Building and Using
a Highly Parallel
Programmable Logic Array

Maya Gokhale, William Holmes, Andrew Kopser, Sara

Lucas, Ronald Minnich, and Douglas Sweely

Supercomputing Research Center

Daniel Lopresti, Brown University

ith a $13,000 two-slot addition
called Splash, a Sun worksta-
tion can outperform a Cray-2

on certain applications. Several applica-
tions, most involving bit-stream computa-
tions, have been run on Splash, which re-
ceived a 1989 Gordon Bell Prize honorable
mention for timings on a problem that
compared a new DNA sequence against a
library of sequences to find the closest
match. In essence, Splash is a programma-
ble linear logic array that can be config-
ured to suit the problem at hand; it bridges
the gap between the traditional fixed-func-
tion VLSI systolic array and the more
versatile programmable array.!-?

As originally conceived, a systolic array
is a collection of simple processing ele-
ments, each with a fixed, data-independent
function, along with a one- or two-dimen-
sional nearest-neighbor communication
pattern.? The local nature of the communi-
cation gives the systolic array a high com-
munications bandwidth, and the simple, fixed
function gives a high packing density for
VLSI implementation. However, since the
function is built in, the application space of
a particular systolic array is rather limited.
Recognizing the benefit to be gained from a
more flexible base for systolic algorithm
implementation, H. T. Kung and colleagues

January 1991

Construction of real
hardware and feedback
from real users
contributed to Splash’s
design, development,
and success. For
certain pattern-
matching applications
its price/performance
ratio is unmatched.

builtthe Warp array,' a linear array in which
each cell is a powerful very-large-instruc-
tion-word processor. Currently, a two-di-
mensional array of custom 32-bit proces-
sors is being built jointly by Intel and
Carnegie Mellon University.*

Like the simple fixed-function systolic

0018-9162/91/1000-0081501.00 © 1991 IEEE

array, the linear array of chips comprising
Splash is programmed at a very low level.
A hardware implementation of the desired
algorithm must be synthesized. Unlike the
fixed-function systolic array, the “hard-
ware” can be reprogrammed and loaded
with new algorithms. This is made possible
by using field-programmable gate arrays
(FPGAs) as the chips of the linear array.
Unlike the programmable systolic array,
each stage of linear array does not have an
instruction set architecture. Rather than
processors with a fixed instruction set, a
stage contains several hundred “configu-
rable logic blocks,” each of which can be
configured at the gate level to compute
certain sorts of Boolean functions. There is
no fixed number of systolic cells in the
Splash array. The amount of logic in each
cell determines the number of systolic cells
per chip and therefore the number of cells
inthe array. Typical applications have eight
or 16 systolic cells per chip.

This gate-level programmability enables
high-speed execution of algorithms, since
only necessary circuitry executes. Systolic
and parallel algorithms implemented at the
gate level on Splash have achieved speed-
ups of up to 330 over one Cray-2 proces-
sor’; speedups greater than 10 times are
achieved routinely.

81

Host

VME bus J

8-megabyte VSB staging memory

nl 71
VSB bus
y
Xilinx control chips
Wemory l ‘ Memory l ’ MemoryJ rMemory] ‘ Memory \
[FiFoin x \ —————— ['x30 | [FIFO out
i 0 X1 l 3 [| X31

Figure 1. The 32-stage linear array.

Overview of Splash

The Splash design was motivated by a
systolic algorithm for DNA pattern match-
ing.® From the outset, the application do-
main has focused on non-floating-point
applications such as pattern matching. Many
pattern-matching applications must recog-
nize when two sequences are similar, even
though they may not be identical. Exam-
ples include speech recognition, data re-
trieval, and genetic analysis.” The Splash
architecture is suited to one-dimensional
pattern matching. A two-dimensional im-
plementation with similar FPGA technolo-
gy has been built by Digital Equipment
Corporation Paris Research Labs.3

The design of a prototype was begun in
September 1988 at the Supercomputing
Research Center. In June 1989, Splash was
released to the SRC user community.
Operational at that time were five Splash
systems, the Logic Description Generator
(LDG) language, and the Trigger symbolic
debugger. Currently, 16 Splash arrays are
inuse at SRC, Brown University, and else-
where.

System. Splash consists of two boards,
the first containing the linear array and the
second containing a dual-ported memory
card. The two boards reside in two VME
(Versabus modified for Eurocard) slots of a
Sun-3 or Sun-4 workstation (see Figure 1).

The Splash logic-array board holds 32
Xilinx 3090 programmable gate arrays’
and 32 memory chips. Two additional Xil-
inx chips are used for bus control. The
logic array card connects to the Sun VME
bus for control and the Sun VME Subsystem
Bus (VSB) for data 1/0. The associated

82

dual-ported memory card connects to the
Sun VME bus for data initialization and
retrieval and to the Sun VSB bus for data
1/0 to and from the logic array.

Programming. Splash is programmed
by specifying the logic functions and inter-
connections of each of 320 configurable
logic blocks (CLBs) and 144 input/output
blocks (IOBs) on each of the 32 chips. A
Xilinx 3090 FPGA contains a 20 X 16 grid
of CLBs surrounded on the perimeter by a
single layer of IOBs (Figure 2). A CLB has
a combinatorial logic section, two D flip-
flops, and an internal control section. The
CLB can be configured to generate any
function of five variables, any two func-
tions of four variables (see Figure 3), or
some functions of up to seven variables.
The I0Bs provide the interface between
external package pins and the internal log-
ic. Each IOB has input and output buffers,
which include both registered and direct
data paths.

Each Xilinx chip is programmed at the
gate level using the Logic Description
Generator language. LDG is a computer-
aided design tool developed at SRC, with
language constructs to describe and repli-
cate systolic cells and to place the cells on
achip. Parameterized cell descriptions may
be written, providing a functionality simi-
lar to the VHDL (VHSIC hardware de-
scription language) generate command.

Splash designs are debugged using the
Trigger symbolic debugger, also devel-
oped at SRC. Trigger is similar to a software
debugger, with user-definable procedures
and local variables. The values of specific
locations on the gate array can be examined
symbolically. The array can be single
stepped or stepped in burst mode. Inter-

rupts can either be ignored or can invoke a
Trigger procedure.

LDG and Trigger permit rapid design
turnaround time that is more comparable to
software than hardware redesign. With
LDG, it takes only a few keystrokes to
significantly modify a chip design, which
can be easily tested with Trigger. These
design tools, plus the fact that a design can
be loaded on the board in half a second,
make it easier to generate and test a new
chip design on Splash hardware than to
simulate several different designs before
committing to hardware.

Hardware development

Designing and developing Splash re-
quired numerous decisions and trade-offs
in defining the hardware (and the LDG and
Trigger, as described in later sections).

The systolic array, as first envisioned,
was to consist of many stages connected in
aone-dimensional array. Each stage was to
have three components: a Xilinx FPGA,
local memory, and a floating-point chip.

The initial design called for dual-ported
local memory so that the host could direct-
ly access all the memory on the board. For
the prototype, we planned to develop a
simple one-board system that would plug
into a Sun workstation, communicating
with the Sun CPU over the VME bus.
Because we opted for a single-board sys-
tem, space became the constraining factor.
Thirty-two FPGA/SRAM pairs fit nicely
on a 9U x 400-millimeter card but left no
room for floating-point chips. Since the
application driving the design did not re-
quire floating-point manipulation, we
eliminated floating-point chips from the

COMPUTER

design. That left 32 stages, each with an
FPGA and an SRAM chip.

At that time, the biggest and fastest
memories were single- ported 128K x 8, 50-
nanosecond SRAMs, Thus, we were faced
with choosing between slower, dual-port-
ed, host-accessible SRAMs and faster, sin-
gle-ported memories accessible only
through the Xilinx chips. Since we expect-
ed applications to use the local memories
primarily for constant tables, which would
be loaded initially through the host and
accessed only locally, we opted for the
faster, single-ported SRAMs.

Finally, we used two more Xilinx chips
for the VME bus interface so that changes
to the VME interface design could be
quickly implemented without modifying
the hardware.

Tosimulate or not to simulate. Because
the flow of systolic algorithms is data inde-
pendent, we could estimate the prototype’s
performance on targeted applications be-
fore actually building the board. However,
several potential users questioned the ac-
curacy of these predictions. They felt we
should simulate the design first, but ini-
tial estimates showed that simulating the
Xilinx chips on a Zycad SDE would be
2,500 times slower than Splash — even for
simple programs.

Since the board design was relatively
simple, we decided to build the board rath-
er thaninvestresources in a simulator. This
turned out to be the right decision. It took
two engineers only six months to get the
first board up and running. Since we chose
not to write a simulator, the software engi-
neers developed the programming and de-
bugging tools simultaneously with the
hardware.

Communicating with the host. A sim-
ple VME interface was built first. The
initial design had specified this as the only
communication channel to the Sun host.
Realizing that the Splash card could quickly
outrun the 1 millisecond/32-bit VME
transfer rate, we added a second, faster
communication channel, the VSB bus. This
necessitated a second off-the-shelf, dual-
ported memory card as a staging memory
for Splash. The original VME interface
was retained for control transfers.

In the revised design, the Sun transfers
data to and from the staging memory via
the VME bus, and Splash communicates
with the staging memory over the VSB
bus. The addition of the VSB interface
considerably complicated the design, but
at the time we felt the factor of two in I/O

January 1991

[01]02] (03] 04]
xclk seir
- 1,1 1,2 1,16 —
sell intr
3,0 . 3,33
— 2,1 2,2 . -

4,0 4,33
37,0 37,33
19,1 19,2 19,16
38,0 38,33

X
X
20,1 20,2 20,16 X
41,1 41,32
[beast[41.2] [41.3]41,4] [41,31]hdsk

Figure 2. The layout of a Xilinx 3090 chip.

o
.

DI
A
B
Qx
Any function
Qv of up to four F

variables

D
TD— flip
flop

Qx
Qy

c PJ

w)

D

m

Any function
of up to four G
variables

L | b
‘D— flip
flop

Figure 3. A configurable logic block.

speedup compensated for the additional
complexity.

Design for debuggability. Development
of an actual hardware system often leads to
incorporating features that might not seem
necessary in a simulated environment. For
instance, hardware support for debugging
programmed applications on the Splash board
would not have been a consideration in a

paper study. It was clear early in the devel-
opment, however, that we had to design for
ease of debugging. The designer has to have
some way of knowing what the gate arrays
are doing at any given point in time.
Fortunately, the Xilinx chips have a fea-
ture called state readback. Just as the chip
is programmed by shifting into the chip a
64K serial string of bits, the state can also
be read out. The configuration of the chip

83

and the state of all user-definable flip-flops
on the chip are shifted out. This feature,
combined with the ability to single step (or
step in bursts), has proven extremely valu-
able for debugging user programs.

Although state readback and single step
were incorporated into the 32 Xilinx chips
in the array, these features were not used
on the two Xilinx chips for the VME in-
terface. To debug the logic on these chips,
we had to use the traditional logic analyzer
to observe signals on the chip’s external
pins. To observe internal signals, however,
we had to redesign the chip, bringing these
signals to external pins. These external
routings made the chip more complicated
and altered signal timings (longer paths) of
critical logic sections. The external routings
changed frequently and eventually had to
be removed after debugging, thus the actu-
al design was not really debugged at all.
Having state readback and a debugger for
these control chips would have drastically
reduced the design time for Splash.

In addition to state readback and single
stepping, other important debugging fea-
tures include a user-definable variable-
speed clock and maskable interrupts. If
desired, the clock may be stopped as soon
as an interrupt occurs. The user can op-
tionally provide data flow control; if the
input buffer (FIFO) between Splash and
the VSB memory is empty, the clock
“pauses” allowing the FIFO to fill, insur-
ing contiguous data from the staging mem-
ory. Because the control logic was imple-
mented with the Xilinx chips, many
additional features were added after the
board was built.

SRAM and Xilinx chip connection.
We considered two alternative methods of
connecting the SRAMs to the Xilinx chips.
The first, perhaps more straightforward
approach, was to dedicate 28 pins of each
chip to SRAM. Each chip would have its
own local memory, accessible only to that
chip. However, we wanted high intercon-
nectivity between Xilinx chips. Taking away
28 pins exclusively for the SRAM was
undesirable.

The alternative strategy, which we
adopted, called for an SRAM connection
to share lines connecting two chips. This
had several additional advantages. The
memory was now accessible to two adja-
cent chips. giving the designer the option,
for example, of having every other stage
have a memory of size 256K x 8 or 128K x
16. Another possibility is for one stage to
be the reader and the next the writer. If the
local memory is not required, the single

84

The goal of the
architectural study
was to design and

implement a
programmable
linear array.

dedicated line to it can be disabled, and the
other 27 pins can be used for communicat-
ing with the adjacent chip. The hazard of
this implementation is that the designer
must coordinate access to the memory so
thatboth chips do not try to access the same
SRAM at the same time.

Evaluation. We have evaluated Splash’s
performance on real applications, as well
as on a set of synthetic benchmarks, and
found the following of note.

* I/O-limited. The Splash board is in-
deed I/O-limited. Many applications could
run at least an order of magnitude faster
with better [/0.

¢ Host inaccessibility to SRAMs. Al-
though the application designer can work
around the lack of dual-ported SRAM
memories to the host, the inconvenience of
getting data into and out of the local mem-
ories rules out some applications that need
host access to local memory. Using bigger,
wider, and faster memories would be an
important objective for a follow-on design.

* State readback. The state readback
capability was originally designed for de-
bugging. However, we found another im-
portant, unanticipated use. Often, it is
convenient to design a systolic algorithm
in which the results are accumulated in
stationary registers in the array. In this
case, state readback can be used to read
results at the end of a computation. This
technique has been used in many Splash
applications. However, the amount of time
to read back the state (about half a second)
is often too long. A 64K bit stream is sent
to the Sun host and filtered. The remaining
1,024 bits constitute the desired state in-
formation. The new Xilinx 4000 series
discards the extraneous bits (which encode
each chip’s CLB and IOB configurations)
at the chip. We plan to use the new part in
Splash follow-ons.

* Using the VSB. We expected the addi-
tion of the faster VSB to speed I/O by a
factor of two. This proved to be the case for
applications that made repeated passes over
the data set; however, applications that
made only a single pass paid a penalty. The
data first had to be loaded over the VME
bus to the staging memory and then from
the staging memory to the logic array board.
Results also had to go first to the staging
memory and then through the VME back to
the host. Thus, single-pass applications ran
slower than they would have with only the
VME interface for data. Because we’ve
found that applications are typically one
pass rather than multiple pass, we are now
making VSB-less single-board systems per
the original design.

Not all of these features would have
been considered if a prototype had not been
built. The applications work has given us a
greater understanding of the limitations
and capabilities of Splash.

Path to the Logic
Description Generator

Initial language. The intent of the Splash
project was to study the systolic model of
computing both architecturally and at the
language level. The goal of the architectural
study was to design and implement a pro-
grammable linear array. The language ob-
jective was to understand the essential
language constructs that describe a systolic
computation; to define or adapt an existing
language in which those systolic constructs
were embedded; and, if an appropriate target
machine was built, to implement a compil-
er for the language.

The core systolic constructs we selected
were (1) the notion of alogical systolic cell
through which data are streamed and (2)
the replication and interconnection of the
logical cells to form the systolic array.

The language construct satisfying the
first need is called a remplate, which is
associated with named input and output
signals and whose body, in a hierarchical
fashion, can contain other templates as
well as language primitives. In response to
the second need, we developed a concise
notation to specify the replication and in-
terconnection of the parts in a template.

In the first iteration of LDG design, the
language primitives consisted of the usual
Boolean logic operations as well as D flip-
flops. The language processor expanded
hierarchically invoked templates until a

COMPUTER

primitive was encountered. The primitive
was then output in a format required by the
Xilinx tools.

Required revision. We implemented this
initial version of LDG and found that pro-
gramming the Xilinx chip at the logic
equation level did not effectively utilize
the chip. Our experience showed thatusing
Xilinx tools to automatically pack the logic
equations into logical CLBs, to assign the
logical CLBs to physical locations on the
chip, and finally to route the chip resulted
in, at most, 10 percent use of the CLBs.

Our performance requirements demand-
ed high chip-area use. Thus, the realities of
the design environment dictated a change
to the language: We added CLB templates
and IOB templates as new primitive tem-
plates. The designer could configure these
templates just as with the Xilinx-supplied
tools (for example, as a function of five
variables). In addition, we added the con-
cepts of location and shape to the LDG
language. Each partinatemplate is assigned
a location on the CLB/IOB grid and a
rectangular shape. The location can be ei-
ther relative, in terms of parameters passed
into the template, or absolute. The addition
of user-directed placement gave the designer
complete control over the layout of logic
on the gate array. In conjunction with the
replicated part, it became possible to spec-
ify the configuration of an entire chip with
relatively little effort.

Ergonomics. The LDG syntax and user
interface also evolved as designers wrote
LDG programs and debugged them on real
hardware. LDG is embedded in Common
Lisp, and the initial language syntax con-
sisted simply of calls to Lisp functions.
This required users to develop some famil-
iarity with the Lisp environment, especial-
ly since syntax errors threw the user into
the Lisp debugger. Responding to user
feedback, we designed a more intuitive
keyword-driven syntax and added exten-
sive error-handling from within LDG so
that users did not have to interact with the
Lisp debugger.

Although a graphical editor was avail-
able from Xilinx, users preferred the text
interface for its ease of modification. A
few text changes could modify every CLB
on every chip, which is very tedious with
the graphical editor.

LDG example. The simple example in
Figure 4 illustrates various LDG language
constructs. The figure shows a two-bit
pipeline, Pipe2, with input signals sig0,

January 1991

sigl, and clk and output signals outO and
outl. Internally, Pipe2 consists of 16 cop-

ies of another template, cell. Figure 5 shows
the internal structure of Pipe2. The arrays
of signals a and b are internal to Pipe2 and
pass the signal between adjacent stages.
Figure 6 shows the LDG template for
Pipe2. Note the correspondence between
the set of input signals in the block diagram

sig 0—p
sig 1P| Pipe2

clk —

H» out 0

H» out 1

and the input clause on the second line of
the LDG program (and similarly for out-

put). The location clause passes in the

Figure 4. A two-bit wide pipeline.

. a[1] a[15] outo
sig 0 e . >
siq 1 cell cell s cell

9 [1] b[2] 2] b(15) | [16] outt

Figure 5. Internal structure of Pipe2.

(template pipe2
(input sig0 sigl clk)
(output out0 outl)
(location pos-x pos-y)

; template name
; input signals
; output signals

(part-list
((name pl)
(part cell)
(input sig0 sigl clk)
(ouput (index al) (index bl)
(location 'row !col))

; first part: pl

;output a[1}, b[1]

((name p2-15)
(range! 2 to 15)
(shape row-major | by 14)
(start-row pos-x)
(start-!col (1 + pos-y))
(part cell)
(input (index a(1-!)) (index b(1-!)) clk)
(output (index a!) (index b!))

; second part: p2-15
; make 14 copies

; of cell

(location 'row !col))

((name p16)
(start-!row pos-x)
(start-!col (+ 15 pos-y))
(part cell)
(input (index al5) (index b15) clk)
(output out0 outl)
(location !row !col))

; third part: p16

;of cell

; output out0, outl

; position parameters

; of cell, input sig0, sigl, clk

; for 1 row and 14 columns
; at (pos-x, pos-y + 1) for

; with inputs af!-1], b[!-1], clk
; and outputs a[!], b[!]
: for ! in the range 2 ... 15

; at (pos-x, 15 + pos-y)

; with inputs a[15], b[15], clk

Figure 6. Logic-description-language template for a two-bit pipeline.

85

starting row and column for parts in the
template. The names used here, pos-x and
pos-y, are referenced again in a (start-
!row...) or (start-!col...) clause for a part.

Within Pipe2 there are three parts: pl,
p2-15, and pl6. Part p2-15 invokes 14
copies of the template cell because of the
range clause (range! 2 to 15).

The (shape row-major...) clause specifies
the layout of these 14 cells. The first copy of
cell is placed at location (pos-x, pos-y + 1).
The next is at (pos-x, pos-y + 2), and so
forth. Note that the number of copies of the
template cell specified by the range clause
(2 .. 15 = 14) must equal the number of
copies specified by the shape clause (1 row
X 14 columns = 14). The final two parame-
ters are being sent to cell, and their values
are the current row index (!row) and current
column index (!col), respectively.

Pipe2 is instantiated with the call com-
mand.

(call pipe2)

(input din0 dinl clk)
(output dout doutl)
(location 1 1)

In the generated Xilinx commands, the
names din0, dinl, and clk will be substitut-
ed for the dummy input parameters sig0,
sigl, and clk (similarly for output). (pos-x,
pos-y) will be assigned values (1, 1), and
the expressions using pos-x and pos-y will
be evaluated so that the evaluated values,
constant integers, will be output as a CLB
location.

Here, we’ve omitted the LDG specifica-
tion of cell. This template isa CLB template,
configured simply to pass data through
unchanged.

Another useful feature of LDG in im-
plementing systolic algorithms is its abil-
ity to write parameterized template defi-
nitions. The hardware designer can design
aschema of a structure, a generalized shift
register, for example, and then instantiate
different schema instances by invoking the
schema with different parameters. The re-
petitive layout and the control over place-
ment are available at the schema level as
well as in the base language.

The readeris referred to our earlier work '°
for examples of schema definition and use.

Splash runtime
environment

The Splash runtime environment on the
Sun workstation consists of a symbolic

86

Library routines
created for use
by the debugger
can also be invoked
from C programs,
so applications
programs can direct
the Splash board.

debugger Trigger and a kernel driver to
control the Splash device and the VSB
interface. (The debugger borrows much of
its code from the Horizon Simulator," hence
the name Trigger, son of Horse.) Library
routines created for use by the debugger
can also be invoked from C programs, so
applications programs can direct the Splash
board and gain access to Splash-related
symbols just as the debugger does. In ad-
dition, there are graphical tools to view the
activity of a single chip or of the entire
array.

Below we discuss some debugger capa-
bilities and how they can be accessed from
independent C programs.

Loading chip designs. All the chips are
loaded in parallel, with each bit of the 32-
bit word going to a different chip. The
entire board can be loaded in half a second.
The same file may be used for multiple
chips, a different file for each chip, or any
combination thereof.

Stepping the board. Trigger allows the
user to step a selected number of clocks.
Commonly, the user initially single steps
the design, monitoring variables on the
chips at each step. As more and more of the
design starts to work, the user typically
steps the design through a larger but still
well-defined number of clocks. Signals
from the chips can be designed to interrupt
or assert a flag in one of the control and
status registers. In either case, the counted
clocks are stopped.

Trigger procedures. Trigger allows the
user to create and invoke procedures, a
handy capability for frequently used com-
mands. A basic library of Trigger proce-

dures has grown over time and is available
to the users as part of the Trigger library.

The command language for Trigger is
similar to the command language for the C-
shell. There are conditional statements,
while statements, for loops, user-defined
variables that may contain strings or nu-
meric values, and a number of other state-
ments found in many command language
interpreters. The variables may be user-
defined and can control flow of the Trigger
procedure being executed.

Nondestructive readback. The user may
examine on-chip state at any time and then
resume the program. In fact, symbols may
be evaluated as part of conditional looping.
Thus, a user’s procedure may run a design,
examine an on-chip variable, and make a
decision about whether to continue running
the design based on that variable.

Support for interrupts. The Splash
board can generate interrupts. These in-
terrupts are vectored through the kernel
driverand to the user program via the siglO
signal. Trigger allows the user to specify a
procedure (interrupt service routine) to be
invoked when the signal is received. There
is a default procedure, which will print out
information about the type of interrupt and
why itmight have occurred. Interrupts may
also be disabled. The user can decide
whether to defer processing of interrupts or
to ignore them completely.

Accessing Trigger from C. Trigger and
auser’s C or Fortran programs can interact
in a variety of ways. In the simplest mode,
a user program can call Trigger library
routines to run Splash. If desired, parts of
the symbolic debugging environment can
be accessed from the user program, up to
the point of actually dropping into the de-
bugger from a user program when some
condition is met, such as when a user types
Control-C to generate an interrupt or when
anon-chip variable reaches a certain value.

Sequence comparison
on Splash

A pattern-matching algorithm has been
implemented on Splash and on a variety of
other supercomputers. In genetic analysis,
sequences over the four-character alphabet
A, C, G, and T represent DNA molecules,
and similarity between sequences may indi-
cate an evolutionary or functional relation-
ship. When attempting to characterize an

COMPUTER

unfamiliar sequence, a biologist will often
compare it to collections of known DNA

with the hope of finding close matches.
There are many ways to measure the
similarity between two DNA sequences.
One appealing measure to biologists is the
evolutionary distance, defined as the min-
imum cost series of single character dele-
tions. insertions, and substitutions needed
to transform the source sequence S into the
target sequence 7. If S =51, 52, ... Spps T=1,
ts, ... by, and d; ;s the distance between the
subsequences s, Sy, ... s;and £, £, ... 1;, then

dyy=0

dig = diy o+ Cael (59) l<i<m

dy.j=do j-1 + Cing (1)) t<sjsn
and

diy j+ cger(s9)
dLj = min dl.j% + Cins (tj)
diy j1 + Coup (Sil)
1<j<n1<i<m

Here cge (5;) is the cost of deleting s;, Cing (7))
is the cost of inserting ;, and ¢y (5:,1)) is the
cost of substituting ¢; for s;.

With one processor, this dynamic pro-
gramming formulation requires time pro-
portional to the product of the lengths of
the two sequences. Because DNA sequences
are long (tens of thousands of characters)
and genetic databases are large (tens of
millions of characters), exhaustive searches
can require hours of mainframe time.

Fortunately, there is tremendous poten-
tial for parallelism in the recurrence given
above: All values d; ; can be calculated
simultaneously for a given k = (j+i).
Mapping the recurrence onto a linear sys-
tolic array is a straightforward procedure.

One such arrangement is shown in Fig-
ure 7. The characters of the source sequence
flow in from the left, while the characters
of the target flow in from the right. Each
processing element evaluates the recurrence
every clock “tick.”

The Princeton Nucleic Acid Comparator
(P-NAC) is an NMOS realization of this
array, designed and built for the sole pur-
pose of comparing DNA sequences.® The
implementation assumed that ¢4ei(s;) = Cing(1))
= |, forall 5;and ¢;, and that c,p(s1;) = 0 if
s; matches t; and cp(spty) = 2 otherwise.
Benchmarks established that P-NAC was
several hundred times faster than mini-
computers of the day.

Splash implementation. In the Splash

implementation, a processing element is
composed of two modules: a character com-

January 1991

[2]3]4]5]6]7!
RN
o mbo tytey
3 2 1 1 2 3
s [s] IR g
| !
!_U)
Iyl
!
om] [L
lc| i1 lolt]s]
HRERRRE
17161514132,

Figure 7. A linear systolic array for sequence comparison.

Src Chr In—e-2 4y Src Chr Out
Character '
comparator

Tgt Chr Out 44 <4 TgtChrin

Scr Null Tgt Null
Match
2 2
Src Dst In > » Src Dst Qut
Finite
state machine
(Mod 4) »
Tgt Dst Out o — Tgt Dst in

Figure 8. Block diagram of a sequence comparison processing element.

parator and a finite state machine (see Fig-
ure 8). The source and target characters,
each four bits, are compared during the first
clock phase. The finite state machine com-
putes a new distance based on the results of
this comparison and the source and target
distances during the second clock phase.

Each systolic processing element is real-
ized using 12 CLBs arranged as a 6 x 2
module. In the current implementation, this
basic cell is replicated 24 times on each of
the 30 middle chips, and 12 times on the
two end chips, to yield a total of 744 pro-
cessing elements.

87

Table 1. Benchmark results for 100 comparisons of 100-long sequences.

Connection Machine CM-2 4.7

Cray-2 6.5
Convex C1 8.9
Sun 3/140 48
Sun Sparcstation I 5.8
DEC VAX 11/785 54

Best time
Machine inseconds Speedup Notes
Splash 0.020 2,700 1 MHz, Sun 3/260 host
P-NAC 0.91 60 Special-purpose NMOS
device, Sun 2 host
Multiflow Trace 3.7 14 C compiler, optimization

level 5, 14 functional units

11 C compiler, Paris
library 16,000 processors

8.3 Vector Pascal, one head

6.0 Vector C compiler,
optimization level 2

1.1 C compiler
9.3 C compiler

1.0 C compiler

Two characters from each sequence are
transferred from Splash’s dual-ported
memory card to the array’s input FIFO
every microsecond at a |-megahertz Sys-
tem clock. These are unpacked by logic in
chip 0 and pumped into the appropriate
sides of the systolic array. The evolution-
ary distance is maintained in an up/down
counter in chip 31 and read from the output
FIFO as the last step of the comparison. All
logic was specified using the LDG lan-
guage.

The time needed to download the con-
figuration file to Splash is negligible if
more than a few comparisons are going to
be performed. Once the programis in place,
the systolic array reinitializes itself asyn-
chronously; two new sequences may be
input as soon as the previous ones have
exited. Currently the implementation is
exercised using Trigger, although eventu-
ally it will be callable as a stand-alone C
language subroutine.

Performance evaluation. We have pro-
grammed the basic sequence comparison
algorithm on a representative assortment of
sequential and paralle]l machines. When
performing 100 comparisons of sequences
that are 100 characters long, Splash is 45

88

times faster than its nearest competitor (the
special-purpose P-NAC) and almost 200
times faster than the fastest commercial
machine (a Multiflow Trace). See Table 1.

Splash and P-NAC exploit significantly
more of the problem’s inherent parallelism
than do the other machines. As the lengths
of the sequences increase, the relative per-
formance of the systolic implementations
improves until the problem must be parti-
tioned, when the performance of all ma-
chines scales quadratically. (For Splash,
this partitioning limit is currently 128 x 128
characters, but it can be increased to 256 x
256 characters without much difficulty.) As
the number of sequences in the database
increases, the relative performance of the
Connection Machine improves somewhat
(up to a limit of 16K sequences), while the
performance of the other machines scales
linearly.

At present, the speed with which Splash
¢an compare sequences is constrained only
by the time it takes to transfer data from the
dual-ported RAM; while the on-chip logic
can be clocked as fast as 4 megahertz, the
FIFOs can be driven only at 1 megahertz.
Even so, Splash has an unmatched price/
performance ratio for this important
application.

he actual design and construction
I of real hardware formed the impe-
tus for many components, both
hardware and software, that would not have
been recognized as desirable in a “paper”
machine. Fundamental changes, such as
adding CLB and IOB templates and shape/
position directives to LDG were driven by
unforeseen shortcomings in Xilinx support
software.

Crucial features such as state readback
provided a convenient, efficient, and de-
tailed utility for debugging and production
designs to provide the user with necessary
data. This feature grew out of need, not out
of prior presumptions.

Having real users with a multitude of
applications brought many desirable fea-
tures to light, such as the C runtime support
library. It also led to significant modifica-
tions, for example, changes to LGD syntax
that simplified reading and writing code.

For the next Splash design, we would
like to introduce floating-point processors
as originally envisioned. Since global con-
trol of the board can be difficult, more lines
linking all of the stages would be helpful
for many applications. A microprocessor to
control the board might also be useful.
Finally, an algorithmic language would
enhance the designer’s ability to capture
the logic and flow of abstract systolic de-
signs. W

References

L. Annaratone et al., “Warp Architecture and
Implementation,” Proc. 13th Ann. Symp.
Computer Architecture, June 1986, pp. 346-
356.

2. P. Lee and Z.M. Kedem, “On High-Speed
Computing with a Programmable Linear
Array,” Proc. Supercomputing 88, Vol. I,CS
Press, Los Alamitos, Calif., Order No. 882,
pp. 425-432.

3. H.T. Kung, “Why Systolic Architectures?”
Computer,Vol. 15,No. 1, Jan. 1982, pp. 37-
46.

4. S. Borkar et al., “iWarp: An Integrated So-
lution to High Speed Parallel Computing,”
Proc. Supercomputing 88, Vol. I, CS Press,
Los Alamitos, Calif., Order No. 882, pp.
330-339.

5. M. Gokhale et al., “Splash: A Reconfigu-
rable Linear Logic Array,” Proc. Int’] Conf.
Application-Specific Array Processing, Sept.
1990; also available as Tech. Report SRC
TR90-012, Supercomputing Research Cen-
ter, Bowie, Md.

COMPUTER

6. D.P. Lopresti, “P-NAC: A Systolic Array
for Comparing Nucleic Acid Sequences,”
Computer,Vol. 20,No. 7, July 1987, pp. 98-
99.

7. D. Sankoff and J.B. Kruskal, eds., Time
Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Com-
parison, Addison-Wesley, Reading, Mass.,
1983.

8. P. Bertin et al., “Introduction to Program-
mable Active Memories,” DEC Paris Re-
search Laboratory, Tech. Report 3, 1989.

9. The Programmable Gate Array Data Book,
Xilinx, Inc., 1989.

10. M. Gokhale et al., “The Logic Description
Generator,” Proc. Int’l Conf. Application-
Specific Array Processing, 1990; also
available as Tech. Report SRC TR90-011,
Supercomputing Research Center, Bowie,
Md.

11. D.J. Kopetsky, “Horse: Simulator of the
Horizon Supercomputer,” Proc. Supercom-
puting 88, Vol. 1, CS Press, Los Alamitos,
Calif., Order No. 882, pp. 53-54; also avail-
able as Tech. Report SRC TR88-013, Super-
computing Research Center, Bowie, Md.

Maya Gokhale is a research staff member in
systems at the Supercomputing Research Center
in Bowie, Maryland, working in languages and
compilers for high-performance computers. Pri-
or to joining SRC in 1988, she was an assistant
professor at the University of Delaware. She
also has seven years of industry experience with
Burroughs and Hewlett-Packard as a design en-
gineer.

Gokhale received a BS degree in mathematics
(magna cum laude) from Wake Forest Univer-
sity in 1972 and MSE and PhD degrees in com-
puter and information sciences from the Univer-
sity of Pennsylvania in 1977 and 1983.

January 1991

William Holmes has been with the Supercom-
puting Research Center since 1987 as manager
of the Horizon and Splash projects. Before
that, he worked for NASA/Goddard, providing
computer support to spacecraft missions.

Holmes received his BS degree in mathe-
matics from LaSalle University in 1966 and his
MS in mathematics from Georgetown Univer-
sity in 1971.

Andrew Kopser has been a member of the re-
search staff at the Supercomputing Research
Center since 1987. His research interests are in
computer architecture and hardware modeling.
Kopser received his BSEE from the Universi-
ty of Virginia in 1987. He received his MS
degree in 1989 from the University of Maryland
at College Park, where he is currently pursuing
a PhD, also in electrical engineering. He is a
member of the IEEE Computer Society.

Sara Lucas is a member of the research staff of
the Supercomputing Research Center. Her cur-
rent interests include computer-aided design and
programming tools for systolic arrays.

She received the BS degree in computer sci-
ence from San Francisco State University in
1987. She is a member of ACM.

Ronald Minnich is a systems programmer at
the Supercomputing Research Center, working
in operating systems research and high-speed
networks. His most recent work includes the
Mether Network Shared Memory, a caching file
system for Unix, and the Trigger symbolic de-
bugger for Splash. Before joining SRC in 1988,
Minnich was a graduate student at the Universi-
ty of Delaware. He just completed a PhD in
computer science at the University of Pennsyl-
vania.

Minnich is a member of Eta Kappa Nu, the
IEEE Computer Society, and ACM.

Douglas Sweely is a member of the Supercom-
puting Research Center’s research staff. His
interests include embedded special-purpose
processors and microfabrication techniques.
Before joining SRC in 1988, he designed real-
time data acquisition systems for particle detec-
tors at Brookhaven National Laboratory.

Sweely received the BS degree in physics
from Ursinus College in 1981 and the MS de-
gree in measurement and control from Carnegie
Mellon University in 1983.

Daniel Lopresti is an assistant professor in the
Department of Computer Science at Brown
University. He is also a consultant for the Super-
computing Research Center. His research inter-
ests include parallel architectures, VLSI design,
and computational aspects of molecular biolo-
gy.

Lopresti received the AB degree in mathe-
matics from Dartmouth College in 1982 and the
MA and PhD degrees in computer science from
Princeton University in 1984 and 1987.

Readers can write to the authors at the Supercomputing Research Center, 17100 Science Dr.,

Bowie, MD 20715.

89

