
Jeffrey M. Arnold
Stretch, Inc.

Mountain View, CA
jarnold@stretchinc.com

Abstract

A software configurable processor (SCP) is a
hybrid device that couples a conventional processor
datapath with programmable logic to allow
application programs to dynamically customize the
instruction set. SCP architectures can offer
significant performance gains by exploiting data
parallelism, operator specialization and deep
pipelines. The S5000 is a family of high performance
software configurable processors for embedded
applications. The S5000 consists of a conventional
32-bit RISC processor coupled with a programmable
Instruction Set Extension Fabric (ISEF). To develop
an application for the S5 the programmer identifies
critical sections to be accelerated, writes one or
more extension instructions as functions in a variant
of the C programming language, and accesses those
functions from the application program.
Performance gains of more than an order of
magnitude over the unaccelerated processor can be
achieved.

Index Terms— Reconfigurable Architectures,
Software Configurable Processor, Instruction Set
Extension, Embedded Computing

1. Introduction
Computer designers have long sought ways to

customize the architecture of a computer to suite the
needs of particular problem domains. Estrin first
described the concept of combining a fixed
instruction set architecture with application specific
computational elements in 1960 [1]. Unfortunately,
the library of substructures offered a limited set of
additional functionality, while the need to match
program behavior against library elements was
beyond the ability of contemporary compilers.
Changing the configuration often required the use of
a soldering iron.

The desire to tailor computer architecture to
specific application domains led to the development
of writeable control stores in the 60s and 70s [2].
These machines allowed the creation of large
instruction sets by microcoding control structures

and processor dataflow around a fixed set of datapath
elements.

More recently we have seen the development of
“configurable processors”[3]. Configurable
processing combines elements from both traditional
hardware and software development approaches by
incorporating customized and application-specific
compute resources into the processor’s architecture.
These compute resources become additional
functional engines or accelerators that are accessible
to the designer through custom instructions.
Configurable processors offer significant
performance gains by exploiting data parallelism
through wide paths to memory; operator
specialization such as bit width optimization,
constant folding and partial evaluation; and temporal
parallelism through the use of deep pipelines.

Since the advent of the FPGA, researchers have
proposed ways to use programmable logic not only
to add application specific functionality to a
processor, but to change that functionality
dynamically from application to application, and
even within a single application [4,5,6].

1.1. Related Work
In the PRISC architecture Razdan and Smith

propose adding a programmable function unit (PFU)
to the core of a RISC microprocessor[6]. The PFU
logically sits adjacent to the microprocessor’s ALU
and executes combinational functions of arguments
provided by the host’s register file.

Wittig and Chow extended the PRISC concept in
OneChip[7]. Like PRISC, the OneChip PFU
receives operands from the processor’s register file,
but unlike PRISC the PFU has flip flops and can
implement instructions with arbitrary latency.

The data bandwidth to the PFU in both PRISC
and OneChip was limited to the width of the
processor’s register file. Ye et. al. proposed
Chimaera in which a shadow register is used to cache
the contents of up to 9 of the MIPS processor’s 32-
bit registers[8]. The shadow register is presented as
the only operand to the PFU instruction, with the 32-
bit result written through the shadow register to the
register file. The set of registers to be shadowed is
fixed at compile time, making a PFU instruction non-
reentrant. A PFU instruction is a collection of MIPS

S5: The Architecture and Development Flow of a
Software Configurable Processor

ICFPT 20050-7803-9407-0/05/$20.00 2005 IEEE 121

instructions automatically extracted from the pre-
compiled application program.

Cong et. al. added instruction extension
capability to the Nios soft processor available for
Altera FPGAs[9]. Their approach is similar to
Chimaera in that communication between the Nios
core and the extension unit uses a shadow register to
transfer two 32-bit operands and one 32-bit result.

Becker and Thomas proposed the use of FIFOs
coupled with dedicated data movement instructions
to facilitate passing operands to extension
instructions[10]. Unfortunately, FIFO operands can
only be read once; any reuse requires storing the
operand values within the reconfigurable array.

Garp and NAPA address the bandwidth issue by
using a more loosely coupled coprocessor model in
which the reconfigurable units may initiate
autonomous access to the processor’s memory
hierarchy[11,12].

Borgatti et. al. propose a structure that combines
FPGA logic and a fixed instruction set processor to
support 3 different programming models:

• Instruction set extension;
• Bus mapped coprocessor;
• Flexible I/O processing.

In the instruction set extension model the operands
and results come from the fixed processor’s register
file, similar to PRISC and OneChip. The FPGA
fabric and the processor are synchronized by
stretching the processor’s clock to accommodate the
slower FPGA[13].

1.2. Overview
The S5000 is a family of high performance

software configurable processors for embedded
applications. The S5000 consists of a conventional
32-bit RISC processor coupled with a programmable
Instruction Set Extension Fabric (ISEF) able to
contain multiple application specific instructions.
Extension Instructions (EIs) follow load/store
semantics through a very high bandwidth path to
memory. Arguments to extension instructions are
provided from a 32 entry by 128-bit Wide Register
(WR) file. Each EI may read up to three 128-bit
operands and write up to two 128-bit results. A rich
set of dedicated load and store instructions are
provided to move data between the WR and the 128-
bit wide cache and memory subsystem. The ISEF
supports deep pipelining by allowing extension
instructions to be pipelined up to 27 cycles.

In addition to the load/store model, a group of
extension instructions may also define arbitrary state
variables to be held in registers within the ISEF.
State values may be read and modified by any EI in
the group, thereby reducing WR traffic.

To ease application development a single,
consistent programming model and development
environment is provided. Extension instructions are
captured using a dialect of C augmented with data
types and operators for arbitrary bit width data. The

compiler can target the developer’s workstation, the
instruction set simulator, and the S5000 platform. A
rich development and debugging environment
completes the tool suite.

In this paper we present the architecture and
application development flow of the S5000
embedded processor. Section 2 explores the
architecture of the system and the S5 Engine.
Section 3 describes the application development flow
and the compiler. Section 4 presents some
performance data, and Section 5 concludes the
discussion.

2. Architecture
2.1. Platform Architecture

The S5000 is a family of platform processors
designed to support a wide range of embedded
applications. Figure 1 shows a block diagram of one
member of the family, the S5610. The heart of the
S5000 is the S5 Engine, described in detail in Section
2.2. The S5 Engine consists of a Tensilica Xtensa
T1050 32-bit RISC processor running at a clock rate
of up to 300MHz coupled with an Instruction Set
Extension Fabric (ISEF) running at a clock rate of up
to 150MHz.

The Memory Management Unit (MMU) provides
address translation and memory protection
mechanisms between the S5 engine and the caches,
memory subsystems, and I/O. The Communication
Infrastructure is a hierarchical collection of busses
designed to deliver bandwidth as required to each of
the platform’s subsystems. At the interface to the
caches and the data RAM it is capable of sustaining a
transfer rate of 128 bits per cycle at the processor
clock rate of 300 MHz, or 4.8GB/sec.

The Instruction and Data Caches are each 32KB
in depth, with a line size of 16 bytes. The Data RAM
block is a 32 KB dual port SRAM, with on port

DDR SysAD PCI/
PCI-X

GMAC Misc
I/O

Communication infrastructure

DMA Inst
Cache

Data
Cache

Data
RAM

SRAM

MMU

S5 Engine

S5610

Figure 1. S5610 Block Diagram

122

dedicated to single cycle, non-cached access from the
processor. The SRAM block is 256KB.

The S5000 platform contains a rich assortment of
I/O interfaces, including:

• 1 DDR400 controller capable of addressing
up to 3GB of external SDRAM;

• 1 SysAD interface for communication with
an external processor;

• 1 PCI-X interface;
• Up to four gigabit Ethernet MACs;
• 2 TDM/HDLC ports;
• 2 UARTs;
• 1 port each of SPI, I2C, JTAG and a

programmable serial interface port;
• A DMA engine that supports up to 24

unidirectional channels.

2.2. S5 Engine Architecture
As shown in Figure 2 the S5 engine consists of

five major blocks: the instruction fetch and decode
unit, the load/store unit, the floating point unit, the
integer unit, and the extension unit. The core
processor is a Tensilica Xtensa T1050 configurable
RISC processor[14]. The fetch and decode unit is
responsible for fetching instructions from the ICache
and dispatching control to the appropriate functional
unit. The load/store unit moves data between the
memory subsystem and the register files associated
with the integer, floating point and extension units.
The integer unit is a conventional 32-bit RISC
datapath. The floating point unit implements IEEE
single precision floating point arithmetic. The
extension unit consists of the Wide Register (WR)
file and the programmable Instruction Set Extension
Fabric (ISEF).

Most of the S5 engine (e.g. the Xtensa processor,
the MMU and memory subsystems) runs at a
maximum clock frequency of 300MHz. The ISEF
has a maximum clock frequency of 150MHz. This
discrepancy is resolved through a programmable
clock divider: the ISEF clock is divided from the
processor clock by a ratio of 1, 2, 3, 4, 6, or 9. The
most typical ratio is 1:3 (300MHz Xtensa, 100MHz
ISEF).

The current generation S5000 is implemented in
0.13u CMOS technology. The ISEF is a full custom
layout, memory structures are generated, and the rest
of the S5 is implemented in standard cells.

2.2.1. Integer and Floating Point Units
The Integer Unit is a 32-bit RISC engine with a

five stage instruction pipeline, zero overhead loop
construct, and a 16x16 bit multiply and MAC
function. Both 16 and 24-bit instruction formats are
supported. The AR is a 64-entry 32-bit fully
bypassed register file.

The Floating Point unit supports IEEE 754
compatible single precision arithmetic. The FR is a
16 entry single precision register file.
2.2.2. Extension Unit

The WR is a fully bypassed 32 entry by 128 bit
register file with four read ports and 3 write ports.
Three of the read ports and two write ports are
available to the ISEF, while the remaining ports are
used by load and store operations.

The load/store unit implements both the standard
data movement instructions for the AR and FR
register files, as well as a set of dedicated operations
to support the WR. The WR load and store
instructions transfer 1, 2, 4, 8 or 16 bytes with either
immediate offsets or register offsets with optional
post-increment. In addition, there are instructions for
managing circular buffers, bit reversed loads and
stores for FFT like access patterns, loads and stores
of 1 to 16 bytes from arbitrarily aligned byte streams,
and WR move and rotate.
2.2.3. Instruction Set Extension Fabric

The Instruction Set Extension Fabric consists of a
plane of arithmetic/logic elements and a plane of
multiplier elements embedded and interlinked in a
programmable, hierarchical routing fabric. The
arithmetic/logic plane consists of an array of 4-bit
ALUs which may be cascaded through a fast carry
circuit to form up to 64-bit ALUs. Each 4-bit ALU
may also implement up to four 3-input logic
functions, and includes four register bits. These
registers may be used to implement EI state variables
or pipeline resources. A conditional ALU, or CALU,
mode is also supported in which the third input
selects between two independent ALU functions,
allowing expressions of the form:

Y = C ? (A op1 B) : (A op2 B)
to be implemented in a single ALU. CALU mode is
used for a variety of optimizations, including
implementing multiplexers and adder/subtractors.

The multiplier plane consists of an array of 4x8
bit multipliers which may be cascaded to form up to
32x32 bit multiplies. The multiplier block also
includes programmable registers which may be used
to pipeline the multiplication. If a block is not used
to perform multiplication the registers may be used
as general pipeline resources.

All of the instructions in any application
program, hardwired as well as extension, share a

Inst
Cache

Data
Cache

MMU

Load /
Store
Unit

FR

FPU

AR

ALU

WR

ISEF

S5 Engine

Inst
Unit

FP Unit Integer Unit Extension Unit

Figure 2. S5 Engine Block Diagram

123

common opcode space. Extension instructions are
aggregated into groups by the application developer.
A group of EIs is compiled and mapped together to
form a single ISEF configuration. Aggregating
related instructions in this way allows the compiler to
share ISEF resources among multiple, related
instructions. The EIs within a configuration are
further subdivided into “use/def” classes, where a
use/def class identifies the pipeline stages in which
WR and state registers are read and written. A
configuration table in the instruction fetch/decode
unit contains information about the EI group that is
resident in the ISEF. This table identifies the opcode
and use/def class of each EI, and is consulted
whenever an EI opcode is fetched from the
instruction stream. If a use/def conflict would occur,
(for example, if the fetched instruction needs to read
a WR before a previously issued instruction has
written it) the instruction issue is stalled until the
conflict is resolved.
2.2.4. Dynamic Reconfiguration

The ISEF supports dynamic reconfiguration,
either as a result of user or compiler provided
directives, or automatically on demand. If a fetched
opcode corresponds to an EI that is not resident in
the ISEF, an instruction fault is raised. The operating
system will then save the contents of any internal
state registers, find the EI group containing the
missing instruction and initiate an ISEF
reconfiguration before resuming the application
program. Reconfiguration time is a function of the
location of the configuration data and the
performance of the memory system, but typically
takes less than 100 microseconds.

2.2.5. Processor Pipeline
The pipeline structure of the S5 engine is shown

in Figure 3. The Xtensa processor uses a standard
five stage pipeline:

• I stage: fetch from instruction cache;
• R stage: decode instruction, read operands

from register file;
• E stage: execute instruction or compute

memory address;
• M stage: initiate memory transaction
• W stage: write back to register file, or field

exception.
An instruction is not committed until the end of the
M stage; that is, if an exception or interrupt occurs,
instructions in the pipeline that have not completed
the M stage will be aborted and restarted later.
Those past the M stage will be allowed to complete.

Extension instructions follow the same basic
pipeline: operands are fetched from the WR and/or
AR in the R stage. The operands are forwarded
through the E and M stages before being presented to
the ISEF in the W stage, after the instruction has
committed. The current implementation imposes a
limit of 27 processor clock cycles on the number of
pipeline stages within the ISEF (31 total from R
stage to write back). When issuing an ISEF
instruction, if the clock ratio is not 1:1 the instruction
unit may have to stall to synchronize the ISEF
pipeline with the processor clock.

The pipeline integrity is guaranteed through
hardware interlocks: if there is a potential register
conflict, the pipeline is stalled in the I stage.

Although EIs have variable pipeline depths, the
pipeline behavior of any given EI is precisely known
to the compiler, which can use this information to
effectively perform register allocation and schedule
standard and extension instructions together. Figure
4 shows a pipeline schedule of an unrolled inner loop
in steady state. The loop body performs one WR
load, one EI operation, and one store from the WR.
The EI takes 12 processor clocks, running at a clock
ratio of 1:3. The load is fetching for two iterations
ahead of the EI while the store is four iterations
behind The “U” and “D” indicate the register use
and def cycles of each instruction. Note that the S5
engine is able to issue a new instruction every cycle,

I Cache

Decode

Addr gen

D Cache

AR

ALU

Write back

DP RAM

WR

Stage 0

Fwd

Fwd

I

R

E

M

W

Stage 1

Stage 2

Stage n-1

Write back

Figure 3. S5 Pipeline

LD n+2 D

U
OP n
ST n-4

DU

LD n+3 D

U
OP n+1
ST n-3

DUOP n+1

LD n+4 D

U
OP n+2
ST n-2

DU

Time

Figure 4. Pipeline Schedule

124

with no stalls, despite the fact the ISEF is running at
one third the clock rate of the Xtensa.

3. Development Flow
3.1. Overview

Application development for the S5000 typically
starts with a new or existing application program
running on a sequential platform. This code is
profiled and analyzed to identify hot spots: those
small portions of the code, typically inner loops, that
account for most of the execution time. The
developer then captures these loops as extension
instructions in a dialect of C. The modified
application is then compiled and debugged on the
developer’s workstation using the native mode of the
compiler, an emulation package and a standard
debugger. Once functional correctness is attained,
the code may be compiled for the cycle accurate
instruction set simulator, profiled, and tuned for
performance. Finally, the application is compiled
and linked for the S5000 hardware platform.

The targets of the compiler are shown in Figure 5.
The native executable runs on an x86 workstation
(Windows or Linux). The ISS executable runs on the
cycle accurate instruction set simulator, itself running
on the developer’s workstation. The S5 executable
may be downloaded and run on an S5000
development board, or the customer’s own system.

3.2. EI Language and Compiler
The language used to capture extension

instructions is a variant of the C language augmented
with constructs for specifying arbitrary bit width data
types, operators for extracting and concatenating
fields of bits, and a syntax for specifying the
instruction header, including symbolic opcode
names. Extension instructions are written as
functions in this language, with either one or several
EIs in a single function. An example of the one
instruction syntax is shown in Figure 6. This
example shows an EI to convert a sequence of pixels
from RGB color space to YCbCr space. In RGB
space the pixels are 24 bits, 8 bits per color; in

YCbCr space the pixels are 16 bits, 8 bits of
luminance and 8 bits of chrominance.

The keyword SE_FUNC in line 1 identifies this as
an EI header. The function name, RGB2YCbCr, is
the symbolic name of the opcode; the numeric
opcode will be determined by the compiler. The EI
takes one operand, A of type WR, and produces one
result, B of type WR. The WR type is 128 bits in
length, and tells the compiler to values must be
passed through the Wide Register file. Local
variables are declared next (lines 2-4). The type
specifier “se_sint<8>” indicates a signed integer
object of length 8 bits.

Since the latency of an EI must be known to the
compiler, indefinite loops are not supported.
However, the compiler will fully unroll any loop
with a compile time constant tick count, such as the
loop in line 5. Lines 6 through 8 unpack 96 bits of
the operand into the RGB components of 4 pixels
using parenthesis notation to extract ranges of bits.
Since the loop will be unrolled, the unpacking has no
time or area overhead. The YCbCr values are then
computed using standard C notation in lines 9-11.
Lines 13 and 14 assemble the 4 resulting pixels using
parenthesis concatenation notation, and assign the
result to the B register.

The compiled instruction has 84 operators: 28
multiplies by constant (the multiply by 128 becomes
a left shift), 36 adds or subtracts, and 20 shifts by
constant. The pipeline depth is three ISEF cycles at
100MHz, for a total latency of 12 processor cycles at
a 1:3 clock ratio. The steady state throughput is 4
pixels every three processor cycles, or 1.2GB/sec in
and 800MB/sec out.

A state variable is one whose value persists
across invocations of one or more EIs. If state
variables are required, they are declared as static
objects outside the scope of the extension instruction
definition. Any EI in the group may read or write the
value of any state; the instruction unit guarantees
sequential consistency by interlocking references to
state variables. Using state variables to hold the
overlapping chrominance values, the example of
Figure 6 could be extended to process 5 pixels,
contain 105 operators, and processes 1.5GB/sec of
RGB data.

Application
(C / C++)

Ext Inst

S5000
C Compiler

(scc)

ISS
Executable

Native
Executable

S5
Executable

Workstation ISS
S5000

Platform

Figure 5. Compiler Targets

SE_FUNC void RGB2YCbCr (WR A, WR *B) {

int i;

se_sint<8> Rd[4], Gn[4], Bl[4];

se_sint<8> Y[4], Cb[4], Cr[4];

for (i = 0; i < 4; i++) {

Rd[i] = A(24*i+23, 24*i+16);

Gn[i] = A(24*i+15, 24*i+8);

Bl[i] = A(24*i+7, 24*i);

Y[i] = (77*Rd[i]+150*Gn[i]+29*Bl[i]) >> 8;

Cb[i] = (32768-43*Rd[i]-85*Gn[i]+128*Bl[i]) >> 9);

Cr[i] = (32768+128*Rd[i]-107*Gn[i]-21*Bl[i]) >> 9);

}

*B = (Y[3],Cr[3]+Cr[2],Y[2],Cb[3]+Cb[2],

Y[1],Cr[1]+Cr[0],Y[0],Cb[1]+Cb[0]);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 6. Example Extension Instruction

125

Figure 7 shows the inner loop that calls the color
conversion EI. Line 2 shows the declaration of two
local variables of type WR. These are used to pass the
data to and from the EI. The WRGET0 call at line 6
moves 12 bytes of unaligned data to the WR pointed
to by &A. Similarly, the WRPUT0 call at line 10
moves 8 bytes of data from the WR B. The base
addresses for the GET and PUT operations must be
initialized prior to the loop. The load/store unit
optimizes the data transfers by moving and buffering
aligned blocks of 16 bytes. The actual call to the EI
is shown on line 8.

Figure 8 shows the internal flow of the compiler
when targeting the S5000 hardware. SCG performs
the initial compilation of the extension instruction,
and produces three primary outputs:

• Instruction header and latency information,
including register use and def, for the
Xtensa compiler, xt-xcc;

• Use/def class information for the instruction
unit;

• Structural netlist of C operators to be
mapped to the ISEF.

SCG performs a number of optimizations on the
extension instruction, including:

• Constant propagation;
• Loop unrolling: loops with constant

iteration count are completely unrolled;
• Tree height leveling: long sequences of

operators are aggregated into balanced trees
where possible;

• Bit width optimization;
• Operator specialization: a number of

specialization techniques are applied,
including converting some multiply by
constant into shift and add;

• Resource sharing among operators of
different instructions.

The user may specify a target clock rate and ISEF
clock ratio. Once the extension instructions are
compiled, SCG estimates the timing behavior,
determines the pipeline depth and schedule. The
instruction latency and use/def information for the
WR and state registers are passed to the Xtensa
compiler and to the configuration generator.

If the application will run in a multi-processing
environment, or if reconfiguration on demand is

required, SCG will synthesize additional extension
instructions to save and restore EI state variables.
These instructions may then be called by the OS to
effect a context switch.

Since the logic resources of the ISEF are finite, it
is possible to write a group of extension instructions
that exceeds the capacity. To help the programmer,
SCG provides an estimate of the resources required
to implement the EI group, and will exit if the
capacity will likely be exceeded.

The Xtensa compiler, xt-xcc, compiles the
application C/C++ with references to the extension
instructions. Since the EIs follow the same
semantics with respect to the WR and the pipeline,
the compiler is able to use the instruction header and
timing data provided by SCG to perform register
allocation and optimal scheduling of the entire
instruction stream.

The back end of the compiler resembles a
conventional FPGA tool flow. The map stage
performs module generation from the set of operators
provided by SCG. This step may involve additional
operator specialization and merging.

The place stage assigns locations to each of the
modules generated by map using a “timing aware”
algorithm.

The router performs detailed, timing driven
routing on the placed netlist.

Retime is a pipeline retimer that moves registers
to balance every pipeline stage delay.

The bit stream stage performs several clean up
chores, including the creation of the ISEF and
instruction unit configuration files. It also performs a

/* Declare WRF variables */

WR A, B;

for (...) {

/* Load 4 RGB pixels (12 bytes) */

WRGET0(&A, 12);

/* Convert */

RGB2YCbCr(A, &B);

/* Store 4 YcbCr pixels (8 bytes) */

WRPUT0(B, 8);

}

1

2

3

4

5

6

7

8

9

10

11

Figure 7. Calling an Extension Instruction

Application
(C / C++)

Ext Inst

SCG

Map

Place

Route

Retime

Bit Stream

Linker

ELF
Executable

Xt-xcc

Figure 8. Compiler Flow

126

number of integrity checks on the bit stream to
ensure proper and safe mapping.

The linker packages the components of the
application together into a single executable file.
This file includes a directory of the ISEF
configurations that is used by the OS/runtime system
to locate instruction groups for dynamic
reconfiguration.

3.3. Other Tools
In addition to the compiler described above, the

S5000 software package includes several other tools
and libraries. The instruction set simulator (ISS)
provides a cycle accurate model of the S5 engine and
memory subsystems for detailed performance
analysis and tuning. When targeting the ISS the
compiler produces a cycle accurate model of the
extension instructions that is linked into the ISS at
run time.

A common debugger provides access to both the
ISS and the physical hardware. A profiler and
analysis tool are available for performance analysis
and tuning. An integrated development environment
(IDE) combines all of the tools together with an
editor into a single graphical environment.

A simple OS/runtime provides support for the
peripheral devices, memory management, application
loading and configuration management.

4. Performance
To measure the effectiveness of the software

configurable processor approach we report the
performance of the S5000 on the EEMBC Telemark
benchmark suite[15]. The Telemark suite consists of
five programs representing different
telecommunications tasks, each with three different
data sets:

• Autcor: Calculation of a finite length 16-bit
fixed point autocorrelation function. The
computation is dominated by multiplies.

• Conven: A ½ rate convolutional encoder
for forward error correction. The
computation is dominated by bitwise AND
and XOR, byte shift and 8- and 16-bit
unsigned arithmetic.

• Fbital: Bit allocation for a DSL modem
using discrete multi-tone modulation. The
computation is dominated by arithmetic and
comparisons.

• FFT: A 256 point 16-bit complex finite
Fourier transform.

• Viterbi: Viterbi decoder algorithm for
forward error correction. The data packet
consists of 344 6-bit values; the
computation is dominated by bitwise logic
and add-compare-select operations.

EEMBC requires two sets of measurements:
“out-of-box”, or unoptimized compilation of the
reference C code; and “full fury”, or optimized to the

greatest extent possible for the architecture. The out-
of-box code is compiled with the Tensilica compiler,
xt-xcc, using –O2 optimization. Since the EEMBC
benchmarks are intended to compare processor
architectures and not memory systems, the EEMBC
test harness runs the application code on each test
data set many times to minimize the effect of cache
misses on the performance measurement. The results
produced by the program under test are compared
against a reference file to ensure correctness. The
performance results are reported in terms of the
number of algorithm iterations per million clock
cycles.

The EEMBC certified results reported in Table 1
are simulated on the cycle accurate instruction set
simulator; laboratory measurements on the actual
silicon confirm the results. The processor clock rate
is 300MHz, with a 1:3 ISEF clock ratio. The
performance of the FFT and Viterbi benchmarks is
independent of the data set, so only one line appears
for each.

As can be seen, the speedups when optimized
using extension instructions range from 26 to more
than 3500.

The autcor implementation contains two
instructions which share 64 16x8 bit multiples, 8 8-
bit incrementers, 64 adders ranging is size from 24 to
27 bits, and 8 dynamic shifts specialized for shift
distances of 1 to 8 for a total of 144 operators. In
addition, there are 8 24-bit state variables used as
accumulators. In the table, the speedup for data set 1
is clearly an outlier. This is due to the small size of
the test data set (16 points, compared to 1024 for data
set 2).

The conven benchmark implements two 5th

degree polynomials, and includes 10 ANDs and 8
XORs per bit, times 128 bits, for 128-way data
parallelism with 2304 bit operations. Fourteen bits
of state are used to hold polynomial coefficients and
the previous code. It should be noted that the
EEMBC reference code is written for clarity, not
performance. The inner loop does a compare and
branch for each coefficient on each bit of data.
Careful recoding should improve the performance of
the reference code by more than an order of
magnitude.

Table 1. EEMBC Telecom Benchmark Results
Benchmark OOB Opt Speedup
Autcor data 1 1164 30267 26
Autcor data 2 9.4 1229 131
Autcor data 3 9.9 1234 125
Conven data 1 10.5 36984 3522
Conven data 2 12.3 36984 3007
Conven data 3 14.7 36984 2516
Fbital data 2 2.8 811 290
Fbital data 3 33.3 5049 152
Fbital data 6 4.1 789 192
Fixed pt FFT 17.6 899.4 51
Viterbi 4.8 574.4 120

127

The fbital implementation contains 3 instructions
and 1 16 bit state variable. Two of the instructions
share 80 adders ranging in size from 4 to 16 bits, 48
8-bit comparisons, and 32 9x7 multiplies, for 128
operations, plus 48 static shifts.

The FFT implementation performs four butterfly
operations in a single instruction, reading three 128-
bit operands and producing two 128-bit results. The
ISEF contains 6 instructions with 16 16x16
multiplies, 8 32-bit add/subtracts, and 16 16-bit
add/subtracts, for 40 operations, plus logic for
steering data.

The Viterbi decoder likewise is straightforward.
It has 2 instructions containing 70 adds and subtracts,
plus 32 14-bit comparisons. There are also 64 state
variables.

5. Conclusion
We have described a software configurable

processor architecture capable of achieving one to
two orders of magnitude performance improvement
over unoptimized code on the base RISC processor.
There are three sources of performance gain:

• Data parallelism, with extension instructions
reading up to three 128-bit operands and
producing up to two 128-bit results;

• Temporal parallelism, with deep pipelines
extending up to 27 processor clock cycles;;

• Instruction specialization, such as bit width
optimization, partial evaluation and resource
sharing.

A single, consistent programming model and
tools set is provided to ease the development process
and to help achieve significant performance gain.

Future software configurable architectures may
add coarser grain parallelism such as instruction level
parallelism (ILP) and task level parallelism (multi-
processing).

6. Acknowledgements
The S5 architecture is the product of the efforts of

many people. I would especially like to thank the
rest of the Stretch Architecture team: Gary Banta,
Ricardo Gonzalez, Scott Johnson, Charle’ Rupp,
Albert Wang, and Mark Williams.

7. References
[1] G. Estrin, “Organization of Computer Systems: The

Fixed-Plus Variable Structure Computer,” Proc.
Western Joint Computer Conf., Am. Inst. Electrical
Engineers, New York, 1960, pp. 33-40.

[2] C.G. Bell, J.C. Mudge, and J.E. McNamara,
Computer Engineering, Digital Press, 1978.

[3] R.E. Gonzalez, “Xtensa: A Configurable and
Extensible Processor”, IEEE Micro, 20:2,
March/April 2000, pp. 60-70.

[4] P.M. Athanas, and H.F. Silverman, “Processor
Reconfiguration through Instruction Set
Metamorphosis: Architecture and Compiler”,
Computer, Vol. 26, No. 3, Mar. 1993, pp. 11-18.

[5] D.A. Buell, J.M. Arnold and W.J. Kleinfelder, Splash
2 FPGAs in a Custom Computing Machine, IEEE
Computer Society Press, Los Alamitos, CA, 1996, pp.
171-176.

[6] R. Razdan, and M.J. Smith, “A High-Performance
Microarchitecture with Hardware-Programmable
Functional Units”, International Symposium on
Microarchitecture, ACM Press, San Jose, CA, 1994,
pp. 172-180.

[7] R.D. Wittig, and P. Chow, “OneChip: An FPGA
Processor with Reconfigurable Logic”, IEEE
Symposium on FPGAs for Custom Computing
Machines, CS Press, Napa, CA, 1996, pp. 126-135.

[8] Z.A. Ye, A. Moshovos, S. Hauck, and P. Bannerjee,
“CHIMAERA: A High-Performance Architecture
with a Tightly-Coupled Reconfigurable Function
Unit”, International Symposium on Computer
Architecture, 2000, pp. 225-235.

[9] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-
Specific Instruction Generation for Configurable
Processor Architectures”, International Symposium on
Field-Programmable Gate Arrays, ACM Press,
Monterey, CA, 2004, pp. 183-189.

[10] J. Becker, and A. Thomas, “Scalable Processor
Instruction Set Extension,” IEEE Design & Test of
Computers, Vol. 22, No. 2, Mar/Apr 2005, pp. 136-
148.

[11] C.R. Rupp, M. Landguth, T. Garverick, E. Gomersall,
H. Holt, J.M. Arnold, and M. Gokhale, “The NAPA
Adaptive Processing Architecture”, IEEE Symposium
on FPGAs for Custom Computing Machines, CS
Press, Napa, CA, 1998, pp. 28-37.

[12] J. Hauser, and J. Wawrzynek, “Garp: A MIPS
Processor with a Reconfigurable Coprocessor”, IEEE
Symposium on FPGAs for Custom Computing
Machines, CS Press, Napa, CA, 1997, pp. 12-21.

[13] M. Borgatti, F. Lertora, B. Foret, and L. Cali, “A
Reconfigurable System Featuring Dynamically
Extensible Embedded Microprocessor, FPGA, and
Customizable I/O”, IEEE Journal of Solid State
Circuits, 38:3, March 2003, pp. 521-529.

[14] Tensilica, Inc., http://www.tensilica.com.

[15] Embedded Microprocessor Benchmark Consortium,
http://www.eembc.org.

128

