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Abstract. The coarse-grained reconfigurable architectures have advan-
tages over the traditional FPGAs in terms of delay, area and config-
uration time. To execute entire applications, most of them combine an
instruction set processor(ISP) and a reconfigurable matrix. However, not
much attention is paid to the integration of these two parts, which re-
sults in high communication overhead and programming difficulty. To
address this problem, we propose a novel architecture with tightly cou-
pled wvery long instruction word(VLIW) processor and coarse-grained
reconfigurable matrix. The advantages include simplified programming
model, shared resource costs, and reduced communication overhead. To
exploit this architecture, our previously developed compiler framework
is adapted to the new architecture without much difficulty. The results
show that the new architecture is very compiler-friendly.

1 Introduction

Coarse-grained reconfigurable architectures have become increasingly important
in recent years. Various architectures were proposed [1][2][3][4]. These architec-
tures often comprise a matrix of functional units (FUs), which are capable of
executing word- or subword-level operations instead of bit-level ones found in
common FPGAs. This coarse granularity greatly reduces the delay, area, power
and configuration time compared with FPGAs, however, at the expense of flex-
ibility. Other features include predictable timing, a small configuration storage
space, flexible topology, etc.

However, the reconfigurable matrix alone is not capable of executing entire
applications. Most coarse-grained architectures are coupled with processors, typ-
ically RISCs. The execution model of such hybrid architectures is based on the
well-known 90/10 locality rule[5], i.e., a program spends 90% of its execution
time in only 10% of the code. Some computational-intensive kernels are mapped
to the matrix, whereas the rest code is executed by the processor. So far not
much attention is paid to the integration of the two parts of the system. The
coupling between the processor and the reconfigurable matrix is often loose,



which is essentially two separated parts connected by a communication channel.
This results in programming difficulty and communication overhead. In addition,
the coarse-grained reconfigurable architecture consists of components which are
similar to those used in processors. This represents a major resource-sharing
and cost-saving opportunity, which is not extensively exploited in traditional
coarse-grained architectures.

To address the above problems, in this paper we presents a novel architecture
called ADRES (Architecture for Dynamically Reconfigurable Embedded System),
which tightly couples a VLIW processor and a coarse-grained reconfigurable
matrix. The VLIW processor and the coarse-grained reconfigurable matrix are
integrated into one single architecture but with two virtual functional views. This
level of integration has many advantages compared with other coarse-grained
architectures, including improved performance, a simplified programming model,
reduced communication costs and substantial resource sharing. Nowadays, new
programmable architecture can not succeed without good support for mapping
applications. In our previous work, we built a compiler framework for a family
of coarse-grained architectures [6]. A novel modulo scheduling algorithm was
developed to exploit the loop-level parallelism efficiently[7]. In this paper, we
present how this compiler framework can be adapted to the ADRES architecture.
In addition, some new techniques are proposed to solve the integration problem
of the VLIW processor and the reconfigurable matrix.

The paper is organized as follow. Section 2 describes the proposed ADRES
architecture and analyzes its main advantages. Section 3 discusses how the com-
piler framework is ported to the ADRES architecture and some considerations
of the compilation techniques. Section 4 reports experimental results. Section 5
covers related work. Section 6 concludes the paper and presents future work.

2 ADRES Architecture

2.1 Architecture Description

Fig. 1 describes the system view of the ADRES architecture. It is similar to a
processor with an execution core connected to a memory hierarchy. The ADRES
core(fig 3) consists of many basic components, including mainly FUs and regis-
ter files(RF), which are connected in a certain topology. The FUs are capable
of executing word-level operations selected by a control signal. The RFs can
store intermediate data. The whole ADRES matrix has two functional views,
the VLIW processor and the reconfigurable matrix. These two functional views
share some physical resources because their executions will never overlap with
each other thanks to the processor/co-processor model. For the VLIW processor,
several FUs are allocated and connected together through one multi-port register
file, which is typical for VLIW architecture. Compared with the counterparts of
the reconfigurable matrix, these FUs are more powerful in terms of functionality
and speed. They can execute more operations such as branch operations. Some of
these FUs are connected to the memory hierarchy, depending on available ports.



Thus the data access to the memory is done through the load/store operation
available on those FUs.

For the reconfigurable matrix part, apart from the FUs and RF shared with
the VLIW processor, there are a number of reconfigurable cells(RC) which ba-
sically comprise FUs and RFs too(fig. 2). The FUs can be heterogeneous sup-
porting different operation sets. To remove the control flow inside loops, the
FUs support predicated operations. The distributed RFs are small with less
ports. The multiplexors are used to direct data from different sources. The con-
figuration RAM can store a few configurations locally, which can be loaded on
cycle-by-cycle basis. The configurations can also be loaded from the memory
hierarchy at the cost of extra delay if the local configuration RAM is not big
enough. Like instructions in ISPs, the configurations control the behaviour of
the basic components by selecting operations and multiplexors. The purpose of
the reconfigurable matrix is to accelerate the dataflow-like kernels in a highly
parallel way. The matrix also includes the FUs and RF of the VLIW processor.
The access to the memory of the matrix is also performed through the VLIW
processor FUs.
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Fig. 1. ADRES system Fig. 2. Example of a Reconfigurable Cell

In fact, the ADRES is a template of architectures instead of a fixed archi-
tecture. An XML-based architecture description language is used to define the
communication topology, supported operation set, resource allocation and tim-
ing of the target architecture [6]. Even the actual organization of the RC is not
fixed, FUs and RFs can be put together in several ways, for example, two FUs
can share one RF. The architecture shown in fig. 3 and fig. 2 is just one possi-
ble instance of the template. The specified architecture will be translated to an
internal architecture representation to facilitate compilation techniques.

2.2 Improved Performance with the VLIW Processor

Many coarse-grained architectures consist of a reconfigurable matrix and a rela-
tively slow RISC processor, e.g., TinyRisc in MorphoSys [1] and ARC in Chameleon
[3]. These RISC processors execute the unaccelerated part of the application,



Program Fetch
Instruction Dispatch
Instruction Decode

Reconfigurable Matrix View

Fig. 3. ADRES core

which only represents a small portion of execution time. However, such a system
architecture has some problems due to the huge performance gap between the
RISC and the reconfigurable matrix. According to Amdahl’s law [5], the perfor-
mance gain that can be obtained by improving some portion of an application can
be calculated as equation 1. Suppose the kernels, representing 90% of execution
time, are mapped to the reconfigurable matrix to obtain 30 times of acceleration
over the RISC processor, the overall speedup is merely 7.69. Obviously a high
kernel speedup is not translated to a high overall speedup. The reason is that the
unaccelerated part, which is often irregular and control-intensive, becomes a bot-
tleneck. Speeding up this part is essential for the overall performance. Although
it is hard to exploit higher parallelism for the unaccelerated part on the recon-
figurable matrix, it is still possible to discover instruction-level parallelism (ILP)
using a VLIW processor, where 2-4 times speedup over the RISC is reasonable.
If we recalculate the speedup with the assumption of 3 times acceleration for
the unaccelerated code, the overall acceleration is now 15.8, much better than
the previous scenario. This simple calculation proves the importance of a bal-
anced system. The VLIW processor can help to improve the overall speedup
dramatically in certain circumstances.

1
(1 — Fractionenhanced) +

Speedupoverall =

Fractionenhanced (1)
Speedupenhanced

2.3 Simplified Programming Model and Reduced Communication
Cost

A simplified programming model and reduced communication cost are two im-
portant advantages of the ADRES architecture. These are achieved by making
the VLIW processor and the reconfigurable matrix share access to the memory.



In traditional reconfigurable architectures, the processor and the reconfig-
urable matrix are essentially separated. The communication is often through
explicit data copying. The normal execution steps are: (1) copy the data from
the VLIW memory to that of the reconfigurable matrix; (2) the reconfigurable
matrix part computes the kernel; (3) the results are copied back from the mem-
ory of the reconfigurable matrix to that of the VLIW processor. Though some
techniques are adopted to reduce the data copying, e.g., wider data bus and
DMA controller, the overhead is still considerable in terms of performance and
energy. From the programming point of view, the separated processor and re-
configurable matrix require significant code rewriting. Starting from a software
implementation to map kernels to the matrix, we have to identify the data struc-
tures used for communication and replace them with communication primitives.
Data analysis should be done to make sure as few as possible data are actually
copied. In addition, the kernels and the rest of the code have to be cleanly sepa-
rated in such a way that no shared access to any data structure remains. These
transformations are often complex and error-prone.

In the ADRES architecture, the data communication is performed through
the shared RF and memory space. This feature is very helpful to map high-level
language code such as C to the ADRES architecture without major changes.
When a high-level language is compiled to a processor, the local variables are
normally allocated in the RF, whereas the static variables and arrays are allo-
cated in the memory space. When the control of the program is transfered be-
tween the VLIW processor and the reconfigurable matrix, those variables used
for communication can stay in the RF or the memory as they were. The copying
is unnecessary because both the VLIW processor and the reconfigurable matrix
share access to the RF and memory hierarchy. From programming point of view,
this shared-memory architecture is more compiler-friendly than the message-
passing one. Moreover, the RF and memory are alternately shared instead of
being simultaneously shared. This eliminates data synchronizing and integrity
problems. Code doesn’t require any rewriting and can be handled by compiler
automatically.

2.4 Substantial Resource Sharing

Since the basic components such as the FUs and RF's of the reconfigurable matrix
and those of the VLIW processor are basically the same, one natural thinking is
that resources might be shared to have substantial cost-saving. In other coarse-
grained reconfigurable architectures, the resources cannot be effectively shared
because the processor and the reconfigurable matrix are two separated parts.
For example, the FU in the TinyRisc of MorphoSys cannot work cooperatively
with the reconfigurable cells in the matrix.

In the ADRES architecture, since the VLIW processor and the reconfigurable
matrix are indeed two virtual functional views of the same physical entity, many
resources are shared among these two parts. Due to its processor/co-processor
model, only one of the VLIW processor and the reconfigurable matrix is active at



any time. This fact makes the resource sharing possible. Especially, most compo-
nents of the VLIW processor are reused in the reconfigurable matrix as shown in
fig. 3. Although the amount of VLIW resources is only a fraction of those of the
reconfigurable matrix, they are generally more powerful. For example, the FUs
of the VLIW processor can execute more operations. The register file has much
more ports than the counterparts in the reconfigurable matrix. In other words,
the resources of the VLIW processor are substantial in terms of functionality.
Reusing these resources can help to improve the performance and increase the
schedulablity of kernels.

3 Adaptations of Compilation Techniques

Given the ever-increasing pressure of time-to-market and complexity of appli-
cations, the success of any new programmable architecture is more and more
dependent on good design tools. For example, VLIW processors have gained
huge popularity among DSP /multimedia applications although they are neither
the most power- or performance-efficient ones. One important reason is that they
have mature compiler support. An application written in a high-level program-
ming language can be automatically mapped to a VLIW with reasonable quality.
Compared with other coarse-grained reconfigurable architectures, the ADRES
architecture is more compiler-friendly due to the simplified programming model
discussed in section 2.3. However, some new compilation techniques need to be
adopted to fully exploit the potential of the architecture.

3.1 Compilation Flow Overview

Previously, we have developed a compiler framework for a family of coarse-
grained reconfigurable architectures [6]. A novel modulo scheduling algorithm
and an abstract architecture representation were also proposed to exploit loop-
level parallelism [7]. They have been adapted to the ADRES architecture. The
overall compilation flow is shown in fig. 4. We use the IMPACT compiler frame-
work [8] as a frontend to parse C source code, do some optimization and analysis,
and emit the intermediate representation (IR), which is called lcode. Taking lcode
as input, the compiler first tries to identify the pipelineable loops, which can be
accelerated by the reconfigurable matrix. Then, the compilation process is di-
vided into two paths that are for the VLIW processor and the reconfigurable
matrix respectively. The identified loops are scheduled on the reconfigurable
matrix using the modulo scheduling algorithm we developed [7]. The scheduler
takes advantage of the shared resources, e.g., the multi-port VLIW register file,
to maximize performance. The remaining code is mapped to the VLIW proces-
sor using regular VLIW compilation techniques, including ILP scheduling and
register allocation. Afterwards, the two parts of scheduled code are put together,
ready for being executed by the ADRES architecture.
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Fig. 4. Compilation Flow for the ADRES architecture

3.2 Interface Generation

The compilation techniques for the VLIW architecture are already mature and
the main compilation techniques for the coarse-grained architecture were devel-
oped in our previous work. Adapted to the ADRES architecture, the most im-
portant problem is how to make the VLIW processor and the reconfigurable ma-
trix work cooperatively and communicate with each other. Thanks to ADRES’s
compiler-friendly features, interface generation is indeed quite simple(fig. 5).
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Fig. 5. Interfacing between the VLIW processor and the Reconfigurable matrix

Each loop mapped to the reconfigurable matrix has to communicate with
the rest of application, e.g., taking input data and some parameters, and writing
back results. As mentioned in section 2.3, the communication of the ADRES
architecture is performed through shared register file and shared memory. Using
dataflow analysis, the live-in and live-out variables are identified, which repre-
sents the input data and output data communicated through the shared register
file. These variables will be allocated in the VLIW register file. Since these vari-
ables will occupy some register space throughout the lifetime of the loops, they



are subtracted from the capacity of the VLIW register file. Therefore the sched-
uler won’t overuse the VLIW register file for other tasks. As to the variables
mapped to the memory, we don’t need to do anything. The mapped loop can
access the correct address through the load/store operations available on some
FUs of the VLIW processor.

4 Experimental Results

For the purpose of experiment, an architecture resembling the topology of Mor-
phoSys [1] is instantiated from the ADRES template. In this configuration, a
total of 64 FUs are divided into four tiles, each of which consists of 4x4 FUs.
Each FU is not only connected to the 4 nearest neighbor FUs, but also to all FUs
within the same row or column in this tile. In addition, there are row buses and
column buses across the matrix. The first row of FUs is also used by the VLIW
processor, and are connected to a multi-port register file. Only the FUs in the
first row are capable of executing memory operations, i.e., load/store operations.

The testbench consists of 4 programs, which are all derived from C refer-
ence code of TI’s DSP benchmarks [9]. The idct is a 8x8 inverse discrete cosine
transformation. The fft refers to a radix-4 fast Fourier transformation. The corr
computes 3x3 correlation. The latanal is a lattice analysis function. They are
typical multimedia and digital signal processing applications with abundant in-
herent parallelism.

kernel |no. of|live-in|live-out |II|{IPC| sched.

ops | vars | vars density

idct 86 18 2 3(28.7| 44.8%

fft 70 19 0 31(23.3| 36.5%

corr | 56 25 0 2| 28 |43.8%

latanal| 12 7 1 1| 12 | 18.8%
Table 1. Schedule results

The schedule results are shown in table 1. The second column refers to the
total number of operations within the pipelined loop body. The II is initiation
interval, meaning the loop starts a new iteration every II cycles [10]. The live-
in variables and live-out variables are allocated in the VLIW register file. For
all loops, the amount of the live-in variables is quite considerable, e.g., used
as coefficients for the idct. The live-out variables are very rare because a loop
doesn’t usually keep writing the same variable. The instructions-per-cycle (IPC)
reflects how many operations are executed in one cycle on average. Scheduling
density is equal to IPC/No.of FUs. It reflects the actual utilization of all FUs
for computation. The results show the IPC is pretty high, ranging from 12 to
28.7. It is well above any typical VLIW processor. The FU utilization is around
40% except latanal, which already achieves the minimal II.



We are still not able to show the overall speedup for the entire application
because our architecture simulator is not ready yet. However, the results reflect
the integration impact of the VLIW processor and the reconfigurable matrix. For
example, the live-in and live-out variables are allocated on the VLIW register
file, and the FUs and RF of the VLIW processor are used by the scheduler to
more efficiently map kernels to the reconfigurable matrix.

5 Related Work

Many coarse-grained reconfigurable architectures have been proposed in recent
years. MorphoSys [1] and REMARC [4] are typical ones consisting of a RISC
processor and a fabric of reconfigurable units. For MorphoSys the communica-
tion is performed through a DMA controller and a so-called frame buffer. In
REMARC, the coupling is tighter. The matrix is used as a co-processor next
to the MIPS processor. Neither of these architectures has compiler support for
the matrix part. Chameleon [3] is a commercial architecture that comprises an
ARC processor and a reconfigurable processing fabric as well. The communica-
tion is through a 128-bit bus and a DMA controller. The data has to be copied
between the two memory spaces. Compiler support is limited to the processor
side. Recent work [11] integrates an open source processor and a commercial
reconfigurable IP core. The communication is also through a shared bus.

Another category of reconfigurable architectures presents much tighter in-
tegration. Examples are ConCise [12], PRISC [13] and Chimaera [14]. In these
architectures, the reconfigurable units are deeply embedded into the pipeline of
the processor. Customized instructions are built with these reconfigurable units.
The programming model is simplified compared with the previous category be-
cause resources such as memory ports and register file are exposed to both the
processor and the reconfigurable units. This leads to good compiler support.
However, these architectures do not have much potential for performance, con-
strained by limited exploitable parallelism.

6 Conclusions and Future Work

Coarse-grained reconfigurable architectures have been gaining importance re-
cently. Many new architectures are proposed, which normally comprise a pro-
cessor and a reconfigurable matrix. In this paper, we address the integration
problem between the processor and the reconfigurable matrix, which has not
received enough attention in the past. A new architecture called ADRES is pro-
posed, where a VLIW processor and a reconfigurable matrix are tightly coupled
in a single architecture and many resources are shared. This level of integration
brings a lot of benefits, including increased performance, simplified programming
model, reduced communication cost and substantial resource sharing.

Our compiler framework was adapted to the new architecture without much
difficulty. It proves that the ADRES architecture is very compiler-friendly. The



VLIW compilation techniques and the compilation techniques for the recon-
figurable matrix can be applied to the two parts of the ADRES architecture
respectively. The partitioning and interfacing of the accelerated loops and the
rest of code can be handled by the compiler without requiring code rewriting.
However, we have not implemented the ADRES architecture at the circuit
level yet. Therefore, many detailed design problems have not been taken into
account. And we do not have concrete figures for the area, power, etc to show the
strength of the ADRES architecture in details. Hence, to implement the ADRES
design is in the scope of our future work. On the other hand, we believe the
compiler is even more important than the architecture. We will keep developing
the compiler to refine the ADRES architecture from the compiler point of view.
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