The MasPar MP-1 Architecture

Tom Blank

MasPar Computer Corporation
Sunnyvale, CA

Abstract

This article describes the MasPar MP-1 architecture, a
massively parallel SIMD (Single Instruction Multiple Data)
machine with the following key characteristics: scalable ar-
chitecture in terms of the number of processing elements, sys-
tem memory, and system communication bandwidth; “RISC-
like” instruction set design which leverages optimizing compiler
technology; adherence to industry standard floating point for-
mats, specifically VAXTM and IEEE floating point; and an
architectural design amenable to a VLSI implementation. The
architecture provides not only high computational capability,
but also a mesh and global interconnect style of communica-
tion.

The techniques and subsystems of the MP-1 are described
including the interconnection mechanisms, Companion papers
describe the software system and provide a description of the
hardware implementation.

1 Introduction

MasPar Computer Corporation has designed and implemented
a high performance, low-cost, massively parallel computing
system called the MP-1. The system works in a SIMD (Sin-
gle Instruction Multiple Data) fashion. Previous machines
with similar characteristics are the MPP[1], DAP[4], Blitzen[2],
CM([3], DEC MPP[6], and the VBMP[5]. Unique characteris.
tics of the MP-1 architecture are the combination of: a scalable
architecture in terms of the number of processing elements, sys-
tem memory, and system communication bandwidth; “RISC-
like” instruction set design that leverages optimizing compiler
technology; adherence to industry standard floating point de-
sign, specifically VAX and IEEE floating point; and an archi-
tectural design amenable to a VLSI implementation.

Figure 1 shows a block diagram of the MasPar system with
five major subsystems. The following briefly describes each of
the major components with a more detailed description later
in the paper:

The Array Control Unit (ACU) The ACU performs two
primary functions: either PE Array control or indepen-
dent program execution. The ACU controls the PE Ar.
ray by broadcasting all PE instructions. Independent
program execution is possible since it is a full control
processor capable of independent program execution.

CH2843-1/90/0000/0020$01.00 © 1990 IEEE

The Processor Element Array (PE Array) The PE Ar-
ray is the computational core of the machine. All in-
struction dispatch to the PE Array is from the ACU.

Communication Mechanisms The communication mecha-
nisms provide the following key capabilities:

o The X network for communication with neighboring
processors. All connections are on a 2-D mesh.

¢ The global router network permits random processor-
to-processor communication using a circuit-switched,
hierarchical crossbar communications network.

* Two global busses: a common bus on which the
ACU broadcasts instructions and data to all or se-
lected processors, and a logical OR-tree which con-
solidates status responses from all the processors
back to the ACU.

The UNIX® Subsystem (USS) Provides UNIX services to
the data parallel system. For example, all Jjob manage-
ment and low speed network access (e.g. ethernet) is
performed by the USS.

The I/O Subsystem Supports high speed 1/0 performance.
A channel style architecture is used allowing overlapped
computation and I/0 operations.

2 Machine Computational Model

Based on the previous architecture block diagram, the system
can be accurately viewed as having two instruction streams,
the UNIX Subsystem (USS) and the ACU, and three locations
for data: the USS, the ACU, and the PE Array. In the SIMD
fashion, all PE instructions reside in the ACU instruction mem-
ory.

Since two instruction streams are required for the system,
two basic programming approaches are possible and are both
are supported:

o One application code is automatically distributed across
the USS and the ACU with the data partitioned across
the USS, ACU, and PE Array. All interprocess commu-
nication is automatically handled by the compiler.

e Two application codes are provided, one for the USS,
and one for the ACU/PE Array where all communication
between the two processes is explicitly controlled by the
programmer.

i i
A \‘ RN
R
‘\'@A\Q‘.‘\‘x‘;‘t\:“
Atn
A
saheN!
AR
\\I\ O

ANV A ANV

) NN N N V.V V.VaVaVAVAVAVAVAVAYAVATAYATAAAAA)
NI YT FEAAAAAANNN NNV XXX X
SINYY Y Y XA AAAAANNYYCLX XXX X X e

TR YA AAAANY YA XX AAAANAX X%

NNY I RANYY X AANT Y X AN OANE L %

T RN X IANY XA X EAACLLE X XX SONAX

Figure 1: MP-1 System Block Diagram

21

Common to both programming approaches are two differ-
ent interaction models: synchronous and asynchronous both
with architectural and software support. In the synchronous
model, either the USS or the ACU/PE Array is actively run-
ning at one instant. Similar to UNIX remote procedure calls
(RPC), a subroutine calling convention allows straight forward
control flow transfer between the two hardware processes.

In contrast, the asynchronous model allows both the USS
and ACU/PE Array to operate concurrently. Support for a
FORK/JOIN model are provided.

3 MP-1 Architecture

This section describes in more detail the basic architectural
subsystems including the basic instruction set model.

3.1 Array Control Unit (ACU)

The ACU, a custom processor, both executes instructions that
cause computation in the PE Array and executes instructions
that cause computation only in the ACU itself. The following
list describes the major architectural characteristics:

o Harvard style architecture with separate instruction and
data spaces.

e 32-bit, two address, load/store, simple instruction set

e 4 Gigabyte, virtual, instruction address space, using 4,096-
byte pages.

Table 1 shows the basic ACU instruction types where each
instruction uses one instruction word with a two address three
operand style format: src op dst — dst. In this load/store
style machine, all operations are only within the register set
with only load and store operations into memory. Instructions
typically execute in one or two clocks.

Instruction Types Examples

Memory: Load, Store

Logical: AND, OR, XOR

Arithmetic: ADD, SUB

Control: Branch, Jump to subroutine (JSR)

Table 1: ACU Instruction Set

The ACU has a microcoded implementation of this RISC
like instruction set due to the additional control requirements
of the PE Array. In the next section describing the PE Array,
PE instructions typically require more than one clock including
floating point instructions which are well suited to a microcode
implementation.

3.2 Processor Array

The processor array is the computational core. Each PE has
on-chip registers, and off-chip memory using a basic load/store
style instruction set design. During a computation, all PEs
execute the same instruction stream (which is broadcast by
the ACU), unless they have been programmed to idle.

The basic PE components follow:

22

Integer and Floating Point ALU Both the integer and float-
ing point unit share the computational PE core. Float-
ing point hardware is included for both 32 and 64 bit
floating point numbers capable of VAX D, F, and G for-
mats; and IEEE standard floating point. Further, both
big and little endian conventions are supported. All PE
calculations are done in a scalar fashion without pipeline
latency.

Communications Interface Three interfaces are provided:
glo-bal router connections, nearest neighbor connections,
and connections to global ACU signals. Section 3.4 con-
tains further details.

Register Set In contrast to typical processor architectures,
the PE register set can be addressed as bits, bytes, 16-
bit words, 32-bit words, or 64-bit words depending on the
PE instruction used. The current implementation has 40
32-bit registers. Both floating point and integer values
are stored in the register set.

Main Memory Each PE has a private data store with full
ECC (remember that only data is stored in the PEs; all
instructions are stored in the ACU).

Control Logic Minimal control logic is required in each PE
since the majority of the instruction decode logic is in the
ACU and shared by all PEs. The control unit performs
two primary functions: simple decode of ACU broadcast
microinstructions, and conditional instruction execution.
Conditional instruction execution allows individual pro-
cessors to decide based on internal data whether it should
execute the current instruction.

The PE instruction set is nearly identical to the ACU in
that all instructions are two address, three operand instruc-
tions using a load/store model. All execution instructions (e.g.
add, sub, etc.) operate only out of the register set and only
load and store operations access memory. The following ta-
ble contains the basic PE instruction types and examples:

Instruction Types Examples

Memory: LD, ST, LDX, STX
Logical: AND, OR, XOR
Integer: ADD, SUB, MUL, DIV
Floating Point: FADD, FSUB, FSQRT
Control: Turn PEs on/off

Table 2: PE Instruction Set

Different instructions are provided for both single (32-bit)
and double (64-bit) precision floating point numbers. For inte-
gers, different instructions are provided for 1, 8, 16, 32 and 64
bit calculations designed specifically to support high level com-
piled languages like Fortran and C (a more detailed discussion
of the compilers are provided in a companion paper).

Two very important instructions are LDX (load indirect)
and STX (store indirect) which allow PEs to simultaneously
access different memory locations. This capability allows im-
portant data structures like queues and look-up tables to be
used.

3.3 UNIX Subsystem (USS)

An important aspect of the system is the use of an existing
computer system (specifically a VAXstation 3520 U LT RIXTM
workstation) that follows existing industry standards (e.g. X
windows, TCPIP, etc.). The USS provides a complete, net-
work and graphics based, software environment in which all
the MasPar tools and utilities (e.g. compilers) execute. Part
of the application executes as a conventional workstation appli-
cation; most of the “operating system” functions are provided
by the workstation’s UNIX software.

3.4 Communication Mechanisms

The following sections describe the five major communications
mechanisms. Included are descriptions of the programming
model and instructions.

3.4.1 USS to ACU

Three different types of interactions occur between the UNIX
Subsystem (USS) and the Array Control Unit (ACU) which
use three different types of hardware support. All are based
on a standard bus interface (VME). The following describes
each mechanism:

Queues Hardware queues are provided which allows USS pro-
cesses to quickly interact with the process running on the
ACU. The programming model is similar to UNIX pipes
but with hardware assist.

Shared Memory The shared memory mechanism overlaps
ACU memory addresses with USS memory addresses.
This provides a straight forward mechanism for processes
to share common data structures like file control blocks
etc.

DMA A DMA mechanism is provided that permits fast bulk
data transfers without using programmed 1/0.

3.4.2 ACU to PE Array

Two basic capabilities are required for data movement between
the ACU and PE Array: data distribution, DIST, and array
consensus detection which uses a global OR, GOR. An example
usage:

while (array_value > error. limit)

array_value = find_better_value();

In words, each PE gets a copy of the common error_limit
value and compares it to a PE specific data value. Then, all
PEs put the logical result of the expression evaluation onto an
OR tree allowing the ACU to decide if any PEs need to go
through the loop again.

3.4.3 PE Array: XNet

XNet communications provide all PEs with a direct connec-
tion to its eight nearest neighbors in a two dimensional mesh.
Specifically, each PE is connected to its neighbors to the: North,
Northeast, East, Southeast, South, Southwest, West, and North-
west. Processors located on the physical edge of the array have
toroidal wrapped edge connections.

23

Three basic instruction types are provided to use the near-
est neighbor connections:

XNET The XNET instruction moves an operand from source to
destination a specified distance in all active PEs. The
instruction time is proportional to the distance times the
operand size since all communication is done using single
wire connections.

XNETP The XNETP instruction is pipelined so that a collection
of PEs move an operand from source to destination over
a specified distance. However, the pattern of active and
inactive PEs is very important since active PEs transmit
data and inactive PEs act as pipeline stages. The instruc-
tion time is proportional to the distance plus the operand
size due to its pipelined nature. For example if every 16th
PE in a row is active, the XNETP instruction could move
data between the active PEs providing a very high per-
formance non-blocking communication mechanism. This
mechanism is similar to the ideas proposed in [7].

XNETC The XNETC instruction is pipelined and is very simi-
lar to the XNETP instruction except that a copy of the
operand is left in all PEs acting as pipeline stages (e.g.
the inactive PEs). Again, the instruction time is propor-
tional to the distance plus the operand size.

3.4.4 PE Array: Global Router

The global router is a circuit switched style network organized
as a three stage hierarchy of crossbar switches. This mecha-
nism provides direct point to point bidirectional communica-
tions. The network diameter is 1/16 the number of PEs which
requires a minimum of 16 communication cycles to do a per-
mutation with all PEs. The basic instruction primatives are:

ropen open a connection to a destination PE

reend move data from the originator PE to the destination
PE

rfetch move data from the destination PE to the originator

PE
rclose terminate the connection

The best analogy for using this network is the telephone
system where people who want to make a call use the following
steps:

1. People who want to make a call pick up their phone
2. Dial a phone number
. If busy, hangup and try again later (go back to step one)

. If connection completes, have a nice conversation

A

. When call completes, hangup

The usage sequence for the MasPar router is as follows:

while (PEs_want_to_communicate) {
ropen
rsend
rfetch
rsend

rclose
}

3.4.5 PE Array to I/O Subsystem

Since the global router provides high performance random PE
to PE communication, the global router is also used to provide
a high performance communication mechanism into the I/0
subsystem. The interface is achieved by connecting the last
stage of the global router to an I/0 device, the I/0 RAM
(described in section 3.5). The programming model is identical
to the model described for using the global router in section
3.4.4.

3.5 Array I/O System

Referring back to figure 1, the I/O subsystem uses the following
key components: the global router connection into the PE Ar-
ray (over 1 GB/sec), a large I/O RAM buffer (up to 256MB),
and a high speed (230MB/sec) data communications channel
between peripheral devices, a bus for device control (not for
data movement). Using output as an example, the model for
using the I/O subsystem follows these steps:

1. Device is opened by the USS (all I/O devices are UNIX
controlled)

2. The ACU moves data into the I/O RAM through the
global router.

3. Either the USS or an I/O Processor (IOP) schedules data
movement from the I/0 RAM to the device (e.g. Disk);
data through the MPIOC and control on the VME bus.

4. The USS is notified when the transaction is complete.

Note that all transactions from the I/O RAM to external
I/O systems can occur asynchronously from PE Array oper-
ations. This is a key attribute since data can move into the
I/0O RAM at speeds over 1 GB/sec then move at 1/O device
speeds, typically in the tens of megabytes per second or less,
without effecting the performance of the PE Array. These
hardware mechanisms can support either typical synchronous
UNIX 1/0O or newer (and faster) asynchronous I/O software
models.

4 Summary

A key attribute of the MP-1 system architecture is that the sys-
tem characteristics all are scalable. Specifically, as the perfor-
mance increases (more PE boards are added), the system mem-
ory increases, and the communications bandwidth increases.
Each PE board increase the system capability while keeping
performance, communication, and memory balanced. System
“bottlenecks” are not introduced as the number of processors
are increased.

The architectural subsystems have been designed so that
the various computational tasks are distributed to specialized
units. Examples include: the ACU is specialized for controlling
the PE Array, the PE is optimized for both floating point and
integer calculations. Further, hardware software tradeoffs have
been made that leverage existing software technology. Key ex-
amples are both the ACU and PE instruction sets that closely
resemble current RISC style instruction sets. The advantage
in following this instruction set design is that complexity is
moved out of the hardware design and out of the microcode
design and into the compiler. Less complex hardware allows
both a faster and less expensive design. Further advantages
of moving the complexity into the compiler leverages optimiz-
ing compiler technology with the tremendous advantage of op-
timizing data placement, register allocation, and eliminating
unnecessary work.

References

[1] K.E. Batcher, “Design of a Massively Parallel Processor”,
IEEE Trans. on Computer, Sept 1980, pp. 836-840.

[2] E. Davis, J. Reif, “The Architecture and Operation of
the BLITZEN Processing Element”, 3rd Intl. Conf. on
Supercomputing, May 1988.

[3] W.D. Hillis, The Connection Machine, MIT Press, 1985.

(4] S.F Reddaway, “DAP A Distributed Array Processor”,
First Annual Symposium on Computer Architecture,
(IEEE/ACM), Florida, 1973.

[5) William T. Blank, A Bit Map Architecture and Algo-
rithms for Design Automation, PhD thesis, Stanford Uni-
versity, September 1982.

[6] R. Grondalski, “A VLSI Chip Set for a Massively Parallel
Architecture”, International Solid State Circuits Confer-
ence, February 1987.

[7] C.M. FiDuccia, R. M Mattheyses and R.E. Stearns, “Ef-
ficient Scan Operators for Bit-Serial Processor Arrays”,
Proceedings of the 2nd Symposium on the Frontiers of
Massively Parallel Computation, October 1988.

