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1 Introduction

The limitations of conventional processors are becoming more and more evident. The
growing importance of stream-based applications makes reconfigurable architectures
an attractive alternative. They combine the performance of ASICs with the flexibility
of programmable processors. On the other hand, irregular control-flow dominated al-
gorithms require high-performance sequential processor kernels for embedded applica-
tions. The XPP-111 architecture combines novel sequential processor kernels optimized
for these algorithms with a coarse-grain reconfigurable dataflow array. It is designed
to support different types of parallelism: pipelining, instruction level, dataflow, and
task level parallelism. Hence XPP-I1l1 meets the performance requirements of today’s
heterogeneous embedded applications. It is well suited for applications in multimedia,
telecommunications, simulation, digital signal processing, cryptography and similar
application domains.

This White Paper first gives an overview of the runtime-reconfigurable XPP-I1I Pro-
cessors. It focuses on the XPP-I11 Core architecture, cf. section 2. It consists of se-
quential processor kernels called Function-PAEs (PAE = Processing Array Elements),
cf. section 2.2, and a reconfigurable XPP dataflow array (ALU- and RAM-PAEs, cf.
sections 2.3 and 2.4). The XPP-I1l Reference Design (cf. section 2.6) provides a full
processor implementation consisting of the XPP-I11 Core and peripheral devices. Next,
the XPP processing basics are presented in section 3.

More information on other aspects of the XPP architecture can be found in the ac-
companying White Papers Programming XPP-I11 Processors and Reconfiguration on
XPP-111 Processors.

2 Architecture

XPP (eXtreme Processing Platform) is a data processing architecture based on a hier-
archical array of coarse-grain, adaptive computing elements called Processing Array
Elements (PAES), cf. sections 2.1 — 2.4, and a packet-oriented communication network,
cf. section 2.5.

Control-flow dominated, irregular code (without loop-level or pipelining parallelism)
is mapped to one or several concurrently executing Function-PAEs (FNC-PAEs). They
are sequential 16-bit processor kernels which are optimized for sequential algorithms
requiring a large amount of conditions and branches like bit-stream decoding or en-
cryption. A FNC-PAE executes up to eight ALU operations and one special operation
(e. g. multiplication) in one cycle. Operations on up to four levels can be chained, i. e.
the output of one operation is immediately fed to the input of the next operation in the
chain. This can even be combined with predicated execution, i. e. conditional execution
based on the result of input operations. In this way, nested if-then-else statements can
be executed in one cycle. Furthermore, special mechanisms enable jumps (conditional
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or non-conditional) in one cycle. The FNC-PAE offers high perfomance at a moderate
clock frequency.

Regular streaming algorithms like filters or transforms are efficiently implemented on
the dataflow part of the XPP-I11 array (ALU- and RAM-PAEs, see below). Flow graphs
of arbitrary shape can be directly mapped to ALUs and routing connections, resulting
in a parallel, pipelined implementation. Distributed event signals within the dataflow
array add additional flexibility for less regular algorithms since events can be used to
control the data streams. However, the real strength of the XPP dataflow array origi-
nates from the combination of parallel array processing with unique, powerful run-time
reconfiguration mechanisms. PAEs can be configured while neighboring PAEs are pro-
cessing data. Entire algorithms can be configured and run independently on different
parts of the array. Reconfiguration is triggered by a controlling FNC-PAE or by special
event signals originating within the dataflow array. By utilizing protocols implemented
in hardware, data and event packets are used to process, generate, decompose and
merge streams of data.

2.1 XPP-I111 Core Structure
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Figure 1: Structure of a sample XPP-111 Core

A XPP Core contains a rectangular array of three types of PAEs: Those in the center
of the array are ALU-PAEs. To the left and right side of the ALU-PAEs are RAM-PAEs
with 1/O. Finally, at the right side of the array, there is a column of FNC-PAEs. An
ALU-PAE contains three ALUs. A RAM-PAE contains two ALUSs, a small RAM, and
an 1/0 object. A FNC-PAE contains a complete VLIW-like sequential processor kernel.
The details of these PAE types are described in the following sections. Figure 1 shows
a sample array with 30 ALU-PAEs, 12 RAM-PAEs and six FNC-PAEs.
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The horizontal routing busses for point-to-point connections between XPP objects
(ALUs, RAMSs, 1/O objects, etc.) are also integrated in the PAES. They can be seg-
mented by configurable switch objects. Seperate busses for n-bit data values and 1-bit
events are available. The XPP Core data bitwidth (for ALUs, RAMs, and data busses)
can be chosen from 16, 24 or 32 bit. Vertical routing connections are provided within
the ALU- and RAM-PAEs. Between the FNC-PAEs, there is an additional dedicated
vertical routing connection.

After resetting a XPP-111 Processor or at power-up, the first FNC-PAE (FNCO) boots
automatically from external memory. It then boots the other FNC-PAEs (if applicable).
When the dataflow array is used, a FNC-PAE instructs a DMA controller to config-
ure the ALU- and RAM-PAEs as well as the communication network from external
memory. The configuration words enter the dataflow array through its configuration
interface which is internally connected to a pipelined configuration bus. Each config-
uration word contains the address of the PAE and XPP object to be configured and the
configuration value (ALU operator, bus connection etc.).

The 1/0 objects allow to cascade XPP Cores and to access external streaming data
sources or destinations or external RAM. The XPP Core’s data and event synchroniza-
tion mechanism is extended to the 1/O ports by means of handshake signals.

2.2 FNC-PAE
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Figure 2: Structure of a FNC-PAE

Figure 2 shows the structure of a FNC-PAE. It comprises a 2x4 array of 16-bit ALUSs,
a Special Function Unit (SFU), a 16-bit register file, a 32-bit address generator (AG), a
local instruction cache, a tightly coupled memory (TCM) and 1/O ports which connect
it tightly to the other FNC-PAEs, to the dataflow array and to a general purpose 1/0
bus.
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The eight ALUs are designed to be small and fast because they are arranged in two
non-pipelined (i. e. purely combinational) columns of four ALUs each. Therefore, the
ALUs are restricted to a limited instruction set containing arithmetic, logic, comparison
and barrel shift operations including conditional execution and branching.

Every ALU selects its operands from the register files (data registers DREG and ex-
tended registers EREG, both with shadow registers), from the address generator regis-
ters (AGREG), the memory register MEM or the ALUs of all rows above itsefl. Fur-
thermore, the top-row ALUs have access to the 1/0 ports. All ALUs can store their
results simultaneously to the registers.

The ALU datapath is not pipelined since the FNC-PAE is optimized for irregular code
with many conditions and jumps. These code characteristics would continuously stall
the operator pipeline, resulting in a low IPC (instructions per cycle) count. Instead,
the FNC-PAE chains the ALUs and executes all instructions asynchronously in one
cycle, even if there are dependences. Together with unique features® which enhance the
condition execution and branching performance, this results in a very high IPC count.
Despite the lower clock frequency, irregular algorithms are executed very efficiently.

The FNC-PAE also supports efficient procedure call and return, stack operations and
branching. Up to three independent jump targets can be evaluated in a single cycle.
The Special Function Unit (SFU) operates in parallel to the ALU datapath. It supports
up to two 16x16-bit multiplications and functions such as bit-field extraction. The SFU
delivers its results directly to the register file. By combining the SFU multiplications
with the adders of the ALU array, it is possible to execute two pipelined multiply-
accumulate (MAC) operations each cycle.

For efficient code access, a local 256x256-bit 4-way set-associative L1 instruction
cache (I-cache) is provided. Cache lines can be locked for high priority code. The
data memory is composed of a tightly-coupled memory (TCM, 1Kx16-bit) and access
mechanisms to external RAM. The memory is addressed by the address generator or a
block move unit which transfers blocks of data between external memory and the TCM
in the background. Data read from memory is available for the ALUs in the MEM reg-
ister. Code and data accesses utilize a 64-bit data and 32-bit address bus to connect to
the external memory hierarchy.

2.3 ALU-PAE

Figure 3 shows the structure of an ALU-PAE. It contains three XPP objects (FREG,
ALU and BREG object) and the routing busses. All objects have input registers which
store the data or event packtets for one cycle, i. e. add a register delay. After the input
register, a one-stage FIFO stores an additional packet if required. This feature is espe-
cially useful for pipeline balancing. The input registers and FIFOs can be preloaded
during configuration. Additionally, the input registers can be set to “constant mode”.
In this mode, they continuously generate packets with the same constant value. In con-
trast to input registers, output registers (DF-Register in Figure 3) do not add a delay.

Ipatents pending.
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Figure 3: Structure of an ALU-PAE

They store the values only to guarantee that no packets are lost during pipeline stalls.
The switch objects directly connect an input register, a one-stage FIFO, and an output
register. Hence they also add a register delay and can store up to two additional packets
(in a pipeline stall).

The ALU object in the center of the PAE provides the following functionality:
o logical operators

e basic arithmetic operators (i. e. adders and subtracters)

¢ special arithmetic operators including comparators and multipliers

An event input port is used to control the ALU execution and provide a carry-in value.
An event output port is used to control subsequent computations and provide a carry-
out value. The special RECONF event input triggers a reconfiguration. The ALU inputs
can be connected to one or more busses above the ALU, and the outputs to one or more
busses below it. Hence the processing direction is top-down.

The Forward Register (FREG) object on the left side and the Backward Register (BREG)
object on the right side of the ALU-PAE are very similar. The main difference is the

processing direction: top-down for the FREG and bottom-up for the BREG object.

Both objects provide the following functionality:

e routing of data and events (top-down or bottom-up, respectively)
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o dataflow operators (for stream merging, multiplexing, demultiplexing etc.)
e basic arithmetic operators (i. e. adders and subtracters)

¢ lookup table for boolean operations on events and event stream processing (LUT)

For both objects, the number of vertical routing connections is set by XPP Core pa-
rameters. If an ALU is not used for dataflow or arithmetic operations, the ports can be
used as additional routing connections. The same holds for event ports not used by the
LUT.

The following additional operators are only available in either the BREG or FREG
object:

e BREG: barrel shifter, packing, unpacking and clipping operators
e FREG: counters and accumulators
The combination of the different ALU types in an ALU-PAE allows the efficient imple-

mentation of typical signal-processing functions (multiply-add or multiply-accumulate
combinations) or fixed-point operations (multiply-add-shift combinations).
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Figure 4: Structure of a RAM-PAE

Figure 4 shows a RAM-PAE. The FREG and BREG objects are identical to the ones
in the ALU-PAEs, but the ALU object is replaced by a RAM object, and there is an
additional 1/0 object. The RAM object contains a small bank of two-ported SRAM.
The RAM size can be selected by a XPP Core parameter. The RAM words have the
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same bitwidth as all other XPP objects and data busses. Two independent address ports
enable simultaneous read and write operations. The third data input port is used for the
write value, and the only data output port for the read value. The event ports control the
RAM access. All ports use a ready-acknowledge protocol like the other XPP objects.

The RAM operates either in internal RAM (IRAM) or FIFO mode. In the latter mode,
no explicit addressing is required. The FIFO uses internal read and write pointers and
generates output packets as long as it contains data. RAMs and FIFOs can be preloaded
during configuration. The content of RAMs is preserved during reconfiguration of the
array.

The 1/0 object is integrated into the RAM-PAE, providing access to external data and
event streaming sources or destinations or external RAMs (EXRAM mode).

2.5 Packet Handling and Synchronization

As explained above, XPP objects communicate through a packet-oriented network.
In normal operation mode, XPP objects are self-synchronizing. An operation is per-
formed as soon as all necessary data input packets are available. The results are for-
warded as soon as they are available, provided the previous results have been con-
sumed. Thus it is possible to map a dataflow graph directly to ALU objects, and to
pipeline input data streams through it. The communication system is designed to trans-
mit one packet per cycle. Hardware protocols ensure that no packets are lost, even in
the case of pipeline stalls or during the configuration process. This simplifies applica-
tion development considerably. No explicit scheduling of operations is required. The
“constant mode” of input ports disables the synchronization. This allows to repeatedly
reuse data values.

Event packets transmit state information. E. g., events generated by ALU objects de-
pend on ALU results or exceptions, very similar to the state flags of a classical micro-
processor. These events can be used to control the subsequent processing. E. g., they
can be used to control the merging of data-streams or to deliberately discard data pack-
ets. Thus conditional computations depending on the results of earlier ALU operations
are feasible. A counter, e. g., generates a special event only after it has terminated. It
could be connected to the RECONF port of an ALU object, thus triggering the removal
of the configuration from the device. Details are provided in the White Paper Recon-
figuration on XPP-I1l Processors. Furthermore, events can be combined by the event
LUTs and in the connections of the event busses.

2.6 XPP-I111 Reference Design

In addition to the XPP-111 Core, the XPP-111 Reference Design contains modules used
for the integration of XPP-I11 in SoCs (Systems on Chip). The library of peripherals
comprises the following components for the dataflow array: (a) a configuration con-
troller which loads configurations from external memory to the dataflow array, and (b)
a DMA controller combined with a four-dimensional address generator for the array
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1/0 ports. For the FNC-PAEs, the follwing components are provided: (a) an inter-
rupt controller for all FNC-PAEs, (b) arbiters for code and data accesses of FNC-PAEs
(which simplify the integration of XPP-I11 into the memory hierarchy), and (c) an op-
tional data cache which reduces the required memory bandwidth in many applications.

The Reference Design also contains an interrupt controller which arbitrates the external
interrupts and triggers the interrupt routines on the FNC-PAEs. Each FNC-PAE pro-
vides eight interrupt vectors; one of them is the reset vector. Interrupt sources are e.g.
the DMA controllers, soft interrupts and event signals originating from the dataflow
array.

3 XPP Processing Basics

Applications running on a XPP-I11 processor achieve a very high performance by ex-
ploiting parallelism on different levels. First of all, parallel tasks can be mapped to
several FNC-PAEs and to the dataflow array. The dataflow array additionally exploits
loop-level (pipelining) parallelism, and the FNC-PAEs exploit instruction-level paral-
lelism and efficient branching. The following give an introduction to XPP data pro-
cessing on FNC-PAEs and on the XPP dataflow array.

3.1 FNC-PAE Processing Basics

One of the essential features of Function-PAEs is their ability for conditional operations
within one clock cycle. The following simple example shows the general principle.

if (r0 >r2)
ro =r2;
if (r0 <rl)
ro =rl;
ro << 1;

The value in register r0 is first clipped to the lower and upper bounds defined in registers
rl and r2, respectively. Then, the result is shifted left by one bit. This computation
can be mapped to the left and right data paths (columnL, columnR) of a FNC-PAE as
shown in Figure 5. The figure shows that two comparisons followed by two conditional
operations are required.

Initially, we assume that r0 is within the limits. Therefore, the top-right ALU left-shifts
r0. Note that the value in r0 is only available in the next clock cycle. However, rO may
be overwritten by one of the subsequent conditional instructions: On the left path, r0 is
compared with the lower limit rl. If rO is smaller than r1 (LT), the left path is executed
and r0 loaded with rl left-shifted by one. Otherwise the left path is disabled while
the right one is enabled. Note that the OPI condition disables the right path if the left
path is active. In the left path we compare rO with r2. If rO is greater than r2 (GT),
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Figure 5: Example mapped to a FNC-PAE’s ALU array

r0 is loaded with r2 left-shifted by one. Otherwise the left path is disabled. If both
conditions are not true, i.e. r0 is within the limits, the result computed by the top-right
ALU is valid. Figure 6 illustrates the runtime evaluation for three different values of
ro.
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0=r2<<1
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| ;

Figure 6: Three possible runtime paths (shaded blocks are enabled)

This feature — in combination with different branch targets for the left and right ALU
paths — allows exit conditions for any kind of loops to be evaluated within a single
cycle. Using two instruction memories, two branch targets can be reached in a single
cycle. Ifathird branch target is used in the same opcode, an additional cycle is required.

3.2 Dataflow Array Processing Basics

The main idea is to combine data-stream processing in an arithmetic array with sophis-
ticated run-time reconfiguration mechanisms. Array configurations are parallel com-
putation modules derived from a dataflow graph of an algorithm. Nodes of the dataflow
graph are mapped to fundamental machine operations such as multiplication, addition
etc. The operations are implemented by configurable ALUs. After configuration, the
routing connections between the ALUs are fixed. They provide an automatically syn-
chronizing, packet-oriented communication network based on a ready-acknowledge
protocol.
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Figure 7: Complex multiplication dataflow graph and mapping to XPP Core

Figure 7 shows the definition of a complex multiplication, its dataflow graph, and the
corresponding XPP dataflow configuration. In this example, data packets for succes-
sive multiplications continuously stream through the dataflow array. The configuration
remains static during the entire computation, i. e. no ALU operator or connection is
changed. No reconfiguration or instruction decoding is required, and all operators and
input and output ports are active in each cycle, resulting in the optimal performance.
After all computations are finished, the ALUs and connections are released and can
be used for the next configurations performing the subsequent phases of a larger algo-
rithm. The reconfiguration time between configurations can be reduced to a minimum
by caching configuration data on-chip. If each configuration processes long enough
data streams, the reconfiguration overhead is amortized over many parallel operations.
For details, refer to the White Paper Reconfiguration on XPP-I11 Processors.
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Figure 8: From instruction flow to configuration flow
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Intermediate results of computations are stored in distributed memories or FIFOs for
use by subsequent configurations. We call this programming paradigm configuration
flow, as opposed to the instruction flow in a classical Von-Neumann architecture where
data is moved and processed by ALUs which change their function (instruction) in each
processing step. In the XPP dataflow array, no instruction sequencers and caches are
continuously active. Since several ALUs process data simultaneously, the XPP Core
runs at a relatively low clock speed. This results in a lower power consumption. The
difference between the two approaches is illustrated in Figure 8.

The XPP dataflow array is highly suited to computation-intensive applications since
many of them can be separated into smaller, inherently parallel phases which process a
large number of data in a relatively uniform way.

4 Conclusions

This White Paper presented the main components and the structure of an XPP-I11 Pro-
cessor. XPP-II1 is a fully programmable processing platform suitable for a wide range
of heterogeneous applications. It is a low-cost and low-power architecture for both
highly regular dataflow-oriented and irregular control-dominated tasks. Even the most
challenging high-performance applications like H.264 and CABAC decoding at 1080i
resolution with 40 Mbits/s data streams can be handled efficiently. The XPP-I1II pro-
vides a significant improvement in performance over standard processor and DSP im-
plementations, and much more flexibility than ASIC implementations.

Refer to the accompanying White Paper Reconfiguration on XPP-I1l Processors for
more information on XPP’s reconfiguration mechanisms, and to the White Paper Pro-
gramming XPP-111 Processors for details on PACT’s integrated tool chain for program-
ming, simulating and debugging XPP-I11 processors.
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