
XPP Technologies

Programming XPP-III Processors

White Paper

For further information and questions, please contact support@pactxpp.com.

Version 2.0.1 July 13, 2006



Programming XPP-III Processors

1 Introduction

This White Paper describes the programming methods and tools for XPP-III proces-
sors. First, the profiling and partitioning of a given application is discussed. Next,
different methods of programming a XPP-III core are presented, separately for the
sequential Function-PAEs (FNC-PAEs) and the XPP dataflow array (ALU-PAEs and
RAM-PAEs). Finally, PACT’s PSDS tools are described. For basic information on
XPP-III processors, please refer to the White Paper XPP-III Processor Overview.

2 XPP-III Software Development Flow

Figure 1 gives an overview of the application development process: First, a standard
C/C++ implementation of an application is profiled on a FNC-PAE. Next, the appli-
cation is partitioned into multiple parallel threads in order to exploit the XPP-III pro-
cessor’s task-level parallelism (cf. section 2.1). The threads run either on the dataflow
array or on FNC-PAEs. Then, if required, the profiling and partitioning process is re-
peated until the XPP resources are exploited optimally. Optionally, the application can
be further optimized by using NML code (for programming the dataflow array, cf. sec-
tion 3.3) and FNC assembler code (for the FNC-PAEs, cf. section 4.3). All C, NML
and FNC assembler codes are processed with PACT’s PSDS tools, cf. section 5.

Standard C(++) application code

XPP API (interface) calls
FNC−PAE C code with C code for XPP

dataflow array

ALU−/RAM−
PAEs

FNC−PAE
C code

Dataflow
C code

ALU−/RAM−
PAEs

Partitioning into threads
Optimization

Profiling

dataflow

dominated

control

dominated

repeat (optional)

FNC−PAEs

optional:

FNC−PAE
assembler

Dataflow
NML code

FNC−PAEs

Optimization NML/FNC assembler
Re−Profiling

Figure 1: XPP-III Software Development Overview

1



Programming XPP-III Processors

2.1 Application Profiling and Partitioning

Any application can be directly compiled to a FNC-PAE and run on it. However, in
order to achieve the full XPP-III performance, partitioning of the application code into
multiple threads running on several FNC-PAEs and on the dataflow array (ALU- and
RAM-PAEs) is required.

For a good partitioning, the sequential code is first profiled by the XPP Profiler. Based
on the profiling results, the most time-consuming function calls and inner program
loops are identified. These code sections are likely candidates for acceleration on the
XPP dataflow array, especially if they are regular, i. e. if the same computations are
performed on many data items. They are called dataflow sections in this White Paper
since the computations can be performed by data streaming through dataflow graphs.
In the C/C++ code, these sections are typically represented as loops with high iteration
counts, but with few conditional branches, function calls or pointer accesses. These
program parts exhibit a high degree of loop-level parallelism. However, note that the
ALU- and RAM-PAEs are not restricted to processing pure dataflow graphs. They can
handle nested loops and nested conditions as well.

The dataflow sections are extracted into own threads mapped to the XPP dataflow array.
Several threads can be combined in one configuration, depending on the array size of
the XPP-III processor.

For the dataflow threads, several options for generating XPP dataflow configurations
exist (cf. section 3): (a) the XPP-VC compiler is used to directly convert the C code to
a XPP dataflow configuration, (b) an optimized configuration is selected from a Mod-
ule Library, or (c) an optimized configuration is programmed in PACT’s proprietary,
assembler-level Native Mapping Language (NML).

If time-consuming irregular code exists in the application, a coarse-grain paralleliza-
tion into several FNC-PAE threads is very useful. This allows to even run irregular,
control-dominated code in parallel on serveral FNC-PAEs.

Application Example: In an MPEG decoder, the following computationally inten-
sive dataflow sections can be identified for the dataflow array: inverse quantization
and DCT, motion compensation and picture reconstruction, deblocking filter and color
space conversion. On the other hand, entropy decoding is an irregular, sequential algo-
rithm suitable for FNC-PAEs.

The threads (whether allocated to the dataflow array or to FNC-PAEs) all access shared
system memory. They synchronize and communicate via XPP API calls (XPP I/O func-
tions) which are mapped to the XPP communication network. The hardware implemen-
tation of a ready/acknowledge protocol in this network enables very fast and efficient
thread communication. Nevertheless, unnecessary synchronization points should be
avoided to enable as much concurrent processing as possible. Special API calls are
used for configuring, starting and clearing the dataflow array. In order to minimize
the reconfiguration overhead, the XPP dataflow array should be reconfigured as in-
frequently as possible. A sufficiently large processing phase must execute between
reconfigurations. In some cases the application needs to be optimized to achieve this

2



Programming XPP-III Processors

goal. For more details on reconfiguration trade-offs, please refer to the White Paper
Reconfiguration on XPP-III Processors.

Application Example: In an MPEG decoder, the XPP dataflow array must be recon-
figured between several configurations, e. g. IQ/IDCT, motion compensation/picture
reconstruction, and deblocking/color conversion. In order to reduce the reconfigura-
tion overhead, each configuration should process many macro-blocks before the next
configuration is loaded.

3 XPP Dataflow Array Programming

This section describes the options for generating XPP dataflow array (i. e. ALU-/RAM-
PAE) configurations for the dataflow threads.

3.1 C Programming with XPP-VC

PACT’s XPP Vectorizing C Compiler (XPP-VC) provides the fastest way to generate
XPP configurations. It directly translates standard C functions to XPP configurations.
The original application code can be reused but may require some adaptations since
XPP-VC cannot handle C++ constructs, pointers, and floating-point operations. Fur-
thermore, specific XPP I/O functions (corresponding to the XPP API calls on the FNC-
PAEs) must be used for synchronization and for data transfers.

The XPP-VC compiler uses vectorization techniques to execute suitable program loops
in a pipelined fashion, i. e. data streams taken from memory or from I/O ports flow
through operator networks. In this way many ALUs are continuously and concurrently
active, exploiting the XPP dataflow array’s high performance potential. Profiling the
generated XPP configurations (through simulation or execution on XPP hardware) de-
termines how to reduce bottlenecks such as memory accesses and how to optimize the
code. In some cases, the C code has to be split into two or more configurations if the
dataflow array size of the given XPP-III processor is insufficient.

Application Example: In the MPEG decoder, the picture reconstuction or color space
conversion are examples for algorihms well suited for processing with XPP-VC.

Code Example: The C code in Figure 2(a) is a small for loop with a conditional
assignment and a XPP I/O function for a port output. The XPP functions are defined in
file XPP.hwhich must therefore be included. Figure 2(b) shows the dataflow graph for
this program generated by XPP-VC. While the counter COUNT controls the loop exe-
cution, the comparator LT and the multiplexer SWAP select the result being forwarded
to the output port DOUT0. The dotted arrow from LT to SWAP is an event (i. e. one-bit
control) connection. All other connections are data connections.

3



Programming XPP-III Processors

#include "XPP.h"

#define N 10

main() {
int i, res;

for (i = 0; i<N; i++) {
if (i < 5)

res = i;
else

res = 2 * i - 3;
XPP_putstream(1, 0, res);

}
}

(a)

A=!1 B=!9 STEP=1
COUNT

X

A B=!5
LT
U

A=!2 B
MUL

X

A B STEP
SWAP

X

A B=!3
SUB

X

IN
DOUT0

(b)

Figure 2: XPP-VC Loop Example

3.2 NML Library Modules

For commonly used high performance function, optimized implementations from a
NML Module Library (provided by PACT or third parties) can be used. They are op-
timal in terms of performance, area efficiency and power dissipation. There are two
module types: complete configurations which only need to be configured and con-
trolled by the FNC-PAE program, and modules which can be included in larger con-
figurations. The latter can be included in a XPP-VC program. Hence it is possible
to mix optimized NML modules for the most critical application kernels and C code.
XPP-VC will create a NML configuration which contains one or more instantiations of
the optimized modules along with automatically generated NML code.

Application Example: In the MPEG decoder, an optimized NML Library module
can be used for the computation-intensive inverse DCT. It can be combined in one
configuration with the C implementation of the inverse quantization algorithm.

3.3 NML Programming

If a highly optimized implementation for a dataflow section is required, but no suitable
NML Library module available, the code can be directly implemented in NML. The
effort is comparable to assembler programming but much simpler than HDL (e. g.
Verilog or VHDL) design. In contrast to HDL design, only the functionality of the
dataflow section needs to be described in NML, but no timing issues arise.

4



Programming XPP-III Processors

In NML, arithmetic expressions are described like C expressions and automatically
converted to operator trees. Counters, memories, dataflow operators (stream multi-
plexers, demultiplexers, mergers, etc.), accumulators, and event operators (for program
control) are explicitly allocated and connected to other operators or expressions. They
are used to implement conditional computations (branches) and iterative computations
(loops). Instead of using arithmetic expressions, all operators can also be explicitly
allocated. This allows to place them manually on the XPP dataflow array. Hierarchical
modules allow component reuse, especially for repetitive layouts.

XPP(XPP-III, 10,8, 8,6;
DATA_BIT_WIDTH = 24 CONFIG_BIT_WIDTH = 24
FREG_DATA_PORTS = 4 BREG_DATA_PORTS = 4
FREG_EVENT_PORTS = 4 BREG_EVENT_PORTS = 4
IRAM_ADR_WIDTH = 9)

MODULE forexample {
OBJ ctr: COUNT { // loop counter

A =! 1
B =! 9
STEP = 1

}
OBJ cond: LT { // loop condition

A = ctr.X
B =! 5

}
// arithmetic expression for else branch:
SIG DATA elsebranch // signal definition
elsebranch = EXPR(2 * ctr.X - 3)

OBJ mux: SWAP { // result multiplexer
A = elsebranch
B = ctr.X
STEP = cond.U

}
OBJ outport: DOUT0 { // output port

IN = mux.X
}
// pipeline delay balancing command:
DELAY_BALANCE(ctr -> outport)

}

Figure 3: NML Loop Example

Code Example: The NML code in Figure 3 is a direct NML implementation of the
dataflow graph in Figure 2(b). Here, the else branch of the condition is described as
an arithmetic expression, and all other operators are explicitly allocated. Note that
the XPP statement at the top of the file defines the XPP core parameters, and the
DELAY BALANCE command is used for pipeline balancing to optimize the through-
put of the loop body.

As with XPP-VC, it is possible to instantiate NML Library modules in a manually de-
signed NML configuration to achieve maximum performance with reduced program-
ming effort.

5



Programming XPP-III Processors

4 FNC-PAE Programming

This section describes the options for programming FNC-PAEs.

4.1 C Programming with FNC-CC

PACT’s FNC-PAE C Compiler (FNC-CC) compiles ANSI C programs to FNC-PAE
assembler. All C language features are supported, including floating-point operations
which are emulated by the integer ALUs. XPP API functions are used to configure the
XPP dataflow array, to communicate with the dataflow array, or to communicate and
synchronize with other FNC-PAE threads.

FNC-CC is similar to a conventional RISC compiler, but uses some features of VLIW
compilers (e. g. merging basic blocks to superblocks) to take advantage of the code’s in-
trinsic instruction-level parallelism. It maps the graph representation of the superblocks
to the FNC-PAE’s 8-ALU matrix (via graph matching), thereby utilizing as many ALUs
as possible per opcode.1

Profiling the FNC-PAE threads determines how to reduce bottlenecks such as memory
accesses and how to optimze the code.

4.2 FNC Library Modules

If very high performance for a specific FNC-PAE function is required, optimized as-
sembler functions from a FNC Module Library (provided by PACT or third parties) can
be used. The optimized assembler functions are simply called by the C program.

Application Example: In the MPEG decoder, an optimized FNC Library function for
the computation-intensive entropy codecs can be used. As an additional advantage, the
assembler function benefits from special I/O instructions provided by the FNC-PAE.

4.3 FNC Assembler Programming

If a highly optimized FNC-PAE implementation is required, but no suitable FNC Li-
brary module available, the code can be directly implemented in FNC assembler. It
supports all FNC-PAE hardware features.

The assembler uses three-address code for most instructions, as in this example:
SUB target, source1, source2

Multiple ALU instructions are merged into one FNC opcode as follows: The instruc-
tions for the left and right ALU columns are separated by a horizontal bar (|), and the

1Advanced features like software pipelining and predicated instruction execution will be supported in
future releases.

6



Programming XPP-III Processors

ALU rows (at most four) are just described one by one. A FNC opcode is terminated
by the keyword NEXT.

Code Example: The FNC assembler code in Figure 4 sequentially multiplies two 8-bit
numbers (in registers r0 and r1, with the 16-bit result in r2. Note that this example
was only chosen for demonstration purposes. In a real application, the built-in single-
cycle MUL instruction would be used instead. The first opcode initializes the registers,
including the loop counter r7. The second opcode (after the label loop) contains
all loop computations, including counter decrement, test and jump. The predicates
before the instructions have the following meanings: CY indicates that ADD is only
executed if the shift SHRU above it had a carry-out value one, and ACT means that SUB
is executed (activated) in any case. ZE NOP ! HPC loop instructs the FNC-PAE
to perform a single-cycle jump to label loop (high-performance continue = HPC)
if the SUB instruction above it did not set the zero flag (ZE). This means that every
loop iteration requires only one cycle. If r7 is zero, i. e. the ZE flag set, the program
execution continues after the loop.

; initialize parameters for test
MOV r0, #10 ; operand 0
MOV r1, #6 ; operand 1
MOV r2, #0 ; clear result register
MOV r7, #8 ; loop counter init
NEXT

loop:

SHRU r0, r0, #1 | SHL r1, r1, #1
CY ADD r2, r2, r1
ACT SUB r7, r7, #1
ZE NOP ! HPC loop

NEXT

...

Figure 4: FNC Assembler Loop Example

5 PACT Software Design System (PSDS)

This section describes the design flow and the tools contained in the PACT Software
Design System (PSDS).

5.1 Design Entry

Figure 5 shows the PSDS design entry tools. As explained above, XPP-VC compiles
C to NML code, and FNC-CC compiles C to FNC assembler. All NML files (whether

7



Programming XPP-III Processors

XMAP

NML code

FNC−CC

C code (ALU−/RAM−PAEs)
with optional NML module
calls (dataflow dominated)

XPP−VC

XFNCASM

FNC assembler

C code (FNC−PAEs)
with optional assembler

and XPP API calls

XPP API calls

FNC assembler
functions and

(C/XPP) libraries

Optimized NML code
and NML Module

Library

FNC binaries XBIN binaries

Figure 5: PSDS Design Entry Tools

generated by XPP-VC, manually designed, or from the NML Module Library) are pro-
cessed by the XPP mapper XMAP. It compiles NML source files, automatically places
and routes the configurations, and generates XBIN binary files. All FNC assembler
files are processed by the FNC-PAE assembler XFNCASM.

Code Example: Figure 6 shows the placement and routing of the NML code in Fig-
ure 3, as determined and displayed by XMAP.

Figure 6: XMAP Screenshot for Loop Example

8



Programming XPP-III Processors

5.2 Execution/Simulation and Debugging on XPP-III Processors

XBIN binariesFNC binaries

Library
XPP API

XPP Debugger
XDBG

JTAG

XPP Linker

XPP application binary

Simulation XSIM
XPP−III SystemC

XPP−III Processor(a) (b)

Figure 7: Execution/Simulation and Debugging on XPP-III Processor

Figure 7 shows the remaining part of the PSDS tool chain. The FNC and XBIN binaries
and the XPP API Library are linked to an XPP application binary. This binary is (a)
either loaded to the XPP-III processor and executed on it, or (b) simulated on the XPP-
III simulator XSIM, cf. Figure 7. XSIM is implemented as a SystemC library which
can be integrated in any C/C++ or SystemC simulation environment or used in a stand-
alone simulator.

In both cases, the application can be debugged by the XPP debugger XDBG. This tool
visualizes the data being processed on the XPP-III processor cycle by cycle. It also
ollects the input data for the XPP Profiler (not shown in the figure).

6 Summary

This White Paper first discussed the steps involved in porting a C or C++ application
to a XPP-III processor: profiling, partitioning into parallel threads and optimization.

Next, the PACT Software Design System PSDS was presented. The tool chain covers
the entire design flow: design entry (C, NML or FNC assembler), compilation, code
generation and linking. Additionally, a complete SystemC-based, cycle-accurate pro-
cessor simulator and a sophisticated debugger with advanced visualization features are
provided.

9


