating switching activities until 
the activities converge.  By unrolling the next logic ∞ times, all 
temporal correlation can be captured.  Although unrolling ∞ 
times is infeasible, [5] found that 3 times produced good 
results. 

 
Figure 3: Example of unrolling next-state logic. 



2.4 Existing Activity Estimation Tools 
Despite a large number of activity estimation techniques 
described in the literature, very few fully functional activity 
estimation tools are available since many of the techniques are 
specific to a certain type of circuit (sequential or 
combinational) or are simply enhancements of existing 
algorithms.  Commercial gate-level simulation tools can be 
used; however, as described above, this method requires 
realistic input vectors and is not fast enough for system-level 
designs.  To our knowledge, the only available tool that are 
suitable are ACE-1.0 [10] and the activity estimator in Sis [7] 
(the estimator is called  Sis-1.2 is this paper). 

ACE-1.0 estimates P1, Ps, and As for combinational and 
sequential gate-level circuits using probabilistic techniques.  
The static and switching probabilities are calculated using the 
techniques in [3], and switching activities are calculated using 
the Transition Density model [8] and the analytical low-pass 
filter model described in [14].  For circuits with sequential 
feedback, a simplistic iterative technique is used to update the 
switching probabilities at the output of flip-flops using the 
simplistic expressions P1(Q) = P1(D) and Ps(Q) = 2*P1(D)*(1-
P1(D)) as described in [3].  ACE is fast but inaccurate for large 
and/or sequential circuits.   

The activity estimator in Sis estimates P1 and Ps, but does 
not estimate As.  For circuits with sequential feedback, static 
and switching probabilities are calculated using the iterative 
solution described in [7].  The Sis activity estimator is only 
accurate for circuits that do not have a large glitching 
component.  Furthermore, the estimator can become very slow 
for circuits with large BDD representations such as multipliers. 

2.5 Power Model and Power-Aware CAD tools 
The FPGA power model described in [10] and the power-
aware FPGA CAD flow described in [15] are used to answer 
questions 1 and 2 from the introduction.  The power model and 
the power-aware CAD flow are both built on top of the VPR 
CAD tool.  VPR models FPGAs at a low-level, taking into 
account specific switch patterns, wire lengths, and transistor 
sizes.  Once a circuit is routed onto the FPGA, VPR extracts 
the resistance and capacitance information for each net.  The 
power model uses this resistance and capacitance information 
to estimate dynamic, short-circuit, and leakage power.  
Activity information needed for each wire in the circuit is read 
from file and thus can be obtained using any activity estimator.  
The power-aware CAD flow includes power-aware technology 
mapping, clustering, placement, and routing. Each power-
aware algorithm minimizes power by reducing the capacitance 
of high-activity wires. 

3. FPGA-SPECIFIC ACTIVITY ESTIMATION 
This section examines the questions described in the 
introduction regarding the effect of switching activities on 
power models and power-aware CAD tools for FPGAs.  This is 
important; the activity estimation techniques described in 
Section 2 are general since they do not target any specific 
implementation.   Without using the activities in the context of 
FPGAs, it is impossible to determine with confidence which 
techniques are most suitable.  

3.1 Accuracy and Speed 
Before examining the effect of activities on power modeling 
and power-aware CAD tools, we begin by comparing the 
activities directly to highlight the strengths and weaknesses of 
the techniques employed in the ACE-1.0 and Sis-1.2 tools and 
to provide insight into the behavior of the power model and 
CAD tools when driven by these activities later on. 

Figure 4 illustrates how the activities are obtained for each 
activity estimator.  Twenty large MCNC benchmarks circuits 
(alu4, apex2, apex4, bigkey, clma, des, diffeq, elliptic, ex1010, 
ex5p, frisc, misex3, pdc, s298, s38417, seq, spla, tseng) and 
one ISCAS multiplier circuit (C6288) were used to empirically 
determine the speed and accuracy of the each activity 
estimation method.  The multiplier was included since it is 
known to be a challenging circuit for activity estimation.  For 
each circuit, static probabilities and switching probabilities are 
pseudo-randomly determined for each primary input of every 
circuit.  A custom vector generator routine was then used to 
generate pseudo-random test vectors that matched these static 
and switching probabilities.  All input vectors are first-order 
temporally correlated but not spatially correlated.  The pseudo-
random static and switching probabilities were then used to 
drive ACE-1.0 and Sis-1.2, and the corresponding vectors were 
used to drive the Verilog XL® gate-level simulator and circuit 
delay information was obtained using the VPR place and route 
tool.  

 
Figure 4: Activity comparison framework. 

Three statistical measurements are used to examine 
accuracy.  The first is average relative error, which is zero for 
perfectly accurate estimates.  For each circuit, this 
measurement involves taking the average of the absolute of the 
relative error of every node within that circuit, as described in 
the expression below: 
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The second measurement is the activity ratio, which 
divides the sum of the estimated activities by the sum of the 
simulated activities, as described by the expression below: 
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where an activity ratio of one is ideal.  Finally, the third 
accuracy measurement is r2 correlation, which measures the 
quality of a least squares fitting to the exact data, as described 
in the expression below: 
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where ssxy, ssxx, and ssyy are the sum of squared values of a set 
of n data points (xi, yi) about their respective mean [16].  For 
each circuit, n is the number of nodes in that circuit, xi is the 
estimate activity of the ith node in that circuit, and yi is the 
simulated activity of the ith node in that circuit.  An r2 of one 
indicates that there is a perfectly linear relationship between 
the estimated results and the simulated results; an r2 of zero 
indicates no relationship. 

Each measurement has a purpose.  The average relative 
error gives an intuitive feel for how much error is occurring 
for individual nodes; however, the measurement does not give 
insight to the nature of the error.  As an example, the average 
relative error is the same if an estimator tends to overestimate 
or underestimate activities by a factor of two.  The activity 
ratio, on the other hand, does indicate if the estimator tends to 
over or under estimate activities but is not a good measure of 
accuracy since the error of one activity can cancel out the error 
of another activity.  Finally, r2 is useful for measuring the 
fidelity of the activities.  In other words, it measures how well 
the estimator can determine if one node has a higher activity 
than another node.  Intuitively, fidelity is important for power-
aware CAD tools, which need to determine which wires to 
optimize.   

Table 1 compares the accuracy and run-time of ACE-1.0 
and Sis-1.2.  Many observations can be made from the results.  
Firstly, the table shows that some results are missing for Sis-
1.2 due to insufficient memory or extremely long execution 
time.  This problem occurred in all but the smallest sequential 
circuit (dsip) but in only one of the combinational circuits 
(C6288), which is a multiplier.  The likely origin of the 
problem is the use of BDDs, which tend to grow exponentially 
in size with the number of logic inputs.   ACE-1.0 was able to 
produce results for all the circuits; however, the accuracy for 
sequential circuits is not acceptable for power-aware CAD 
tools or power models with a correlation of 0.47 and activity 
ratio of 2.37. 

Table 1:  Accuracy and speed of each activity estimator. 
Simulation Sis-1.2 ACE-1.0  

Comb Seq Comb Seq Comb Seq 
Activity Ratio 1.0 1.0 1.17 1.40 1.21 2.37 

Avg. Rel. Error 0.0 0.0 0.02 0.09 0.07 0.08 
R2  1.0 1.0 0.88 0.72 0.89 0.47 

Run-time (s) 122 191 - - 31 108 

Secondly, it can be seen that the accuracy of ACE-1.0 and 
Sis-1.2 are similar for the combinational circuits, with 
correlation close to 0.89 and average relative errors of 2% and 
7%, respectively.  These results are likely acceptable for 
power-aware CAD tools; however, the activity ratio indicates 
that both estimators tend to overestimate activities, which may 
translate to power overestimations. 

Finally, the table shows the run-time of each estimator.  
The average Sis-1.2 run-times are not shown since it was not 

able to process many of the circuits, which makes the average 
meaningless.  By inspection of the circuits that did pass, 
however, we observed that the tool is relatively efficient 
compared to simulation.   ACE-1.0, on the other hand, is 
somewhat slower with average run-times that are 
approximately 4 and 2 times faster than simulation for 
combinational and sequential circuits, respectively. 

3.2 FPGA Power Modeling 
Comparing activities directly is useful since it reveals how 
accurate the activities are, if there are any trends such as over 
or underestimation, and if accuracy depends on circuit types.  
However, in order to determine the level of accuracy needed in 
the context of FPGAs, this subsection examines how the 
activities affect detailed power measurements of circuits 
implemented on FPGAs.  

Figure 5 illustrates the experimental framework used to 
compare the effect of the activities on power estimates.  The 
framework employs the none power-aware VPR tool to 
implement benchmarks circuits onto an FPGA and then uses 
the FPGA power model described in [10] to estimate the power 
of each implementation.  All experiments target island-style 
FPGAs implemented in a 0.18µm TSMC CMOS process. 

 
Figure 5: Power modeling framework. 

Power estimates are obtained three times for the each 
benchmark circuit using activities produced using ACE-1.0, 
Sis-1.2, and gate-level simulation.  Table 2 compares power 
estimates obtained using ACE-1.0 and Sis-1.2 to the power 
estimates obtained using simulation. 

Table 2: Power using ACE, Sis, and Simulation. 
Sim Sis-1.2 ACE-1.0 Benchmark

Type Avg. 
Power 

Avg. 
Power 

Avg. 
|% Diff| 

Avg. 
Power 

Avg. 
|% Diff| 

Comb. 1.18 1.39 19.8 1.38 18.6 
Seq. 0.93 0.88 29.9 2.82 220 

From the table, it is clear that both activity estimators tend 
to overestimate power as predicted by the activity ratio metric 
in Section 3.1.  The most severe cases occur in the results 
obtained using ACE-1.0 for sequential circuits (by as much as 
3X).  This trend follows for the observation made in Section 
3.1 regarding the overestimation of the switching activities.  
Clearly, another technique must be used in sequential circuits.  
The ACE-1.0 results suggest that filter function employed to 
reduce glitching is not accurate enough in this context.  The 
Sis-1.2 results were higher than expected since Sis-1.2 
estimates switching probabilities (ignores glitching) instead of 
switching activities.  The most likely explanation why Sis-1.2 
overestimates power is that the tool reads in static probabilities 



(P1) for primary inputs nodes and assumes that switching 
probabilities (Ps) are equal to 2*P1*(1-P1), which is the upper 
bound.  The pseudo-randomly generated activities used in our 
framework chooses probabilities between 0 and 2*P1*(1-P1).  
Thus, on average, the Sis-1.2 activity estimator assumes higher 
activities at the primary inputs of each circuit, which lead to 
overestimation throughout the circuit. 

3.3 Power-Aware CAD for FPGAs 
This section examines how the accuracy of the various activity 
estimation techniques affects power-aware CAD tools that use 
switching activities to minimize power of circuits implemented 
on FPGAs.  Intuitively, the most important characteristic of the 
activities being used to minimize power is fidelity since the 
tools must know which wire to optimize for power. 

Figure 6 illustrates the framework used to compare the 
effect of the activities on the power-aware version of VPR 
described in Section 2, by implementing each benchmark three 
times using activities generated using ACE-1.0, Sis-1.2, and 
gate-level simulation.  The power of all three implementations 
of the circuit is then estimated using the power model 
described in Section 2 and the activities obtained using 
simulation. 

 
Figure 6: Power-aware CAD framework. 

Table 3 reports the power savings obtained by the power-
aware version of VPR using the three different activity 
estimators.  Intuitively, the greatest power savings should be 
obtained when power-aware VPR is guided by the simulated 
activities since they are exactly the same as the activities used 
to estimate power.  

Table 3: Power savings using each activity estimator. 
Average Power Savings (%) Benchmark 

Type Simulation Sis-1.2 ACE-1.0 
Comb. 9.8 9.0 8.8 
Seq. 13.6 - 5.3 

On average, the power-aware CAD flow reduces power 
9.8% for combinational circuits and 13.6% for sequential 
circuits when driven by the simulated activities.  Although no 
average is available for Sis-1.2, careful inspection reveals 
power savings achieved using activities from Sis-1.2 and ACE-
1.0 are approximately 9%, which is relatively good.  This 
follows from the good correlation results measured in Section 
3.1. For sequential circuits; however, the savings using ACE-
1.0 activities are only 5.3% compared to 13.6%, which is not 
acceptable.  These results again suggest that more accurate 
techniques must be employed to improve the performance of 
power-aware CAD tools. 

4. ACE-2.0 : A NEW ACTIVITY ESTIMATOR 
The previous section served to highlight the strength and 
weaknesses of existing activity estimation tools in the context 
of FPGAs.  Specifically it found that the technique used in Sis-
1.0 for circuits with sequential feedback does not scale well 
enough for larger circuits and the technique in ACE-1.0 was 
inaccurate, causing significant error in power estimates and 
degraded power savings from the power-aware CAD tool.  The 
previous section also showed that the Transition Density model 
combined with a low-pass analytical filter were somewhat 
accurate but still caused power model to overestimate power.  

Using this information, this section describes a new activity 
estimation tool called ACE-2.0, which addresses these 
weaknesses.  Figure 7 outlines the ACE-2.0 algorithm, which 
has three phases.  The first phase begins by simulating static 
and switching probabilities for logic within sequential 
feedback loops, if there are any.  The second phase then 
employs the Lag-one model, described in [6], to calculate static 
and switching probabilities for the remaining logic that has not 
been simulated.  Finally, the third phase calculates switching 
activities using a novel probabilistic technique that considers 
glitching.  Each phase is described below. 

ACE-2.0 (network, vectors, activities) { 
    // Phase 1 
    feedback_latch = find_feedback_latches (network); 
    feedback_logic = find_feedback_logic (feedback_latches); 
    if (vectors == NULL) vectors = gen_vectors (activities); 
    simulate_probabilities (feedback_logic, vectors); 
 
    // Phase 2 
    foreach node n ∈ network 
        if (Status(n) != SIMULATED) { 
            bdd = get_partially_collapsed_and_pruned_bdd (n); 
            Static_Prob(n) = calc_static_prob (bdd); 
            Switch_Prob(n) = calc_switch_prob (bdd); 
        } 
    } 
    // Phase 3 
    foreach node n ∈ network { 
        bdd = get_local_bdd(n); 
        Switch_Act(n) = calc_switch_activity (bdd): 
    } 
} 

Figure 7: ACE-2.0 pseudo-code. 
4.1 Phase 1 
This phase determines the static and switching probability for 
logic and flip-flops within sequential feedback loops in a 
circuit.  The previous section demonstrated that sequential 
feedback is the greatest source of error and long execution 
times for existing tools.  The existing probabilistic solutions 
proposed in the literature use BDDs or involve solving systems 
of non-linear equations.  In either case, the techniques are not 
feasible for large circuits.  Thus, the solution used within ACE-
2.0 is to use a simplified form of simulation. 

Two simplifications are made to improve the efficiency of 
the simulation.  The first simplification is to simulate only the 
logic within sequential feedback loops.  In most circuits with 
sequential feedback, the logic within feedback loops accounts 
for only a fraction of the circuit.  Simulating this logic 
produces accurate probabilities within the feedback loops 
which can then be used to calculate probabilities for the 
remaining logic in the circuit.   



The second simplification is to simulate switching 
probabilities instead of switching activities.  In circuits with 
many levels of logic or with many exclusive-or gates, glitching 
accounts for a significant proportion of all transitions.  As 
opposed to simulating activities, which involves processing 
each transition in each gate for every cycle, simulating 
probabilities only involves processing the final value of each 
gate for every cycle.  The simulation routine used in ACE-2.0 
is described in Figure 8.   

simulate_probabilities (feedback_logic, vectors) { 
    foreach vector ∈ vectors { 
        update_primary_inputs (vector); 
        evaluate_logic (feedback_logic); 
        update_flip_flops (); 
    } 
} 
 
evaluate_logic (logic) { 
    foreach node n ∈ feedback_logic 
        if (get_status_of_inputs (n) == NEW) { 
            value = evaluate (n); 
            if (value == 1) Num_ones(n)++; 
            if (value != Value(n)) { 
                Value(n) = value; 
                Status(n) = NEW; 
                Num_transitions(n)++; 
            } else { 
                Status(n) = OLD; 
            } 
        } else { 
            Status(n) = OLD; 
        } 
    } 
} 

Figure 8: Simplified simulation pseudo-code. 
Each cycle of the simulation begins by updating the values 

of the primary inputs with the next input vector.  If vectors are 
not supplied, ACE-2.0 pseudo-randomly generates vectors 
which match the specified input activities.  Once the input 
values are specified, the routine determines the output value of 
each gate in the feedback logic in topological order from the 
primary inputs to the primary outputs.  Finally, at the end of 
each cycle, the routine updates the value at the output of each 
flip-flop based on the input value.  To further improve 
performance, the evaluate logic routine only evaluates when at 
least one fanin of the gate has changed. 

4.2 Phase 2 
Although ACE-2.0 uses simulation to obtain static and 
switching probabilities for logic and flip-flops within 
sequential feedback loops, switching probabilities are also 
required for logic and flip-flops not within sequential feedback 
loops.  These remaining probabilities are calculated using the 
Lag-one model [6], which produces exact switching 
probabilities (assuming that inputs are not correlated).   

For a Boolean function f, the Lag-one model can be 
calculated by summing probabilities over all pairs of input 
states {xi, xj} such that f(xi) =f(xj).  Intuitively, you can think 
of an input state as a single row of the truth table 
representation of function f. Explicitly, the switching 
probability Ps can be calculated using the following 
expression: 
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where X1 is the set of input states such that f(xi) = 1 ∀xi ∈ X1, 
X0  is the set of input states such that f(xj) = 0 ∀xj ∈ X0, P(xi) is 
the probability that the current input state is xi, and P(xi, xj) is 
the probability that the input state will be xj at the end of a 
clock cycle given that the input state was xi at the beginning of 
the clock cycle.  

The probability that the current input state is xi can be 
determined by taking the product of the static probabilities for 
each input literal, as expressed below: 
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where n is the number of inputs that fan into function f, fk is the 
function of the kth input that fans into f, and xi[k] is the value of 
the kth

 literal of input state xi.   
Similarly, the probability that the input state will change 

from xi to xj can be determined by taking the product of the 
switching probabilities for each input literal, as expressed 
below: 
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where P0→1(fk) is the probability that fk will transition from 0 to 
1 and P1→0(fk) is the probability that fk will transition from 0 to 
1. These probabilities can be determined with the following 
expressions: 
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The most efficient known implementation of the Lag-one 
model involves using a BDD.  However, as observed in 
Section 3, using BDDs become infeasible for large circuits 
because of the exponential relationship between BDD size and 
the number of inputs.  As a solution, ACE-2.0 combines the 
partial collapsing technique described in [17] with BDD 
pruning as an approximation to improve the speed of the 
calculation. 

Partial Collapsing 
The activity estimation techniques described in [6,7] suffer in 
that they require collapsing a large number of nodes.  During 
activity estimation, each node is collapsed with all of its 
predecessors.  Although this takes into account spatial 
correlation within the circuit, the technique is infeasible for 
large circuits.  In [17], an alternative is proposed; rather than 
collapsing each node with all its predecessors, only smaller 
portions of the logic are collapsed, as shown in Figure 9.  This 
results in smaller BDDs, leading to faster activity estimation 
time.  The cost of doing this is that not all spatial correlation 
can be captured.  There is a tradeoff between the amount of 
partial collapsing (the size of each collapsed node) and the 



error introduced by not taking into account all spatial 
correlation. 

 
Figure 9: Example of a partially collapsed network. 

The partial_collapse routine collapses nodes with only 
some (as apposed to all) of its predecessors such that the BDD 
representation of the collapsed logic contains at most 
max_nodes nodes.  The max_nodes parameter can be used to 
tradeoff accuracy with run-time.   

BDD Pruning 
An alternative to partial collapsing is BDD pruning.  By 
pruning low-probability branches of a BDD, the size of a BDD 
can be significantly reduced with minimal impact on the 
accuracy of the activity estimation.  In logic synthesis 
applications (which also often use BDDs to represent logic 
nodes), such pruning is not possible since it would be 
unacceptable to change the behavior of the circuit.  For activity 
estimation, however, the BDDs can be pruned since some 
degree of approximation is acceptable.  Although pruning 
BDDs is not a new idea, pruning BDDs to improve the 
execution time of activity calculations is novel. 

The proposed BDD pruning technique involves removing 
BDD branches with probabilities smaller than a pruning 
threshold probability, min_prob.  An example is illustrated in 
Figure 10.  In the example, the static probability of the 
function’s four inputs are P1(a)=0.5, P1(b)=0.9, P1(c)=0.2, and 
P1(d)=0.5, and the probability of each branch is shown next to 
each node.  The grey nodes are pruned from the BDD since 
their probabilities are smaller than min_prob=0.03. 

Figure 10: Example of BDD pruning. 

 After a branch is pruned, it must be replaced by either a ‘0’ 
or a ‘1’ terminal in order for the BDD to remain valid.  A naïve 
approach is to arbitrarily use a ‘0’ or a ‘1’ terminal; however, 
this produces more error later on when the BDDs are used to 
calculate activities.  A better approach is to replace the branch 
with a ‘0’ terminal when the value of the branch being pruned 
is more likely to be ‘0’ and a ‘1’ terminal when the value is 
more likely to be ‘1’ 

Figure 11 describes the BDD pruning routine.  The routine 
begins at the root node (top) and recursively traverses the BDD 
until it reaches the BDD terminals (‘0’ or ‘1’ nodes) or BDD 
nodes with a branch probability less than the threshold value.  
When the probability is less than the threshold value, the 
branch is pruned away. 

get_partially_collapsed_pruned_bdd (n, max_size, min_prob) { 
    bdd = partially_collapse (n, max_size);  // see [17] 
    pruned_bdd = bdd_prune (bdd, 1.0, min_prob); 
    return (pruned_bdd); 
} 
 
bdd_prune (bdd, prob, min_prob) { 
    if (bdd  is a ‘0’ or ‘1’ terminal) return (bdd); 
    
    if (prob < min_prob) { 
        if (Prob(bdd) < 0.5 )  { 
            return (‘0’); // replace branch with ‘0’ 
        } else { 
            return (‘1’); // replace branch with ‘1’ 
        } 
    } 
    n = literal (bdd); 
    true_prob = prob · P1(n); 
    false_prob = prob · (1.0 – P1(n)); 
    true_bdd = bdd_prune (bdd->true, true_prob, min_prob); 
    false_bdd = bdd_prune (bdd->false, false_prob, min_prob); 
    bdd ’ = build_bdd (n, true_bdd, false_bdd); 
    return (bdd’); 
} 

Figure 11: BDD pruning pseudo-code. 
The threshold probability parameter, min_prob, controls 

the tradeoff between accuracy and execution time.  Increasing 
min_prob increases pruning and results in smaller BDDs, faster 
execution times, but reduced accuracy.   

Combining Partial Collapsing and BDD Pruning 
Partial collapsing and BDD pruning can be combined.  In 
Figure 11, the BDD generated by the partial_collapse 
routine is then pruned using the bdd_prune routine.  The 
resulting routine has two parameters: max_size and 
min_prob.  Intuitively, the max_size parameter limits the 
BDD size of the collapsed node and the min_prob 
parameter controls the amount of pruning that occurs on the 
BDD representation of the collapsed node.   A max_size of 
125 and a min_prob of 0.004 were found empirically to 
produce good results.   

4.3 Phase 3 
The final phase of the ACE-2.0 algorithm addresses the issue 
of accurately and efficiently modeling the glitch component of 
switching activities.  This subsection introduces the novel 
switching activity calculation that we used.  The calculation is 
a simple generalization of the Lag-one model, yet performs 
well compared to existing techniques.   

A transition at the output of a gate is normally caused by a 
transition occurring at a single input of that gate; however, 
transitions can also occur (or be canceled out) when two or 
more inputs transition at nearly the same time.  Consider a 
two-input XOR gate with inputs A and B.  If A is ‘0’ and B 
transitions from ‘0’ to ‘1’, this transition will probably cause a 
transition at the output.  Similarly, a second transition, this 
time of input ‘A’, will probably cause a second transition at the 
output.  However, these two input transitions might not cause a 
transition at the output if they happen close enough together 
since the glitch generated by these two input transition may be 
filtered out by the resistance and capacitance of the gate.  In 
other words, the amount of glitching that occurs depends on 
the minimum pulse width of the gate. 



The new calculation adds the notion of minimum pulse 
width to the Lag-one model described in Section 4.2.  
Explicitly, the switching activity As is calculated using the 
following expressions: 
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where T is the maximum delay from the primary inputs to the 
output of the function  f and τ is some period of time less than 
or equal to T.  Intuitively, the calculation determines the 
switching probability during period τ, assuming that that input 
arrival times are normally distributed, and then multiplies this 
probability by T/ τ, the number times that period τ occurs 
during T. 

It is interesting to note that when τ = T the new switching 
activity model reduces to the Lag-one model since output 
transitions caused by any number of input transitions are 
equally weighted.  Conversely, when τ → 0, the model reduces 
to the Transition Density model since only single input 
transitions carry any weight in the calculation.  The best results 
are obtained when τ is set to approximately the physical delay 
of the gate. 
4.4 ACE-2.0 Results 
Table 4 summaries the results obtained using ACE-2.0.  The 
activities are very accurate for both combinational and 
sequential circuits.  The correlation for combinational circuits 
is 0.97, which is close to ideal.  For sequential circuits, the 
correlation is 0.86, which is significantly better than ACE-1.0 
with 0.47.  Moreover, the activity ratio and average relative 
error are also close to ideal. 

In terms of power estimates, the ACE-2.0 activities 
translated into very accurate power estimates, with less than 
1% error compared to simulation.  Similarly, the power-aware 
CAD achieved power savings that closely matches those 
achieved using simulated activities.  Finally, the average run-
times are 53 and 7.4 times faster than simulation for 
combinational and sequential circuits, respectively.   

Table 4:  ACE-2.0 results. 
ACE-2.0 Power 

Model 

Power-
Aware 
CAD Circuit 

Type Avg. 
R2 

Avg. 
Act. 
Rat. 

Avg. 
Rel. 
Error 

Avg. 
Run-

time (s) 
% 

Diff.  
%Power 
Savings 

Comb.  0.97 0.97 0.03 2.3 -0.1 8.8 
Seq.  0.86 1.00 0.02 25.9 0.6 14.0 

5. CONCLUSIONS AND FUTURE WORK 
This paper examined various activities estimation techniques in 
order to determine which are most appropriate for use in the 
context of FPGAs.  It found that existing probabilistic 
techniques were either too slow or too inaccurate for circuits 
with sequential feedback; causing inaccurate power 
estimations and poor power savings for power-aware CAD 
tools.  It also found that using fully collapsed logic to calculate 
probabilities is not feasible for large circuits because of 
execution time.  Finally, it found that calculating switching 
activities using the Transition Density and the associated low-
pass filter caused the power model to overestimate power. 

Given the above findings, a new activity estimation tool 
called ACE-2.0 that incorporates the techniques found most 
suitable was described.  The new tool begins by calculating 
static and switching probabilities for every node in the circuit.  
For circuits with sequential feedback, a simplified simulation 
technique is used for the feedback logic and the Lag-one model 
is used for the remaining logic.  To improve the speed of the 
Lag-one calculation with only a slight loss of accuracy, BDD 
sizes were reduced using partial collapsing and BDD pruning.  
Once the static and switching probabilities are obtained, ACE-
2.0 employs a novel probabilistic-based technique to calculate 
the switching activities.  

Finally, the new tool was validated in the context of 
FPGAs.  Using activities estimated by ACE-2.0, power 
estimates and power savings were both within 1% of results 
obtained using simulated activities.  Moreover, the new tool 
was 53 and 7.4 times faster than simulation for combinational 
and sequential circuits, respectively. 

APPENDIX 
Source code and instructions for downloading ACE-2.0 are 

available at http://www.ece.ubc.ca/~julienl/activity.htm. 
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