IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.5, MAY 2000

465

MorphoSys: An Integrated Reconfigurable
System for Data-Parallel and
Computation-Intensive Applications

Hartej Singh, Member, IEEE, Ming-Hau Lee, Student Member, IEEE,
Guangming Lu, Member, IEEE, Fadi J. Kurdahi, Member, IEEE,
Nader Bagherzadeh, Senior Member, IEEE, and Eliseu M. Chaves Filho, Member, IEEE

Abstract—This paper introduces MorphoSys, a reconfigurable computing system developed to investigate the effectiveness of
combining reconfigurable hardware with general-purpose processors for word-level, computation-intensive applications. MorphoSys is
a coarse-grain, integrated, and reconfigurable system-on-chip, targeted at high-throughput and data-parallel applications. It is
comprised of a reconfigurable array of processing cells, a modified RISC processor core, and an efficient memory interface unit. This
paper describes the MorphoSys architecture, including the reconfigurable processor array, the control processor, and data and
configuration memories. The suitability of MorphoSys for the target application domain is then illustrated with examples such as video
compression, data encryption and target recognition. Performance evaluation of these applications indicates improvements of up to an
order of magnitude (or more) on MorphoSys, in comparison with other systems.

Index Terms—Reconfigurable systems, reconfigurable cell array, Single Instruction Multiple Data, dynamic reconfiguration, target
recognition, bit-correlation, multimedia applications, video compression, MPEG-2, data encryption.

1 INTRODUCTION

RECONFIGURABLE systems are computing systems that
combine a reconfigurable hardware processing unit
with a software-programmable processor. These systems
allow customization of the reconfigurable processing unit in
order to meet the specific computational requirements of
different applications. Reconfigurable computing repre-
sents an intermediate approach between the extremes of
Application Specific Integrated Circuits (ASICs) and gen-
eral-purpose processors. A reconfigurable system generally
has wider applicability than an ASIC. In addition, the
combination of a reconfigurable component with a general-
purpose processor results in better performance (for many
application classes) than the general-purpose processor
alone.

The significance of reconfigurable systems can be
illustrated through the following example. Many applica-
tions have a heterogeneous nature and comprise of several
subtasks with different characteristics. For instance, a
multimedia application may include a data-parallel task, a
bit-level task, irregular computations, high-precision word
operations and a real-time component. For such complex
applications with wide-ranging subtasks, the ASIC
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approach would lead to an uneconomical die size or a
large number of separate chips. Also, most general-purpose
processors would very likely not satisfy the performance
constraints for the entire application. However, a reconfi-
gurable system (that combines a reconfigurable component
with a mainstream microprocessor) may be optimally
reconfigured for each subtask, meeting the application
constraints within the same chip. Moreover, it would be
useful for more general-purpose applications, too.

This paper describes MorphoSys, a novel model for
reconfigurable computing systems, targeted at applications
with inherent data-parallelism, high regularity, and high
throughput requirements. Some examples of these applica-
tions are video compression (discrete cosine transforms,
motion estimation), graphics and image processing, data
encryption, and DSP transforms.

The MorphoSys architecture, shown in Fig. 1, is com-
prised of a reconfigurable processing unit, a general-
purpose (core) processor, and a high-bandwidth memory
interface, all implemented as a single chip. Given the nature
of target applications, the reconfigurable component is
organized in SIMD fashion as an array of Reconfigurable Cells
(RCs). Since most of the target applications possess word-
level granularity, the RCs are also coarse-grain. The core
(RISC) processor controls the operation of the Reconfigur-
able Cell Array (RC Array). The high-bandwidth data
interface consists of a specialized streaming buffer (and
controller) to handle data transfers between external
memory and the RC Array.

The intent of the MorphoSys implementation is to study
the viability of this integrated reconfigurable computing
model to satisfy the increasing demand for low cost stream
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Fig. 1. An integrated architecture for reconfigurable processor systems.

or frame data processing needed for important application
classes, like video and image processing, multimedia,
digital signal processing, and data encryption.

Organization of paper: Section 2 provides brief explana-
tions of some terms and concepts used frequently in
reconfigurable computing, along with a tabular review of
previous contributions in this field. Section 3 introduces the
system model for MorphoSys, our prototype reconfigurable
computing system. Section 4 describes the architecture of
MorphoSys Reconfigurable Cell Array and associated compo-
nents. Next, important differences between previous re-
search work and MorphoSys are discussed in Section 5.
Section 6 describes the software environment with the
programming and simulation tools for MorphoSys.
Section 7 illustrates the mapping of some applications (video
compression, automatic target recognition, and data en-
cryption) to MorphoSys. Performance estimates obtained
from simulation of behavioral models (C++, VHDL) are
provided for these applications and compared with other
systems. Finally, some conclusions of this research are
mentioned in Section 8.

2 TAXONOMY FOR RECONFIGURABLE SYSTEMS
AND PREVIOUS WORK

This section introduces a set of criteria that are frequently
used to characterize the design of a reconfigurable
computing system. These criteria are granularity, depth of
programmability, reconfigurability, interface, and model of
computation.

1. Granularity: This refers to the data size for operations
of the reconfigurable component (or reconfigurable
processing unit, RPU) of a system. An RPU is a logic
block of configurable functionality, having a frame-
work of reconfigurable interconnect. In fine-grain
systems, processing elements in the RPU are
typically logic gates, flip-flops, and look-up tables.
They operate at the bit level, implementing a
Boolean function of a finite-state machine. On the
other hand, in coarse-grain systems, the processing
elements in the RPU may contain complete func-
tional units, like ALUs and/or multipliers that
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operate upon multiple-bit words. A system that
combines both the above types has mixed-grain
granularity.

2. Depth of Programmability: This pertains to the number
of configuration programs or contexts stored within
the RPU. An RPU may have a single context or
multiple contexts. For single-context systems, only
one context is resident in the RPU. Therefore, the
RPU’s functionality is limited to the context cur-
rently loaded. On the other hand, a multiple-context
RPU has several contexts concurrently residing in
the system. This enables the execution of different
tasks simply by changing the operating context
without having to reload the configuration program.

3. Reconfigurability: An RPU may need to be reconfi-
gured frequently for executing different applica-
tions. Reconfiguration is the process of reloading
configuration programs (context). This process is
either static (execution is interrupted) or dynamic (in
parallel with execution). A single context RPU
typically has static reconfiguration. Dynamic recon-
figuration is more relevant for a multiple-context
RPU. It implies that such an RPU can execute some
part of its configuration program while the other
part is being changed. This feature significantly
reduces the overhead for reconfiguration.

4. Interface: A reconfigurable system has a remote
interface if the system’s host processor is not on
the same chip/die as the RPU. A local interface
implies that the host processor and the coprocessor
RPU reside on the same chip, or that the RPU is
unified into the datapath of the host processor.

5. Computation model: Many reconfigurable systems
follow the umiprocessor computation model. How-
ever, there are several others that follow SIMD or
MIMD computation models [4], [7], [8], [11]. Some
systems may also follow the VLIW model [2].

Conventionally, the most common devices used for
reconfigurable computing are field programmable gate arrays
(FPGAs) [1]. FPGAs allow designers to manipulate gate-
level devices such as flip-flops, memory, and other logic
gates. This makes FPGAs quite useful for complex bit-
oriented computations. Examples of reconfigurable systems
using FPGAs are [9], [10], [27], [29]. However, FPGAs have
some disadvantages, too. They are slower than ASICs and
have inefficient performance for coarse-grained (8 bits or
more) datapath operations.

Hence, many researchers have proposed other models of
reconfigurable systems targeting different applications.
PADDI [2], MATRIX [4], RaPiD [6], and REMARC [7] are
some of the coarse-grain prototype reconfigurable comput-
ing systems. Research prototypes with fine-grain granular-
ity (but not based on FPGAs) include DPGA [3] and Garp
[5]. Tables 1 and 2 summarize the characteristics of various
reconfigurable systems according to the criteria introduced
above.

2.1 Reconfigurable Systems versus SIMD Array

Processors
Reconfigurable systems, in general, have built upon existing
ideas and concepts in the field of computer architecture. For



SINGH ET AL.: MORPHOSYS: AN INTEGRATED RECONFIGURABLE SYSTEM FOR DATA-PARALLEL AND COMPUTATION-INTENSIVE... 467

TABLE 1
Classification of Reconfigurable Systems: Part A
System Granu- | Program- | Reconfi-
-larity | -mability | -guration
DPGA3) Fine Multiple Dynamic
Garp [5] Fine Multiple Static
Splash 9], Fine Multiple Static
DEC Fine Single Static
PeRLe-1 [10]
Chimaera [27] Fine Single Static
OneChip [28] Fine Single Static
DISC [29] Fine Single Dynamic
PADDI 2] Coarse Multiple Static
MATRIX [4] Coarse Multiple Dynamic
RaPiD [6)] Coarse Single Mostly
static
Remarc [7) Coarse Multiple Static
RAW [8] Mixed Single Static
PipeRench [36] | Mixed Multiple Dynamic
MorphoSys [37] | Coarse Multiple Dynamic

example, several systems [2], [7], [8], [11] have arrays of
processing units organized in an SIMD or MIMD manner.
Necessarily, these systems have drawn from the research
done for SIMD array processors, such as Illiac-IV [32], and
NASA Goodyear MPP [33]. There are many reasons for the
reemergence of the SIMD approach (after the apparent
failure of the erstwhile SIMD processors to gain wide-
spread usage). Recent years have seen the introduction of
many computation-intensive, high-throughput tasks as
mainstream applications. These tasks are performed
efficiently on SIMD architectures. At the same time, VLSI
technology has made such astronomical progress that
systems which cost billions of dollars (and involved
hundreds of boards) two decades ago can now be cheaply
produced on a single chip.

However, there are still many differences between the
erstwhile SIMD array processors and SIMD-based reconfi-
gurable systems. A basic difference is that reconfigurable
systems are configurable in terms of functionality and
interconnect. Specifically, MorphoSys, when compared
with SIMD array processors, also has other significant
enhancements. It has a multilevel interconnection network
(as compared to straight 2D mesh for Illiac-IV). MorphoSys
incorporates a streaming buffer to provide efficient data
transfers (no similar component in Illiac-IV) and a separate
memory for storing context data. Finally, MorphoSys
utilizes submicron technology (0.35 micron) to implement
a system-on-chip (instead of many boards, as in Illiac-IV).

3 MoRPHOSYS: COMPONENTS, FEATURES AND
PROGRAM FLOW

Fig. 2 depicts the components and organization of the
integrated MorphoSys reconfigurable computing system.
The components include an array of Reconfigurable Cells
(RC Array) with configuration memory (Context Memory), a

TABLE 2
Classification of Reconfigurable Systems: Part B
System Interface Comp. Application
Model Domain
DPGA Remote Uni- Bit-level
[3] -processor | computations
Garp Local Uni- Bit-level
[5] -processor | computations
Splash Remote Uni- Bit-level
[9] -processor | computations
DEC PeR- Remote Uni- Bit-level
-Le 1[10] -processor | computations
Chimaera Local Uni- Bit-level
[27] -processor | computations
OneChip Local Uni- Embedded
[28] -processor controllers,
accelerators
DISC Local Uni- General
[29] -processor purpose
PADDI Remote VLIW, DSP
2] SIMD applications
MATRIX Not MIMD Not
[4] defined defined
RaPiD Remote Linear Systolic arrays,
[6] array data-intensive
Remare Local SIMD Data-parallel
[7] applications
RAW Local MIMD General
8] purpose
PipeRench Remote Pipe- Data-parallel,
[36] -lined DSP apps.
MorphoSys Local SIMD Data-parallel,
[37] image apps.

control processor (TinyRISC), data buffer (Frame Buffer), and
a DMA controller.

The correspondence between Fig. 2 and the architecture
in Fig. 1 is as follows: The RC Array with its Context Memory
corresponds to the reconfigurable processor array (SIMD
coprocessor), TinyRISC corresponds to the Main Processor,
and the high-bandwidth memory interface is implemented
through the Frame Buffer and the DMA controller. Typically,
the core processor, TinyRISC, executes sequential tasks of
the application, while the reconfigurable component, the
RC Array, is dedicated to the exploitation of parallelism
available in an application’s algorithm.

3.1 System Components

3.1.1 Reconfigurable Cell (RC) Array

The main component of MorphoSys is the 8 x 8 RC Array,
shown in Fig. 3. Each RC has an ALU (fixed-point
operations), a multiplier, and a register file and is
configured through a 32-bit context word. The context
words are stored in the Context Memory and are broadcast
to the RC Array in two modes: column broadcast and row
broadcast. For column (row) broadcast, all eight RCs in the
same column (row) are configured by the same context
word.
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Fig. 2. Components of MorphoSys implementation (M1 chip).

3.1.2 Host/Control Processor

The controlling component of MorphoSys is a 32-bit
processor, called TinyRISC, based on the design of a RISC
processor in [12]. TinyRISC handles general-purpose
operations and controls operation of the RC Array through
special instructions added to its ISA. It also initiates all data
transfers to or from the Frame Buffer and configuration
program load for the Context Memory.

3.1.3 Frame Buffer

An important component is the Frame Buffer (FB), which is
analogous to a data cache. The FB has two sets, each of
which has two banks of memory. This buffer makes
memory accesses transparent to the RC Array by overlapping
data load and store with computation, alternately using the
two sets. MorphoSys performance benefits tremendously
from this overlap. A dedicated data buffer has been missing
in most of the contemporary reconfigurable systems, with
consequent degradation of performance.

3.2 Features of MorphoSys

The RC Array is configured through context words, which
are broadcast from the Context Memory (Section 4.2). Each
context word specifies an instruction opcode for the RC.
Since the RC Array follows the SIMD model of computa-
tion, all RCs in the same row or column therefore share the
same context word. However, each RC operates on different
data. Sharing the context across a row or column is useful
for data-parallel applications. In brief, important features of
MorphoSys are:

e  Coarse-grain: MorphoSys is designed to operate on 8
or 16-bit data, which ensures faster performance for
word-level operations as compared to FPGAs.
MorphoSys is free from variable wire propagation
delays that are characteristic of FPGAs.

e  Dynamic reconfiguration: Context data may be loaded
into a inactive part of Context Memory without
interrupting RC Array operation. Context loads or
reloads are specified through TinyRISC and done by
DMA controller.

o  Considerable depth of programmability: The Context
Memory can store up to 32 planes of configuration
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Fig. 3. MorphoSys 8 x 8 RC array with 2D mesh and complete row/
column connectivity per quadrant.

and provides two context broadcast modes, one
along columns and the other along rows.

e Tightly coupled interface with core processor and main
memory: The control processor (TinyRISC) and the
reconfigurable component (RC Array) are resident
on the same chip. The on-chip DMA controller
enables fast data transfers between main memory
and Frame Buffer.

3.3 TinyRISC Instructions for MorphoSys

Several new instructions were introduced in the TinyRISC
instruction set for effective control of the MorphoSys RC
Array execution. These instructions, described in Table 3,
perform the following tasks:

e control execution of the RC Array,

e load context program to the Context Memory from
the main memory, and

e transfer data between the main memory and the
Frame Buffer.

There are two categories of these instructions: RC
instructions (CBCAST, SBCB, DBCBC, and DBCBR) and
DMA instructions (LDCTXT, LDFB, and STFB). The RC
instructions control the execution of the RC Array by
specifying the context to be executed, Frame Buffer address,
and context broadcast mode (row or column, broadcast
versus selective). The DMA instructions initiate data and
context transfers between main memory, the Frame Buffer,
and the Context Memory by specifying operation type (load
or store), memory address, number of bytes to be
transferred, and Frame Buffer or Context Memory address.
These instructions are described in detail in [37].

3.4 MorphoSys System Operation

Next, the typical operation of the MorphoSys system is
illustrated. TinyRISC handles the general-purpose opera-
tions, while the data-parallel parts of applications are
mapped to the RC Array. Fig. 4 denotes the steps to execute
these parallel tasks. A description follows:
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TABLE 3
New TinyRISC Instructions for MorphoSys
Mnemonic | Description of operation
LDCTXT Initiate loading of context
program into Context Memory
LDFB, Initiate data transfer between
STFB main memory and Frame Buffer
CBCAST Broadcast context from Context
Memory and execute it in RC Array
in row or column mode
SBCB Execute RC' Array with context (row or
column mode), access single F'B bank to
load 8 data valucs in RC Array column
DBCBC Execute RC Array with context, with
(column double bank access of FB to load 8 sets
mode) of 2 data values in RC Array column
DBCBR Execute RC Array with context, with
(row mode) | double bank access of FB to load 8 sets
of 2 data values in RC Array column
WFB Write data from RC Array column
to given address in Frame Buffer
WFBI Write data from RC Array column
to Frame Buffer (imm. address)
RCRISC Write data from an RC in the top row
of RC Array to a TinyRISC register

a. Load context words into Context Memory (CM) from
external memory. TinyRISC executes the LDCTXT
instruction (Table 3) and signals the DMA controller
to perform this transfer.

b. Load computation data into the first set of Frame Buffer
(FB) from external memory. TinyRISC executes the
LDFB instruction (Table 3) and signals the DMA
controller to perform the transfer.

c. Execute RC Array and concurrently load data into the
second set of FB. TinyRISC issues one of CBCAST,
SBCB, DBCBR, or DBCBC instructions (Table 3) each
cycle to enable execution of the RC Array. These
instructions specify the particular context word
(among multiple contexts words in Context Mem-
ory) to be executed by the RCs and the context
broadcast mode. For this step, the computations in
the RC Array use data from the first set of FB. Within
this time, TinyRISC also issues a single instruction
(LDEFB) to load computation data into the second FB
set or a LDCTXT instruction to reload the Context
Memory. Either of these operations is done concur-
rently with RC Array execution. This represents
overlap of computation with data transfers. This step
concludes when all the data in the first FB set has
been processed.

d. Execute RC Array, concurrently store data from first FB
set to memory, load new data into FB set. Once again,
TinyRISC issues one of CBCAST, SBCB, DBCBR, or
DBCBC instructions (Table 3) for RC Array execu-
tion. For this step, the RC Array computations use
data from the second FB set. While the computations

Steps=> (a) (b) (©) (d)
A A
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.
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Array |
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Memory | context RC Array
FB | Load fresh cesse
Set0 IDLE data a )
FB ! Data to
Set1 IDLE IDLE RC Array | RC Array

Fig. 4. System operation for MorphoSys (with overlap of computation
with data transfers).

proceed, TinyRISC also issues the STFB and LDFB
instructions to store data from first FB set into main
memory and load new data into this set. This step
terminates when data from the second FB set has
been processed.

e. Continue execution and data or context transfers till
completion. Steps ¢ and d are repeated till the
application kernel concludes after processing the
entire input data.

The shaded blocks of Fig. 4 represent the overlap of RC
Array execution with data transfers or context reloads.

4 DESIGN oF MORPHOSYS COMPONENTS

In this section, the major components of MorphoSys,
namely, the Reconfigurable Cell, the Context Memory, the
Frame Buffer, and the RC Array interconnection network,
are described. More details are in [37]. Some aspects of the
ongoing physical implementation of these components are
also mentioned.

4.1 Architecture of Reconfigurable Cell (RC)

The Reconfigurable Cell (RC) Array is the programmable
core of MorphoSys. It consists of an 8 x 8 array (Fig. 3) of
identical processing elements called Reconfigurable Cells
(RCs). Each RC (Fig. 5) is the basic unit of reconfiguration.
Its functional model is similar to the datapath of a
conventional microprocessor.

As shown in Fig. 5, an RC is composed of an ALU-
multiplier, a shift unit, and two multiplexers to select its
inputs. Each RC also has an output register and a register
file. A context word, broadcast from Context Memory and
stored in the RC Context Register, defines the functionality of
the RC.

4.1.1 ALU-Multiplier Unit

This includes a 16 x 12 multiplier and a 28-bit fixed-point
ALU. The ALU adder has been designed for 28-bit inputs to
prevent loss of precision during multiply-accumulate
operation since each multiplier output may be as large as
28 bits. Besides standard logic and arithmetic functions, the
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Fig. 5. Reconfigurable Cell (RC) architecture.

ALU has other functions, such as computation of absolute
value of the difference of two operands and a single cycle
multiply-accumulate operation. There are a total of 25 ALU
functions [37].

The two input multiplexers (Fig. 5) select one of several
inputs for the ALU-multiplier, based on control bits from
the context word in the RC Context Register. These inputs
include the outputs of the four nearest neighbor RCs,
outputs of other RCs in the same row and column (within
the quadrant), horizontal and vertical express lanes
(Section 4.3), FB data bus, and the RC register file. The RC
register file is composed of four 16-bit registers. The output
register is 28 bits wide so as to conform to the ALU-
multiplier bitwidth.

4.1.2 Context Register

This 32-bit register contains the context word for configur-
ing each RC. It is included in each RC of the RC Array,
whereas the Context Memory is separate from the RC Array
(Fig. 2).

The different fields for the context word are shown in
Fig. 6. There are two variations which differ in the usage of
the first field, named Constant. For operations that involve
constant operands, this field may be used to supply these
operands to the ALU-multiplier unit in each RC. An
example is a multiplication by a constant over several
computations, in which case the constant operand may be
provided through the context word. For the second case,
some bits of the Constant field are used as the SUB_OP field,
which enables expansion of the ALU function set.

The field ALU_OP specifies the function for the ALU-
Multiplier unit. MUX_A and MUX_B specify control bits for
the input multiplexers of the RC. Other fields determine the
direction (RS_LS) and amount of shift (ALU_SFT) applied at
the ALU output. Write_RF_En specifies whether the RC
output will be written to the RC register file. In case this
field is set, the REG_FILE field determines the RC register to
store the result of an operation. The context word also
specifies whether a particular RC writes to its row or
column express lane through the field, Write_EXPR.
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Fig. 6. RC context word definition.

4.2 Context Memory
The Context Memory broadcasts context words to the RC
Array. A context word is loaded every execution cycle from
the Context Memory into the context register of each RC.
These context words configure the RC and program the
interconnection network.

4.2.1 Context Memory Organization

The Context Memory is organized into two blocks (for row
and column contexts) which store the contexts for row-wise
and column-wise operation of the RC Array, respectively.
Each block has eight sets, with each set corresponding to a
row or column of the RC Array. Each set can store 16 context
words. The RC Array configuration plane (set of context
words to program entire RC Array for one cycle) is
comprised of eight context words (one from each set) from
a row or column block. Thus, 16 configuration planes may
be stored in each block of the Context Memory, for a total of
32 configuration planes.

4.2.2 Context Broadcast

For MorphoSys, the major focus is on regular and data-
parallel applications. Based on this idea of regularity and
parallelism, each context word is broadcast to a row or
column of RCs. Thus, all eight RCs in a row or column,
respectively, share the same context word and perform the
same operations. For example, for DCT computation, eight
1D DCTs need to be computed, across eight rows. This is
achieved with just eight context words to program the RC
Array for each step of the computation and it takes 10 cycles
(only 80 context words) to complete a 1D DCT (refer
Section 7.1.2). Context broadcast enables storage of more
context planes in the Context Memory than if a separate
context word was used to configure each RC.

4.2.3 Dynamic Reconfiguration

The Context Memory can be updated concurrently with RC
Array execution. There are 32 context planes and this depth
facilitates dynamic (run-time) reloading of the contexts.
Dynamic reconfiguration allows reduction of effective
reconfiguration time to zero.
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4.2.4 Selective Context Enabling

It is possible to enable the operation of only one specific
column and disable the other columns of the RC Array. One
benefit of this feature is that only one context plane (eight
context words) is needed for transfer of data to or from the
entire RC Array. Otherwise, eight context planes (out of the
32 available) would have been required just to read or write
data.

4.3 Interconnection Network

The RC Array interconnection network consists of three
hierarchical levels.

Nearest neighbor connectivity: The first level of intercon-
nections in the RC Array (Fig. 3) is a 2D mesh. This provides
nearest neighbor connectivity along rows and columns.

Intraquadrant (complete row and column) connectivity: The
second layer of connectivity is at the quadrant level (a
quadrant is a 4 x 4 group of RCs). The RC Array has four
quadrants (Fig. 3). Within a quadrant, each cell can access
the output of any other cell in its row and column.

Interquadrant (express lane) connectivity: At the global
level, there are horizontal and vertical buses called express
lanes, that transmit data between RCs of adjacent quad-
rants. Fig. 7 shows the express lanes for a column and a row
of the RC Array. These lanes provide data from any one RC
(out of four) in a row or column of a quadrant to other RCs
of an adjacent quadrant but the same row or column. Thus,
up to four RCs in a row or column of one quadrant can
access the output value of one of four RCs in the same row
or column, respectively, of an adjacent quadrant.

The express lanes greatly enhance global connectivity.
For example, an 8-point butterfly operation is accomplished
in only three cycles.

4.4 Frame Buffer

The Frame Buffer (FB) is a data memory organized into fwo
sets, Set 0 and Set 1, where each set further has two banks of
memory. The two-set structure of the FB helps provide
overlap of data transfers with computation. One FB set
provides data for the RC Array computations and also
stores processed data from the RC Array. The other FB set
stores previously processed data into the main memory
through the DMA controller and reloads data for the next
round of computations. These operations proceed

concurrently, thus preventing the latency of data I/O from
adversely affecting system performance. An FB bank has 64
rows of 8 bytes each and each FB set has two banks.

4.5 Physical Implementation

MorphoSys is being implemented as the M1 chip, using
both custom and standard cell design methodologies for
0.35 micron, four metal layer CMOS (3.3V) technology. The
main constraint for this implementation is a clock period of
10 ns (100 MHz freq.). The total area of the chip is estimated
to be 180 sq. mm. The layout for the Reconfigurable Cell
(20,000 transistors, 1.5 sq. mm area) is now complete. It has
been simulated at the transistor level using HSPICE with
appropriate output loads due to fanout and interconnect
lengths to obtain accurate delay values. The multiplier (=
10,000 transistors) delay is 4 ns and the ALU (= 6,500
transistors) delay is 3 ns. The critical path delay in an RC
(which corresponds to a single cycle multiply-accumulate
operation) is less than 9 ns. Similarly, the TinyRISC, Frame
Buffer, Context Memory, and DMA controller are also being
designed to perform within the 10 ns clock constraint.
Preliminary estimates for area and delay are: TinyRISC
(100,000 transistors, delay: 10 ns), Frame Buffer (150,000
transistors, access time: 5 ns), and the Context Memory
(100,000 transistors, access time: 5 ns). The three-level
interconnection network is made feasible by the four metal
layer technology. Simulations of the network indicate that,
with the use of appropriate buffers at RC outputs,
interconnect delays can be limited to 1 ns. Thus, it is
reasonable to expect that the M1 chip will perform at a clock
rate of 100 MHz.

5 CoMPARISON WITH RELATED RESEARCH

Since MorphoSys architecture falls into the category of
coarse-grain reconfigurable systems, it is meaningful to
compare it with other coarse-grain systems (PADDI [2],
MATRIX [4], RaPiD [6], REMARC [7], and RAW [8]). Many
of the designs mentioned above have not actually been
implemented, whereas MorphoSys has been developed
down to physical layout level.

5.1 PADDI

PADDI [2] has a distinct VLIW nature because each EXU
uses a 53-bit instruction word (which may be different for
different EXUs), whereas MorphoSys exhibits SIMD func-
tionality (each column or row performs the same function).
PADDI cannot be configured dynamically since the
instruction decoders are SRAMs that are loaded at setup
time, while MorphoSys has dynamic reconfiguration.
MorphoSys has a deeper depth of programmability (32)
than PADDI (8). The latter employs a crossbar interconnec-
tion network, whereas MorphoSys uses 2D mesh and a
hierarchical bus network.

PADDI is a stand-alone system targeting DSP applica-
tions; it does not employ any streaming buffer to speed up
I/O transfers and it is not integrated with any core
processor. But, the reconfigurable component in MorphoSys
is integrated with a general-purpose controller (as also is
REMARC, Garp, etc.) and it incorporates a data buffer (FB)
for efficient data transfers.
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5.2 MATRIX

The MATRIX [4] approach proposes the design of a basic
unit (BFU) for a reconfigurable system. This 8-bit BFU
unifies resources used for instruction storage with resources
needed for computation and data storage, assumes a three
level interconnection network, and may be configured for
operation in VLIW or SIMD fashion. A complete system
organization based on the BFU is not presented, while
MorphoSys is a well-defined system. This leaves many
system-level issues, such as integration with host processor,
external memory interface, I/O parameters, performance,
and reconfiguration (static or dynamic), open to conjecture.

The BFU design can be pipelined, but the hierarchical
switch-based interconnection network (similar to FPGA
interconnect) has variable interconnect delay. This could be
a limiting factor for stream processing since two concurrent
streams may have different processing times (because of
different interconnect delays for each). However, the
interconnection network for MorphoSys has uniform
delays. The MATRIX approach is too generic and at least
one potential problem is the complexity and overhead of
the BFU control unit. Further, performance comparison of
MATRIX for target applications with other systems has not
been provided (as has been done for MorphoSys and most
other reconfigurable systems).

5.3 RaPiD

The RaPiD [6] design is organized as a linear array of
reconfigurable processing units, which is not very appro-
priate for block-based applications (for example, 2D signal
processing tasks). This approach exemplifies provision of
datapath parallelism in the temporal domain, whereas
MorphoSys provides parallelism in the spatial domain. Due
to its organization, the potential applications of RaPiD are
those of a systolic nature or applications that can be easily
pipelined.

Once again, a complete system implementation is not
described. At the very least, the issue of memory stalls
(mentioned in passing by the authors) could be a significant
bottleneck. However, MorphoSys uses the combination of
Frame Buffer and DMA controller to address this issue. The
performance analysis does mention some applications from
the target domain of MorphoSys (DCT, motion estimation,
etc.), but estimated performance figures (in cycle times) are
not given.

5.4 REMARC

The REMARC system [7] is similar in design to the
MorphoSys architecture and targets the same class of
data-parallel and high-throughput applications. Like
MorphoSys, it also consists of 64 programmable units
(organized in an SIMD manner) that are tightly coupled to a
RISC processor. REMARC also uses a modified MIPS-like
ISA for the RISC processor (as in the case of MorphoSys) for
control of the reconfigurable component. However,
REMARC has been implemented only in software and not
at the physical level, whereas MorphoSys is being designed
as an actual chip.

Also, REMARC is configured statically, it lacks a direct
interface to external memory, and data transfers cannot be
overlapped with computation. It does have MIMD
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capability, but there is no evaluation of applications to
demonstrate the usefulness of this mode for REMARC.
Performance figures for applications (e.g., 2D IDCT) reflect
that REMARC is significantly slower than MorphoSys
(Sections 7.1.2 and 7.1.3).

5.5 RAW

The RAW [8] design implements a highly parallel archi-
tecture as a Reconfigurable Architecture Workstation
(RAW). The architecture is organized in an MIMD manner
with multiple instruction streams. It has multiple RISC
processors, each having fine-grain logic as the reconfigur-
able component. However, the architecture has a dispersed
nature and the RISC processors do not exhibit the close
coupling present in the RC Array elements. This may have
an adverse effect on performance for high-throughput
applications that involve many data exchanges. Some other
differences are: RAW has variable communication overhead
from one unit to the other, the target applications may be
irregular or general purpose (instead of data-parallel, and
regular applications), and coarse-grain functional reconfi-
guration is absent.

5.6 Comparison Summary

As is evident, all the above systems vary greatly. However,
the MorphoSys architecture puts together, in a cohesive
structure, the prominent features of previous reconfigurable
systems (coarse-grain granularity, SIMD organization,
depth of programmability, multilevel configurable inter-
connection network, and dynamic reconfiguration). This
architecture then adds some innovative features (control
processor with modified ISA, streaming buffer that allows
overlap of computation with data transfer, context broad-
cast along rows and columns, selective context enabling),
while avoiding many of the pitfalls (single contexts, I/O
bottlenecks, static reconfiguration, remote interface) of
previous systems. In this sense, MorphoSys is a unique
implementation.

In summary, the important features of the MorphoSys
architecture are:

e Integrated model: MorphoSys is a complete system-
on-chip except for main memory.

e [nnovative memory interface: MorphoSys employs a
two-set data buffer that enables overlap of computa-
tion with data transfers.

e  Multiple contexts on-chip: MorphoSys has multiple
configuration planes (32) with dynamic and single-
cycle reconfiguration.

e  On-chip general-purpose processor: The TinyRISC pro-
cessor, which is also the system controller, allows
efficient execution of complex applications that
include both serial and parallel tasks.

To the best of our knowledge, the MorphoSys architec-
ture, as described earlier, is unique with respect to other
published reconfigurable systems.

6 PROGRAMMING AND SIMULATION ENVIRONMENT

A comprehensive software and programming environment

has been developed for MorphoSys, as depicted in Fig. 8.
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Fig. 8. Software and simulation environment for MorphoSys.

This includes two simulators, a graphical user interface
(GUI), a context parser, and a C compiler. These compo-
nents are described in the following subsections.

6.1 Behavioral Models for MorphoSys: MuLate and

MorphoSim

The functionality of the MorphoSys reconfigurable system
has been specified in C++ as well as VHDL. The system
components, namely, the 8 x8 RC Array, the 32-bit
TinyRISC host processor, the Context Memory, Frame
Buffer, and the DMA controller, have been modeled along
with the external memory. The C++ model, MuLate, also has
a graphical user interface (GUI) to display and debug
application program execution. The VHDL model,
MorphoSim, is used to simulate various applications using
the QuickVHDL simulation environment. These simula-
tions utilize several test-benches, real world input data sets,
the RC context instructions, and assembly code for
TinyRISC.

6.2 GUI for RC Array: mView

Another graphical user interface, mView, has been devel-
oped to aid the designer in mapping algorithms to the RC
Array and in verifying and debugging simulation runs.
mView takes user input for each application (specification of
operations, data sources, and destinations for each RC) and
generates the context program for the MorphoSys RC
Array. mView is also used for studying RC Array simulation
behavior. This GUI, based on Tcl/Tk [13] displays graphical
information about the functions being executed at each RC,
the active interconnections, the sources and destination of
operands, usage of data buses and the express lanes, and
the RC output values. It has several debugging features that
allow single-step simulation runs with backward, forward,
and continuous execution. It operates in one of two modes:
programming mode or simulation mode.

In the programming mode, the user sets functions and
interconnections for each row or column of the RC Array
corresponding to each context (row or column mode) for
the application. mView then generates a context file that
represents the user-specified application. In the simulation
mode, mView takes a context file or a simulation output file
as input and provides a display of the state of each RC as

the application represented by the context or simulation file
is executed.

6.3 Context Generation: mLoad

For system simulation, each application has to be coded into
context words and TinyRISC instructions. For the former,
an assembler-parser, mLoad, generates contexts from pro-
grams written in the RC instruction set by the user or
generated through mView. The next step is to determine the
sequence of TinyRISC instructions for appropriate opera-
tion of RC Array and required data and context transfers.
This is done using the mcc compiler.

6.4 mcc: Compiler for MorphoSys
An important aspect of our research is an ongoing effort to
develop a programming environment for automatic map-
ping and code generation for MorphoSys. As part of this
effort, a prototype C language compiler, mcc, has been
developed to compile hybrid code for MorphoSys (the
hybrid code contains serial, as well as parallel functions).
This compiler is based on the SUIF compiler environment
[14]. The compilation is done after partitioning the code
between the TinyRISC processor and the RC Array.
Currently, this partitioning is accomplished manually by
inserting a particular prefix to functions that are to be
mapped to the RC Array. The mcc compiler generates the
instructions for TinyRISC (including instructions to control
the RC Array execution for parallel computations). Another
issue under focus is the generation of assembled context
programs for MorphoSys directly from high-level applica-
tion code. At an advanced development stage, the
MorphoSys software environment would perform online
profiling of applications and dynamically adjust the
reconfiguration profile for enhanced efficiency. A detailed
description of the software and programming environment
is provided in [37].

7 MAPPING APPLICATIONS TO MORPHOSYS

In this section, we discuss the mapping of video compression,
an important target recognition application (Automatic
Target Recognition), and data encryption algorithms to the
MorphoSys architecture. Video compression has a high
degree of data-parallelism and tight real-time constraints.
Automatic Target Recognition (ATR) is one of the most
computation-intensive applications. The International Data
Encryption Algorithm (IDEA) [30] for data encryption is
typical of data-intensive applications. Performance esti-
mates for these applications are provided from C++/VHDL
simulations. Pending the development of an automatic
mapping tool, all these applications were mapped to
MorphoSys either by using mView or manually. More
details are provided in [37].

7.1 Video Compression (MPEG)

Video compression is an integral part of many multimedia
applications. In this context, MPEG standards [15] for video
compression are important for realization of digital video

services, such as video conferencing, video-on-demand,
HDTYV, and digital TV.
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Fig. 9. Sequence of computations involved in an MPEG Encoder.

As depicted in Fig. 9, the functions required of a typical
MPEG encoder are:

e Preprocessing: for example, color conversion to
YCbCr, prefiltering, and subsampling.

e  Motion Estimation and Compensation: After preproces-
sing, motion estimation of image pixels is done to
remove temporal redundancies in successive frames
(predictive coding) of P type and B type. Algorithms
such as Full Search Block Matching (FSBM) may be
used for motion estimation.

o  Transformation and Quantization: Each macroblock
(typically consisting of six blocks of size 8 x 8 pixels)
is then transformed using the Discrete Cosine
Transform (DCT). The resulting DCT coefficients
are quantized to enable compression.

o  Zigzag scan and VLC: The quantized coefficients are
rearranged in a zigzag manner (in order of low to
high spatial frequency) and compressed using
variable length encoding.

o Inverse Quantization and Inverse Transformation: The
quantized blocks of I type and P type frames are
inverse quantized and transformed back by the
Inverse Discrete Cosine Transform (IDCT). This
operation yields a copy of the picture, which is used
for future predictive coding.

Next, we discuss two major functions, motion estimation
using FSBM and transformation using DCT, of the MPEG
video encoder, as mapped to MorphoSys. Finally, we
discuss the overall performance of MorphoSys for the
entire video encoder. (Note: VLC operations are not mapped
to MorphoSys, but Section 7.1.3 shows that adequate time is
available to execute VLC after finishing the other computa-
tions involved in MPEG encoding.)

7.1.1 Video Compression: Motion Estimation for MPEG
Motion estimation is widely adopted in video compression
to identify redundancy between frames. The most popular
technique for motion estimation is the block-matching
algorithm because of its simple hardware implementation
[17]. Some standards also recommend this algorithm.
Among the different block-matching methods, Full Search
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Fig. 10. Configuration of RC array for full search block matching.

Block Matching (FSBM) involves the maximum computa-
tions. However, FSBM gives an optimal solution with low
control overhead.

Typically, FSBM is formulated using the mean absolute
difference (MAD) criterion as follows:
N N
MAD(m,n) =33 ‘R(z‘,j) — S(i+m,j+n)
i

i J=1

for all m,n € {—p < m,n < +p}, where p is the maximum
displacement, R(i,j) is the reference block of size N x N
pixels at coordinates (i,7), and S(i+m,j+n) is the
candidate block within a search area of size (N + 2p) x
(N + 2p) pixels in the previous frame. The displacement
vector is represented by (m,n), and the motion vector is
determined by the least M AD(m,n) among all the (2p + 1)°
possible displacements within the search area.

Fig. 10 shows the configuration of RC Array for FSBM
computation. Initially, one reference block and the search
area associated with it are loaded into one set of the Frame
Buffer. The RC Array starts the matching process for the
reference block resident in the Frame Buffer. During this
computation, another reference block and the search area
associated with it are loaded into the other set of Frame
Buffer. In this manner, data loading and computation time
are overlapped.

For each reference block, three consecutive candidate
blocks are matched concurrently in the RC Array. As
depicted in Fig. 10, each RC in the first, fourth, and seventh
row performs the computation:

Pi= " |RG.j) = Sti+m.j+n),
1<i<16
where P; is the partial sum. Data from a row of the
reference block is sent to the first row of the RC array and
passed to the fourth row and seventh row through delay
elements. The eight partial sums (P;) generated in these
rows are then passed to the second, third, and eighth row,
respectively, to perform the computation:

MAD(m,n) = Z P;.

1<i<16
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Fig. 11. Performance comparison (in cycles) for motion estimation.

Subsequently, three MAD values corresponding to three
candidate blocks are sent to TinyRISC for comparison and
the RC array starts block matching for the next three
candidate blocks.

Computation cost: Based on the mapping described

earlier, and using N = 16, for a reference block size of
16 x 16, 36 clock cycles are required to finish the matching
of three candidate blocks. Ten cycles are then used by the
TinyRISC for comparing the three MAD results and
updating the motion vectors for the best match. There are
289 candidate blocks (102 iterations) in each search area,
and VHDL simulation results show that a total of
4,692 cycles are required to match the search area. For an
image frame size of 352 x 288 pixels at 30 frames per second
(MPEG-2 main profile, low level), the processing cost is
1.85 x 10° cycles. The computation time for MorphoSys
(@100 MHz) is 18.5 ms. This is smaller than the frame
period of 33.33 ms. The context loading time is only

73 cycles.

Performance Analysis: MorphoSys performance is com-
pared with three ASIC architectures implemented in [17],
[18], and [19] for matching one 8 x 8 reference block against
its search area of eight pixels displacement. The result is
shown in Fig. 11. The ASIC architectures employ custo-
mized hardware units such as parallel adders to enhance
performance. A high performance DSP processor,
TMS320C64X [34] requires 2,100 cycles for performing the
same computation. The number of processing cycles for
MorphoSys is even less than the number of cycles required
by the ASIC designs. Since MorphoSys is not an ASIC, its
performance with regard to these ASICs is significant. In
Section 7.1.3, it is shown that this performance level enables
implementation of MPEG-2 encoder on MorphoSys.

Using the same parameters above, Pentium MMX [20]
takes almost 29,000 cycles for the same task. When scaled
for clock speed and same technology (fastest Pentium MMX
fabricated with 0.35 micron technology operates at 233
MHz, therefore the cycles are divided by 2.33 as MorphoSys
operates at 100 MHz), this amounts to more than 20X
difference in performance.
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(column context broadcast)
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1-D DCT along columns
(row context broadcast)
in 11 cycles
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Fig. 12. Computation of 2D DCT across rows/columns.

7.1.2 Video Compression: Discrete Cosine Transform
(DCT) for MPEG
The forward and inverse DCT are used in MPEG encoders
and decoders. The DCT and IDCT are applied on a 2D
image pixel block. It is possible to implement the 2D DCT
(and IDCT) using 1D DCT on the rows and then the
columns (or vice versa) of the image block, using the
separability property. In the following analysis, a fast eight-
point 1D DCT algorithm [21] is used. This algorithm
involves 16 multiplies and 26 additions, resulting in 256
multiplies and 416 additions for a 2D implementation.
Mapping to RC Array: The standard block size for DCT/
IDCT in most image and video compression standards is
8 x 8 pixels. Since the RC Array has the same size, each
pixel of the image block may be directly mapped to each
RC. Each pixel of the input block is stored in one RC. The
following sequence of steps is followed:

e Load input data: An 8 x 8 block is loaded from the
Frame Buffer to RC Array. The data bus between
Frame Buffer and RC Array allows concurrent
loading of eight pixels. An entire block is loaded in
eight cycles. The same number of cycles is required
to write out the processed data to the Frame Buffer.

e  Row-column approach: The 1D DCT is first computed
along the rows using the context broadcast along the
columns. The DCT coefficients are provided as
constants in context words. Eight 1D DCTs are
computed in parallel across the eight rows as shown
in Fig. 12. Next, the 1D DCT along the columns is
computed (Fig. 12) using context broadcast along the
rows.

e Each sequence of 1D DCT [21] involves:

- Butterfly computation: It requires three cycles
to perform using express lanes (interquad
connectivity).

- Computation and rearrangement: This takes six
cycles, with an extra cycle for rearrangement.

Computation cost: The total cost for computing 2D DCT on
an 8 x 8 block of the image, inclusive of data I/0O, is
37 cycles. This estimate is verified by C++, VHDL
simulation. Assuming the data blocks to be present in the
Frame Buffer (through overlapping of data load/store with
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computation cycles), it takes 0.9 ms for MorphoSys
@100 MHz to compute the DCT for the 2,376 (396 x 6)
blocks of 8 x 8 pixels in one frame of a 352 x 288 image. The
cost of computing the 2D IDCT is the same because the
operations involved are similar. Context loading time is
quite significant at 258 cycles. However, transformation of a
large number of blocks (typically 2,376) before a different
configuration is loaded minimizes this effect.

Performance analysis: MorphoSys requires 37 cycles to
complete 2D DCT (or IDCT) on an 8 x 8 block of pixel data.
The reconfigurable coprocessor, REMARC [7] takes
54 cycles. A high performance DSP video processor,
TMS320C64X [34] needs 92 cycles, while a dedicated
superscalar multimedia processor, the V830R/AV [22],
requires 201 cycles. However, Pentium II [20] uses 240 cycles
to compute the 2D DCT/IDCT with manually optimized
code using MMX instructions. If performance of Pentium II
is scaled for same fabrication technology (0.35 micron) as
MorphoSys, the former still needs 103 cycles for this
computation. The relative performance of MorphoSys and
other processors is illustrated in Fig. 13.

Notably, MorphoSys performance scales linearly with
the array size. For a 256 element RC Array, the number of
operations possible per second would increase fourfold,
with corresponding effect on throughput for 2D DCT and
other algorithms. The performance figures (in GOPS) are
summed up in Fig. 14 and these are more than 50 percent of
the peak values. The figures are scaled for future genera-
tions of MorphoSys, conservatively assuming a constant
clock of 100 MHz.

Some other points are worth noting: First, all rows
(columns) perform the same computations, hence they can
be configured by a common context (thus enabling broad-
cast of context word), which leads to saving in Context
Memory space. Second, the RC Array provides the option of
broadcasting context either across rows or across columns.
This allows computation of the second round of 1D DCTs
without transposing the data. Elimination of the transpose
operation saves a considerable amount of cycles and is
important for high performance. The transpose operation
generally consumes valuable cycle time. For example, even
a hand-optimized version of IDCT code for Pentium MMX
(that uses 64-bit registers) needs at least 25 register-memory
instructions for completing the transpose [20]. Other
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processors, such as the TMS320 series [16], also expend
some cycle time on transposing data.

Precision analysis for IDCT: Experiments were conducted
for measuring the precision of MorphoSys IDCT output
values as specified in the IEEE Standard [23]. Considering
that MorphoSys is not an ASIC, and performs fixed-point
operations, the results were impressive. The worst case
pixel error was satisfied and the Overall Mean Square Error
(OMSE) was within 15 percent of the reference value.

Zigzag Scan: The zigzag scan function consists of
irregular accesses and is therefore implemented through
transfer of image data to the TinyRISC processor. This
operation can also be carried out in the RC Array using a
modified version of the selective context enabling feature in
32 cycles. For this feature, only one column or row of the RC
Array operates in a cycle and each of the eight active RCs
receives a different context word from the Context Memory
(currently, selective context provides the same context word
to the eight active RCs).

7.1.3 Mapping MPEG-2 Video Encoder to MorphoSys

It is remarkable that, because of the computation-intensive
nature of motion estimation, only dedicated processors or
ASICs have been used to implement MPEG-2 video
encoders. Most reconfigurable systems, DSP processors, or
multimedia processors (e.g., [16]) consider only MPEG
decoding or a subtask (e.g., IDCT). Our mapping of the
complete MPEG-2 encoder to MorphoSys is perhaps the
first time that a reconfigurable system has been able to meet
the high throughput requirements of the MPEG-2 video
encoder.

We mapped all the functions for MPEG-2 video encoder,
except VLC operations, to MorphoSys. We assume that the
Main profile (low level) is being used. The maximum
resolution at this level is 352 x 288 pixels per frame at
30 frames per second. The group of pictures consists of a
sequence of four frames in the order IBBP (a typical choice
for broadcasting applications). The number of cycles
required for each task of the MPEG encoder, for each
macroblock type is listed in Tables 4 and 5. In Table 5, MC
and IMC refer to Motion Compensation and its inverse and Q
and IQ refer to Quantization and its inverse. Cycles required
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TABLE 4
Performance of MorphoSys for Motion Estimation

Macroblock type vs. Motion Estimation

MPEG function

Context | FB | Comput-
(clock cycles) Load | Load | -ation
P type 73 322 | 4602
B type 73 579 9384

for loading context and data from memory are also
included.

All macro-blocks in each P frame and B frame are first
subjected to motion estimation. Then, motion compensation,
DCT, and quantization are performed on each macroblock in
a frame. The processed macroblocks are sent to frame
storage in main memory. Finally, we perform inverse
quantization, inverse DCT, and reverse motion prediction for
each macroblock of I frames and P frames. Each frame has
396 macroblocks, and the clock cycles required for encoding
each frame type are depicted in Fig. 15. It may be noted that
motion estimation takes up more than 75 percent of the
computation time for P type and B type frames.

From the data in Fig. 15, and assuming IBBP frame
sequence, total encoding time is 108.4 ms. This is 81 percent
of available time (134 ms). From empirical data values in
[22], 19 percent (remaining time) of available time is
sufficient to compute VLC. Table 6 shows that figures for
MorphoSys MPEG encoder (without VLC) are at least an
order of magnitude less than the corresponding figures for
REMARC [35]. The algorithm (FSBM) for motion estima-
tion, which is the major computation, is the same for
REMARC and MorphoSys and the frame parameters are
also similar.

7.2 Automatic Target Recognition (ATR)

Automatic Target Recognition (ATR) is the machine
function of automatically detecting, classifying, recogniz-
ing, and identifying an object. The ACS Surveillance
challenge has been quantified as the ability to search
40,000 square nautical miles per day with one-meter
resolution [24]. The computation levels reach the hun-
dreds-of-teraops range when targets are partially obscured.
There are many algorithmic choices available to implement
an ATR system.

TABLE 5
MorphoSys Performance for MC, DCT, and Q
Macro-block MC, DCT, Q ( / for
type vs. 1Q, IDCT, IMC)
MPEG functions | Context FB Comput-
(clock cycles) Load Load -ation
I type 258/258 | 102/102 | 624/624
P type 258/258 | 204/204 | 672/672
B type 258/N-A | 306/N-A | 720/N-A

[OMotionEst. WMC,DCTandQ ElInvQ, IDCT, IvMC |
B frame I
P frame l:|
| frame .:|
0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06

Cycles

Fig. 15. MorphoSys performance for |, P, and B frames (MPEG-2 video
encoder).

The ATR processing model developed at Sandia Na-
tional Laboratory [25], [26] has three major parts, namely,
Focus-of-Attention (FOA), Second Level of Detection (SLD), and
Final Identification (FI). This model was designed to detect
partially obscured targets in Synthetic Aperture Radar
(SAR) images generated by the radar imager in real time.
SAR images (8-bit pixels) are input to a focus-of-attention
processor to identify regions of interest (called chips). These
chips are thresholded to generate binary images and the
binary images are then matched against binary target
templates. Target templates appear in pairs of a bright
and a surround template. The bright template identifies
locations where a strong radar return is expected, while the
surround template identifies locations where strong radar
absorption is expected. The SLD step is the most computa-
tion-intensive and is shown in Fig. 16.

Computations for SLD (Sandia ATR model): Based on [25],
the sequence of steps involved in SLD are:

e  First, the 128 x 128 chip (with 8-bit pixel values) is
sliced into eight bitplanes to compute the shapesum,
which is a weighted sum of the eight results
obtained by correlating each bitplane with the bright
template.

e Next, the target template pairs are matched with the
chip. The matching is based on bit-correlation and is
performed on eight different binary images that are
generated by applying eight threshold values to the
chip. The binary images are correlated with both the
bright and surround templates to generate eight pairs
of correlation results and the shapesum is used to
select one of the eight results.

TABLE 6
MPEG Encoder Comparison of MorphoSys and Remarc [35]
System / MorphoSys Remarc [35]
Frame type | (clock cycles) | (clock cycles)
I frame 0.5 x 10° 52.9 x 10°
P frame 2.3 x 10° 69.6 x 10°
B frame 4.0 x 10° 81.5 x 10°
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Fig. 16. ATR SLD processing model.

e The selected pair of results is subsequently for-

warded to the peak detector.

Bit-correlation: Both shapesum computation and target
template matching, which are the most computation-
intensive steps in the SLD process, require bit-correlation.
This operation is performed in highly parallel fashion in the
MorphoSys RC Array. Each row of the 8 x 8 target template
is packed as an 8-bit number and loaded in the RC Array.
All the candidate blocks in the chip are correlated with the
target template. Each column of the RC Array performs
correlation of one target template with one candidate block,
hence, eight templates are correlated concurrently in the RC
Array.

Fig. 17 illustrates the operation of the bit-correlator
implemented in MorphoSys. In order to perform bit-
correlation, two bytes (16 bits) of image data are input to
each RC. In the first step, the eight most significant bits of
the image data are ANDed with the template data and a
special adder tree (implemented as custom hardware in
each RC) is used to count the number of ones of the ANDed
output to generate the correlation result. Then, the image
data is shifted left one bit and the process is repeated again
to perform matching of the second block. After the image
data is shifted eight times, a new 16-bit data is loaded and
the RC starts another correlation of eight consecutive

8-bit template data 16-bit binary image data
(T T
1 Lyt b b
v JETRRRERE R R

1
IR
[ L B T I I I |
l [ L | LI A |
T TT— 1
11 1 [ |
'L [
l III > 1
1 11
A
— !

Result

Fig. 17. Bit-correlation process in each RC.
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Fig. 18. Performance comparison of MorphoSys for SLD (ATR).

candidate blocks. For this mapping scheme, each column
of the RC Array uses only four clock cycles to correlate one
8 x 8 binary image with an 8 x 8 target template.

Performance analysis: For analysis, we choose system
parameters implemented in [25]. The ATR systems from
[25] and [26] are used for comparison. Two Xilinx XC4013
FPGAs are used in the Mojave system [25]. The Splash 2
system, consisting of 16 Xilinx XC4010 FPGAs, is used in
[26]. The image size of the chip is 128 x 128 pixels and the
template size is 8 x 8 bits. The complete SLD processing
time for one pair of templates is 6.0 ms for MorphoSys.
About 24 ms are required for the Mojave system and each
processing element (eight FPGAs) of the Splash 2 system
[26] performs the computation in 12 ms. These results are
shown in Fig. 18.

The operating frequency of the FPGA-based Mojave and
Splash 2 systems is about 20 MHz, but this is relatively fast
for the FPGA domain. The frequency difference is also
offset by the fact that ATR operations are inherently fine-
grain and involve bit-level computations, which map very
well on FPGAs (but FPGAs still have other limitations, as
listed in [36]). Even though MorphoSys is a coarse-grained
system, it achieves better performance than the above
FPGA-based systems for the bit-level ATR operations.

ATR System Specification: A quantified measure of the
ATR problem [25] states that 100 chips have to be
processed each second for a given target. Each target has
40 pairs of templates for every five-degree rotation
(72 x 40 pairs for full 360-degree rotation). Considering
these requirements, 1,728 chips of MorphoSys (M1) would
be needed to satisfy this specification, as compared to
about 7,000 sets of the 2-FPGA Mojave system [25] and
1,728 boards of the 16-FPGA Splash 2 system [26].

7.3 Data Encryption Using IDEA

Data security is a key application domain. The Interna-
tional Data Encryption Algorithm (IDEA) [30] is a typical
example of this application class. IDEA involves proces-
sing of plaintext data (data to be encrypted) in 64-bit
blocks with a 128-bit encryption/decryption key. The
algorithm performs eight iterations of a core function.
After the eighth iteration, a final transformation step
produces a 64-bit ciphertext (encrypted data) block. IDEA
employs three operations: bitwise exclusive-OR, addition
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Fig. 19. Performance comparison for IDEA mapping on MorphoSys.

modulo 2'° and multiplication modulo 2'S + 1. It is assumed
that encryption/decryption keys are generated externally
and then loaded once into the Frame Buffer of MorphoSys.

When mapping IDEA to MorphoSys, some operations of
IDEA’s core function can be performed in parallel, while
others are performed sequentially. The maximum number
of operations that are performed in parallel is four. To
exploit this parallelism, clusters of four cells in the RC
Array columns are allocated to operate on each plaintext
block. Thus, the whole RC Array can operate on 16 plaintext
blocks in parallel.

Performance analysis: As two 64-bit blocks are transferred
simultaneously through the operand data bus, it takes only
eight cycles to load 16 plaintext blocks into the RC Array.
Each of eight iterations of the core function takes seven
clock cycles to execute within a cell cluster. The final
transformation step requires one additional cycle. Once the
ciphertext blocks have been produced, eight cycles are
necessary to write back to the Frame Buffer before loading
the next plaintext. It takes 73 cycles to produce 16 ciphertext
blocks.

A software implementation of the IDE algorithm on a
Pentium II processor requires 357 clock cycles to generate
one ciphertext block (performance profiled using Intel
Vtune). An ASIC, HiPCrypto [31], that provides a dedicated
hardware implementation of IDEA produces seven cipher-
text data every 56 cycles. The performance of these two
systems is scaled to the 100 MHz operating frequency of
MorphoSys, resulting in 153 effective cycles for Pentium II
(normally operating at 233 MHz for 0.35 micron fabrication
technology) and 16 effective cycles for HiPCrypto (which
operates at 53 MHz). This scaled relative performance is
depicted in Fig. 19.

8 CoNcLUSIONS AND FUTURE WORK

This paper has presented MorphoSys, a new reconfigurable
architecture. Its performance has been evaluated for many
of the target applications with impressive results that
validate this architectural model. Work on the physical
implementation of MorphoSys on a custom-designed chip,
M1, is in progress.

Extensions for MorphoSys model: It may be noted that the
MorphoSys architecture is not limited to using a simple

RISC processor as the main processor. There are many
options for the main processor, such as using an advanced
general-purpose processor in conjunction with TinyRISC
(which would then function as an I/O processor for the RC
Array). Also, an advanced processor with multithreading
may be used to enable concurrent processing of application
programs by the RC Array and the main processor.

Another potential focus is the RC Array. For this
implementation, the array has been designed for data-
parallel and computation-intensive tasks. However, the
design model allows other versions, too. For example, a
suitably designed RC Array may be used for a different
application class, such as high-precision signal processing,
bit-level computations, control-intensive applications, or
dynamic stream processing.

Based on this, we visualize that the MorphoSys
architecture may be the precursor of a generation of
systems that integrate advanced general-purpose proces-
sors with a specialized reconfigurable component, in order
to meet the constraints of mainstream, high-throughput and
computation-intensive applications.
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