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Abstract

This study compares the speed, area, and power of differ-
ent implementations of Active Pages [OCS98], an intelligent
memory system which helps bridge the growing gap between
processor and memory performance by associating simple
functions with each page of data. Previous investigations
have shown up to 1000X speedups using a block of reconfig-
urable logic to implement these functions next to each sub-
array on a DRAM chip.

In this study, we show that instruction-level parallelism,
not hardware specialization, is the key to the previous suc-
cess with reconfigurable logic. In order to demonstrate this
fact, an Active Page implementation based upon a simplified
VLIW processor was developed. Unlike conventional VLIW
processors, power and area constraints lead to a design which
has a small number of pipeline stages. Our results demon-
strate that a four-wide VLIW processor attains comparable
performance to that of pure FPGA logic but requires signifi-
cantly less area and power.

1 Introduction

Accessing and manipulating data has become increasingly ex-
pensive as the gap between microprocessor and memory sys-
tem performance has widened. Rapid advances in DRAM
density have led to several proposals to move computational
logic into the memory system [P*97] [GHI95] [MSM97]. We
focus on Active Pages [OCS98], a page-based model of com-
putation which associates simple functions with each page
of memory. For example, an array data structure stored in
memory may have functions bound to the Active Page mem-
ory to perform common manipulation functions such as in-
sert, delete and find.

Active Page memory systems are intended to enhance mi-
croprocessor performance in a processor-memory architecture
and use the same interface as conventional memory systems.
Active Page data is modified with conventional memory reads
and writes, while Active Page functions are invoked through
memory-mapped writes. Synchronization is accomplished via
user-defined memory locations.

Active Pages are also capable of exploiting a high degree of
parallelism. A memory system typically contains hundreds to
thousands of pages of physical memory; Active Page systems
can potentially support simultaneous computations at each
of these pages. This page-based computation supports data
parallelism similar to supercomputers of the past, but in a
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ubiquitous technology aimed at commodity applications.

Previous work described an implementation of Active Pages
which integrated a block of reconfigurable logic with each sub-
array in a DRAM chip. By partitioning tasks between the mi-
croprocessor and this Active Page memory system, speedups
(compared to a conventional uniprocessor system running
data-intensive applications) of over 1000X were achieved. Al-
though this approach was shown to be extremely promising,
several unanswered questions remain.

Foremost among those questions was whether reconfigura-
bility is necessary to achieve high performance. This study
compares the reconfigurable Active Page implementation with
several designs based upon a simple processor core. The re-
sults reveal that the key to the performance gains achieved by
Active Page memory systems is the support of fine-grained
parallelism, not logic specialization.

To exploit this parallelism, we replaced the reconfigurable
logic with several different scalar and VLIW processor designs
and measured their performance using cycle-by-cycle simula-
tion. We have also evaluated their various power and area re-
quirements via design synthesis. In this paper, we show that
the constraints of the DRAM environment and the needs of
our data-intensive applications create design pressures which
differ substantially from the conventional microprocessor en-
vironment. In particular, power constraints limit the clock
speed of deeply pipelined designs with complex forwarding
logic. Although somewhat counter-intuitive, short pipelines
can actually be clocked faster than deep pipelines when the
power budget is low.

The next section gives some background on Active Pages.
Section 3 describes the Active Page implementations we ex-
plored. Section 4 describes the experimental methodology
we used to evaluate those implementations. Section 5 dis-
cusses our results. Section 6 describes related work. Finally,
Section 7 discusses future work and Section 8 presents our
conclusions.

2 Background

The Active Page project builds upon several ground-breaking
studies on intelligent memory. In particular, the Berkeley
IRAM project has demonstrated many of the benefits of in-
tegrating processors with memory in upcoming DRAM tech-
nologies {P*97] [F*97]. However, the focus in IRAM is on
replacing conventional architectures with single-chip systems.
While such systems have great potential for portable personal
devices, memory requirements for desktop applications are
likely to stay ahead of single-chip capacities.

Active Pages, on the other hand, is designed to replace
DRAM in conventional systems. Active Page chips will func-
tion as both conventional and intelligent memory. To exploit
the intelligent memory, computation for an application must
be divided, or partitioned, between the main processor and
the memory system. For example, Active Page functions are
used to gather operands for a sparse-matrix multiply and
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Figure 1: Active Page architecture (4 pages)

pass those operands on to the processor for multiplication.
To perform such a computation, the matrix data and gather-
ing functions must first be loaded into a memory system that
supports Active Pages. The processor then, through a series
of memory-mapped writes, starts the gather functions in the
memory system. As the operands are gathered, the proces-
sor reads them from user-defined output areas in each page,
multiplies them, and writes the results back to the array data
structures in memory. To keep operands from being read be-
fore they are ready, user-defined synchronization variables are
used.

If two Active Pages need to share data, the main pro-
cessor reads the data from one and writes to the other. This
processor-mediated approach to inter-page communication sim-
plifies system design but assumes infrequent communication.
The current prototype Active Page architectures assume a
program-guided approach to communication. This means
that the main thread of execution on the host processor is
required to poll its own Active Pages and perform any inter-
page communication requests explicitly. Future work will ex-
amine on-chip and off-chip hardware communication facili-
ties.

3 Architectures

The focus of this paper is on evaluating different imple-
mentations of the logic that performs Active Page compu-
tation. Our study compares and contrasts three approaches:
the original FPGA implementation, one that features a scalar
single-issue conventional MIPS-like RISC processor, and one
that employs a multiple-issue VLIW processor.

All of our implementations are targeted for fabrication in
commodity DRAM technology in a three- to five-year time
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frame. The Semiconductor Industry Association (SIA) pre-
dicts that 1G-bit DRAMs will be produced in commodity by
the year 2001 [Sem97]. We assume up to half the area on such
a chip will be required for the logic, reducing the memory to
0.5G bits. To reduce signal delay and power consumption, a
1G-bit DRAM is expected to be divided into 512K-byte sub-
arrays [IT97). Therefore, we assume each Active Page will
consist of one of these subarrays, and we add our interfacing
logic to each subarray. Given 128 subarrays per 1G-bit chip,
we have an area budget of 256K transistors per Active Page
for each associated computational logic element. Allowing for
degraded logic in a DRAM process, this results in approxi-
mately 32M transistors for logic [Prz97]. Although we allo-
cate up to half of the available chip for computational logic,
clearly reducing this number will broaden the acceptance of
Active Pages within the DRAM manufacturing market.

Each of these designs was also found to benefit from a
small page cache that is integrated between the page based
processing element and the local DRAM subarray. Within
these design constraints we evaluate our three Active Page
configurations.

3.1 Reconfigurable Logic (FPGA-RAM)

Our FPGA-based Active Page implementation was first in-
troduced in [OCS98]. The use of reconfigurable logic is mo-
tivated by three factors. First, reconfigurable logic has been
shown to perform extremely well for special-purpose appli-
cations [BT96] [A*96). Second, Active-Page functions are
simple and require relatively low logic resources. Third, the
uniform nature of reconfigurable logic is expected to facilitate
defect tolerance and keep chip yields high [0CS98]. With
an area budget of roughly 256K transistors associated with
each Active Page, approximately 256 reconfigurable Logic El-
ements (LEs) can be implemented in current Altera FPGA
technology [A1t98]. This LE budget, while minimal, proved
adequate for the applications studied.

The reconfigurable logic is configured to support the func-
tions associated with each Active Page as the page is allocated
or swapped in from disk. In current technologies, reconfigu-
ration time will add about 50% to the allocation or swapping
of a conventional super-page. Emerging FPGA technologies
promise to reduce this overhead to less than 5% [GT99].

Exposing the reconfigurable nature of FPGA logic has its
disadvantages. The programming model for reconfigurable
logic differs substantially from traditional sequential process
programming. Although tools exist that can map conven-
tional programs onto reconfigurable logic, the density and
performance of the resulting circuit is often poor. Designing
circuits for execution in reconfigurable logic is a different sort
of skill than writing traditional software, and this may hinder
the acceptance of FPGA-based Active Page models.

In addition, power and area requirements are of great con-
cern. Already, the FPGA based architecture requires nearly
50% of the chip area for computational logic. Adding a small
page cache may require an additional 5-15% of chip area.
Clearly, a design that consumes less area is desirable. While
the programmability concern may be resolved by develop-
ment of an efficient library of routines that a programmer
may use for building applications, the area issue is more
challenging. Future reconfigurable architectures, such as the
PipeRench architecture from CMU [G199], are currently be-
ing explored as potential low power, low area reconfigurable
architecture candidates.
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Figure 2: VLIW-4 Processor using a conventional four-stage
pipeline

3.2 Scalar Processor (Scalar-RAM)

The simplest alternative to using FPGA logic is to replace
it with a small RISC processor. In this study, we have cho-
sen to replace it with a single-issue processor similar to the
MIPS R3000 [KH92]. Since many of the features of the R3000
are not required for Active Page operation, the available in-
struction set was substantially reduced. Our current scalar
implementation, Scalar-RAM, supports a minimal, but func-
tionally complete, 22 instructions.

The Scalar-RAM processor was designed in VHDL. It
uses a conventional five-stage pipeline with data forward-
ing. To eliminate branch delay, an aggressive dual-ported
instruction cache was modeled that is capable of fetching
down both paths of a conditional branch instruction. To con-
serve area, various features common to conventional proces-
sors were omitted, such as advanced memory management,
co-processor support, and various comparison and branch in-
structions. These features were not found to be necessary for
our applications. Instructions are 32 bits long, and there are
32 integer registers. Floating point support is not included.

Scalar-RAM simplifies Active Page allocation and swap-
ping by avoiding complicated logic reconfiguration. Code to
implement Active Page functions, however, must be stored
in the DRAM subarray. This storage takes away from data
storage space, but its effect is limited and generally requires
less than 5% of the DRAM storage. Storage for logic configu-
rations in the FPGA system is internal to the reconfigurable
logic area. For Scalar Active Page memory systems, the ad-
dress space is re-mapped so that all Active Page data and
code appear in separate, contiguous address spaces.

3.3 Multiple-issue (VLIW-RAM)

Performance comparisons between the reconfigurable and
scalar implementations reveal that the scalar architecture
fails to achieve the same level of performance as the reconfig-
urable architecture. The scalar implementation did, however,
require much less power and area than the FPGA. In order
to isolate the source of the FPGA’s higher performance (in-
struction level parallelism or logic specialization), a VLIW
architecture (VLIW-RAM) was designed. The design goal
of VLIW-RAM was to exploit the same level of ILP avail-
able to FPGA-RAM but have power and area characteristics
closer to Scalar-RAM. Section 5 will show in more detail the
benefits of parallelism versus specialization.
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Figure 3: VLIW-4 Processor using a two-stage pipeline

In this study, we took a conservative approach to de-
signing the VLIW-RAM architecture. Since we are work-
ing within an embedded DRAM process with very confined
power and area requirements, we examined three different
VLIW processor designs with different instruction and func-
tional unit widths (two-wide, four-wide, and eight-wide). In
Section 5, we evaluate these designs and isolate the optimal
width based upon performance, performance/area, and per-
formance/watt.

Since area constraints limit FPGA-RAM to 256 reconfig-
urable logic elements per Active Page, Active Page applica-
tions can generally consume no more than two 32-bit data
values from each page cache per cycle. Consequently, VLIW-
RAM has two data ports per page cache. This artificial re-
striction was placed on the VLIW in order to clearly isolate
the source of performance gains in the FPGA architecture.
In Section 5, an application study is also presented that dis-
cusses which applications may benefit from additional data
cache ports. Future work will explore this effect.

Branches can severely limit the amount of parallelism in a
VLIW. To minimize extra control instructions, we borrow a
common VLIW technique [Fis83] and allow several branches
per instruction parcel. The VLIW traverses the first taken
branch, thus permitting a form of precedence among the
branch conditions. Like Scalar-RAM, VLIW-RAM fetches
along all possible branch targets. While this is done in or-
der to limit pipeline stalls, it does complicate the instruc-
tion cache design. Hence, we limit the number of conditional
branches to two and direct branches to one. Consequently,
there are no more than three possible destinations, which im-
plies a three-ported instruction cache.

One drawback of VLIW designs is the super-linear in-
crease in hardware as functional unit width increases. Al-
though the number of register read and write ports scales
linearly, a traditional four- or five-stage pipeline requires a
super-linear growth in data forwarding busses. This is illus-
trated in Figure 2. Migrating from a one-wide to a four wide
processor entails a corresponding growth in forwarding logic.
Furthermore, the cross-bar interconnect between the second
and third pipeline stages implies a quadratic growth in re-
sources. We note that a two-stage VLIW processor design
does not require this super-linear growth in forwarding logic.
This is depicted in Figure 3.

Furthermore, power constraints prevent a deeply pipelined
processor from taking advantage of high clock rates. This sit-
uation is illustrated in Figure 4. The solid lines illustrate the
conventional situation where no severe power constraint is
placed upon the processor design. As the number of pipeline
stages increases, the quadratic increase in forwarding logic re-
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Figure 4: Pipeline stages versus clock speed and power con-
sumption. The dotted line illustrates the effect of working
under a power constraint.

sults in a commensurate increase in power. Once we reach the
limit of our power budget, then power must be held constant
and clock speed must decrease. This power-limited situation
is shown with the dotted lines. With the power constraint,
it shows that the clock speed is faster with shorter pipelines.
This is our motivation for exploring a short pipeline.

As power and area limitations become less restrictive, fu-
ture designs can achieve higher clock rates. A deeper pro-
cessor pipeline may be‘necessary to take advantage of these
clock rates. One method to reduce the required hardware
interconnect of the deeper pipeline is to limit the instruc-
tion set architecture [E1186] [CNO™88] [LFK*93]. This would
limit the required forwarding logic, trading off regularity in
instruction set architecture for reduced hardware area. Cur-
rent work has not focused on such design techniques and their
potential impact on application performance.

Not shown in Figure 4 is processor performance. It should
be noted that a deeper pipeline may also adversely affect
performance, particularly if branch delay slots are introduced
into the ISA, further mitigating the clock benefits from deeper
pipelining. -

Our DRAM design environment is substantially different
from the conventional microprocessor arena. This leads us to
explore the lower area and power of the two-stage pipeline
processor design, which we will compare to the four-stage
design. The two pipeline stages are: fetch and decode / exe-
cute / write-back. This pipeline was designed after timing the
components from a four stage processor (fetch, decode, exe-
cute, and write-back) individually. It was observed that the
slowest component was instruction fetch, and this was largely
due to the cache access. The latter three stages, when com-
bined, take approximately the same time as the instruction
fetch. In Section 5, we demonstrate that the two-stage design
has greater performance/watt than the four-stage design and
takes a significantly smaller amount of chip area.

Power and area are just two of many factors influencing
the decision to use a VLIW derivative. An obvious alter-
native to VLIW is a superscalar processor. However, Active
Page computations are primarily simple, regular kernels. The
regularity of these computations makes them ideal for static
scheduling. Because our limited ISA supports only one-cycle
operations, VLIW instructions do not stall waiting for an
operand in a functional unit. This reduces the need for dy-
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namic scheduling. Furthermore, with the addition of data
prefetching, the VLIW gains the capability of masking load
latencies for these regular computations. Another key benefit
to VLIW is that it permits several branches to be executed
in a single cycle. The superscalar would need to serialize
these branches or use branch prediction and speculation to
gain the same control performance. Finally, area and power
requirements are higher for a superscalar processor than for a
comparable VLIW processor. In this environment, the small
performance advantages of a superscalar do not justify the
substantial complexity required. In the DSP domain, several
embedded processor designs have followed similar motivations
[SRD96] [Ses98] [HYYS96].

Another alternative to the VLIW processor is a vector
processor core. Vector processing, while attractive for data-
streaming applications, is not suitable for the full range of
Active Pages applications. Although several of the kernels
in this study are vectorizable, future work will examine ap-
plications with irregular instruction and data patterns such
as garbage collection, decision tree generation and artificial
intelligence search algorithms.

4 Methodology

‘We simulate our Active Page implementations running a suite
of applications from [OCS98]. The applications represent a
range of data-intensive problems from both engineering and
commodity domains. Not only are these applications well-
suited for the Active Page model, they are also representative
of a class of data streaming and processing tasks likely to
drive future computing technologies.

Table 1 summarizes the attributes of these applications.
Applications such as array, database, median, and MMX rep-
resent applications that will be important to PCs and the
commodity DRAM market. Applications such as sparse ma-
trix multiply and dynamic programming represent higher-end
engineering environments.

In general, our applications fall into two categories: pro-
cessor centric or memory centric. Processor-centric applica-
tions use Active Page memory to keep the processor fed with
useful data and keep processor utilization high. Memory-
centric applications take advantage of memory bandwidth
and data parallelism within the Active Page memory system.

The three different configurations compared in this study
(FPGA, Scalar, and VLIW) were evaluated by running our
benchmark programs on a cycle-by-cycle simulator. The sim-
ulator was created by adding an Active Page memory sys-
tem module to the SimpleScalar v2.0 tool set [BA97). The
benchmark programs were hand-designed for the FPGA ar-
chitecture in VHDL. Furthermore, for each of the processor-
based architectures, the applications were hand optimized.
Optimization for the applications on the processor variants
began by constructing C code for each application and re-
compiling them with the GNU gcc compiler using the -03
flag. Hand optimization began by first cleaning up the as-
sembly code generated by the compiler. Next, a combination
of loop unrolling and software pipelining was applied. Fi-
nally, each application was statically scheduled for the various
VLIW widths. Code optimization and VLIW width schedul-
ing were performed iteratively in order to achieve optimum
performance.

We first performed the data cache simulations first on the
FPGA configuration. Since the FPGA has no instruction
stream, it suffers no instruction fetch misses, and it will gener-



Memory-Centric Applications

L1

Name [ Application [[ Processor Computation | Active Page Computation Core Computation
Array C++ standard template CT+ code using array class | Array insert, delete, ali] = ali+1]
library array closs Cross-page moves and find if (afi] == 'c’) x++
Database Address Database Initiates queries Secarches unindexed date if (*n == "',"), break L1;
Summarizes results else if (*m or (*m !=*n))
break L2
Median Median filter for images Tmage 1/0 Median of neighboring pixels find median of ninc numbers
Dynamic Prog | Protein sequence matching Backtracking Compute MINs and fills table | if (x == y) B = 1; C = ul + 1
clacif (u > 1) {B=2;C=u;}
clse {B=3;C=l;}
Proccasor-Centric Applications
Nome Application [ Processor Computation Active Page Computation Core Computation
Motrix Matrix multiply for Floating point multiplics Tndex comparison and T (X[m] < Y[v]) m++;
Simplex and finite element gather/scatter of data else if (X[m] > Y[v]) v++i
clsc {sct of 1d’s and st's}
MPEG-MMX MPEG decoder using MMX dispatch MMX instructions e[i] = min(ali]+b[i],255)
MMX instructions Discrete cosine transform
Table 1: Summary of partitioning of applications between processor and Active Pages
ally exhibit the highest data request rate of all the configura-
tions. Since the applications used are largely data-streaming
applications, little non-critical algorithmic data is introduced
by the Scalar and VLIW-RAM architectures, so the results < 1000
from the FPGA simulations can be used for all architectures. £ o — o— Ie! o o
Once the size and characteristics of the data cache were = g g g 8 e 8
known, simulations were performed to calculate the appro- g 100 -
priate size of the instruction cache for Scalar and VLIW im- 8 & - S—— FS STTTRT R & )
plementations. These simulations were followed by a set of 5 i
. . >
simulations that measured the performance of the FPGA, 5 404
Scalar and a number of VLIW processor variants. The best §'
VLIW configuration was chosen, and more simulations were @
run to measure the performance, performance per watt, and & 1
performance per area of the remaining three Active Page ar-
s . g 128b 256b 512b 1k 2k 4k
chitectures. Finally, the effect of clock-cycle scaling on the )
three architectures was evaluated. Data Cache Size
--X-+ Database --<O-- Array (Insert) -t Array (Delete)
—O— Array (Find) ——MMX -4~ Sparse-Matrix (Simplex)|
5 Results —>¢ Sparse-Matrix (Boeing) --C}- Median-Wallime -+ Median-Fifter-time
—o— Dynamic-p i

In this section, we compare our three Active Page architec-
tures: FPGA, Scalar, and VLIW. Our results reveal that a
VLIW architecture is the best choice, saving substantial area
and power without sacrificing performance.

We begin by profiling applications to optimize cache pa-
rameters for each architecture. Next, we identify an optimum
instruction width for the VLIW architecture. We continue by
demonstrating substantial gains through prefetching, an op-
tion not available to our FPGA architecture due to area lim-
itations. Finally, we present comparisons of performance per
watt and performance per area for the three architectures.

5.1 Data and Instruction Caches

Although Active Page logic is adjacent to the DRAM sub-
array of each page on chip, memory latencies are still a con-
cern. Furthermore, cycling the DRAM on every processor cy-
cle would require a substantial power budget. Consequently,
a cache is placed between the computational logic and DRAM
sub-array. In this section, we present simulation results that
were used to determine the size and organization of this cache.

We utilize a 256-bit datapath between logic and DRAM
for each Active Page to match a 32-byte cache block size.
This provides sufficient block size for our applications with-
out excessive area and power requirements. Figure 5 depicts
application performance on our FPGA architecture versus
data cache size. Data cache associativity is fixed at four. Re-
sults show that a 512-byte cache is sufficient for our working
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Figure 5: Data cache size

Architecture Instruction Cache | Data Cache
FPGA - 512b/4-way
Scalar 512b/2-way 512b/4-way
VLIW 2 wide 512b/2-way 512b/4-way
VLIW 4 wide 1024b/2-way 512b/4-way
VLIW 8 wide 2048b/2-way 512b/4-way

Table 3: Active Page architecture cache configurations

sets.

Figure 6 depicts application performance versus data cache
associativity. We see that a 4-way set associativity is required
in order to avoid conflict misses. An 8-way set associative
cache eliminates slightly more conflict misses than a four-way
but is not worth the added complexity.

Since the application data-access characteristics are sim-
ilar for all three architectures, this data cache size and con-
figuration is used throughout. The Scalar and VLIW archi-
tectures use split instruction/data caches. For these architec-
tures, a similar process to that described for data cache sizing
was performed in order to determine the size and nature of
the required instruction caches. The results are summarized
in Table 3.



[[Parameter il Single-lssue (Scalar) Multi-lasuc (VLIW) Reconfigurable (FPGA)
[ Reference Variation Reference Variation Reference Variation |
CPU Clock 1 GHz = T GHz = 1 GHz =
L1 I-Cache 64K bytes = 64K bytes — 64K bytes =
L1 D-Cache 64K bytes = 64K bytes = 64K bytes =
T2 Cache TM byte = TM byte — TM byte =
External Memory Speed 50 ns — 50 ns - 50 ns =
Memory / Processor Bus PC-100 = PC-100 - PC-100 =
L2 Linc size ; 128 bytes = 128 bytes - 128 bytes =
AP Linc size / Bandwidth || 256 bits — 256 bits — 256 bits —
AP Cache Ports Z Data, 2 Inst = 2 Data, 8 Inat - 2 Data —
AP Cache Orgonization Split 1/D = Split 1/D — Data
AP 1-Cache size 512b 64b - 4KB iKB 548 - 4KB B -
AP D Coche size 5125 128b - 4KB 3126 128H - 4KB 5126 1285 - 4KB
AP Cuche Associativity T 2,0: 4 -8 T 2,0: 4 T-8 D: 4 -8
AP Logic Element Mini-RISC = Mini-VLIW-4_| 2, 4, 8 width || FPGA 266 LEs =
AP Pipecline stages B = F) ; = =
AP Logic Clock 100 MHz 50-500 MHz || 100 MHz 50-600 MHz 100 MHz 50-500 MHz

Table 2: Active Page reference parameters
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Figure 6: Data cache associativity

5.2 Architecture Comparison

Using the cache configurations described in the previous
section, we compare the three Active Page architectures. The
result of this comparison is displayed in Figure 7, where we
plot the speedup over conventional memory for each architec-
ture. We can see that all configurations exhibit substantial
performance gains over a conventional system. To highlight
the differences between architectures, we normalize the same
data to FPGA performance in Figure 8. While the Scalar
processor implementation does not achieve the same level of
performance as the FPGA implementation, the VLIW pro-
cessor does. In fact, with a VLIW width of four, performance
is within 10% of the FPGA for the majority of applications.
As the VLIW width is extended to eight, most applications
do not see additional improvement. The exceptions are MMX
and dynamic-programming. On the other hand, neither the
Scalar nor VLIW Active Page architectures perform well on
the median filtering application. We identify four principal
architectural attributes that affect performance on the vari-
ous applications.

e Limited data ports in cache: For most applications, as
the VLIW width expands to four or eight, the appli-
cation achieves performance equal to the FPGA imple-
mentation. This is primarily due to the fact that both

[BFPGA OScalar BVLIW-2 BVLIW-4 EVLIW-8]
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Figure 7: Baseline performance relative to conventional mem-
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architectures efficiently utilize the available data cache
ports. Several of the applications can benefit from more
data ports.

o Limited processor branching capabilities: Our VLIW
hardware model permits up to one unconditional and
two conditional branches to be executed in the same
instruction. This restriction comes into play on both
the eight-wide and four-wide VLIW processors. The
database search application could benefit from the addi-
tion of one conditional branch instruction, whereas the
median-filtering application could achieve better perfor-
mance with more advanced control instructions.

Limited area: The FPGA circuits were severely limited
by the number of logic elements and routing resources
available. Power and area restrict the number of logic
elements to 256 per page. This means that simpler state
machines must be used where perhaps a more complex
one could have achieved higher performance. This is
the reason that the MMX application performs bet-
ter with a four-wide VLIW processor than the FPGA
logic. With infinite area available, such limitations on
the FPGA may be removed. We observe that as long
as a data-flow graph within the FPGA can be described
succinctly within the VLIW’s ISA, the VLIW can im-
plement more complex data pipelining of that data-flow
graph than the FPGA.

e Specialization: The FPGA benefits from being able to
identify an application-specific ISA. This is most evi-
dent in the median-filtering application. Here, a spe-
cialized sorting network is implemented in the FPGA
that performs a custom data-flow sort. Such an in-
struction would not be practical in a general purpose
processor functional unit. Here, the FPGA achieves a
clear performance benefit over a generalized processing
element.

‘We found that applications became equally bounded by
available control-flow and data cache port facilities. Hence,
a more optimized architecture for an eight-wide VLIW pro-
cessor will require both additional branching and load / store
capabilities in order to extract the available performance pro-
vided by the added functional unit width. It is not clear
whether these facilities can be utilized by all applications
without more advanced compiler techniques such as trace
scheduling.

Figure 8 shows that a four-wide VLIW processor achieves
90-100% of the performance of an eight-wide VLIW proces-
sor. For this reason, we now focus our study on the four-wide
VLIW, and consider the eight-wide too area inefficient for
practical use.

5.3 Data Prefetching

Prefetching is a common processor technique used to hide
the adverse effects of long memory-latency operations. Within
an intelligent memory system, we find that a similar ap-
proach improves performance. An explicit data-prefetch in-
struction was implemented in the processor. Prefetches are
non-binding requests for the local data cache to prefetch cache
lines, i.e., a non-blocking, non-binding load. Well-placed
prefetching requests will increase the data cache hit rate.
Poorly placed prefetches may degrade performance because
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Figure 9: Speedup of FPGA compared to VLIW4 with and
without data prefetching

the DRAM subarray is busy when a processor cache miss oc-
curs. Although processor loads by-pass prefetching requests,
if a prefetch request is in progress it is not terminated early,
and thus the processor may have to wait for the current
prefetch to complete before the load is issued. Prefetching
data too early or prefetching unused data pollutes the cache,
expelling data that may be used before the newly prefetched
data is used.

The performance benefits due to explicit data prefetching
are shown in Figure 9. Here, application performance is nor-
malized to that of the FPGA. Due to area constraints, the
FPGA can not provide prefetching. We observe that for cer-
tain highly regular streaming applications such as database,
array, and MMX, prefetching can improve performance dra-
matically. Prefetching is also useful for more complex control
flow oriented applications such as median filtering and dy-
namic programming, but performance gains are less signifi-
cant. Within these applications, destructive data cache inter-
ference occurred periodically due to the prefetch requests in-
terfering with ordinary cache misses. Although not explored
in this paper, larger data caches may help alleviate part of
this performance problem.

‘We observe that the four-wide VLIW processor with data-
prefetching is actually faster for most applications than the
FPGA. Furthermore, with the addition of prefetching and a
compiler that can effectively schedule the prefetches, the per-
formance of the VLIW should reach or exceed a comparable
superscalar implementation. These codes have very regular
data access patterns, so prefetches are not difficult to place.
This provides the slip that superscalars use to mask load la-
tencies. In applications that use multiple branches per line,
the VLIW could exceed the superscalar performance. The
superscalar would need to perform the branches in order,
whereas the VLIW can place up to three branches in a single
instruction. Branch prediction and speculation might help,
but the resulting superscalar would be prohibitively large in
its area and power requirements.

5.3.1 Performance Limits of VLIW

Throughout this study, we have placed two artificial lim-
itations on the VLIW architecture. First, we have limited
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the control-flow capabilities to one unconditional and two
conditional branch instructions per cycle. Second, we have
limited the data cache access ports for all Active Page im-
plementations to two. We limited ports to provide a uniform
means of measuring the ability of each architecture to extract
instruction level parallelism from the underlying algorithm.
However, here we would like to explore the potential of the
VLIW architecture to utilize additional cache ports. Area
constraints do not permit the FPGA to utilize these addi-
tional resources.

Figure 10 depicts instructions per cycle for each applica-
tion executing on a four-wide VLIW Active Page architecture
with and without prefetching enabled. We see that prefetch-
ing does contribute to increases in IPC from 5-70%, depend-
ing upon the application.

If we focus on the IPC of the prefetching implementa-
tion of each application and look back at that application’s
source, we can isolate specific application components that
may benefit from added VLIW hardware features. Of princi-
pal concern is the number of data cache ports and branching
capabilities of the processor. Highly regular data-driven ap-
plications will benefit from additional cache ports, whereas
their non-uniform data-dependent counterparts may benefit
from additional branching capabilities. To isolate these po-
tential future performance gains, we examine each application
individually.

o MPEG-MMX focuses on the packed-add MMX instruc-
tion. During execution of this instruction on a data-set,
each iteration of its inner loop loads two values, stores
one, and contains one conditional branch. Although
compiler generated code is unlikely to utilize additional
data cache ports and branching capabilities, efficient
hand-optimized implementations can be constructed.

e Median sorts sets of numbers and finds the median. The
VLIW is control dependent when sorting the elements.
If one constructs a decision tree for the sorting, the
height is log(n). This means that log(n) serial com-
parisons must occur in the worst case. In the FPGA,
several of these comparisons can be performed during
the same cycle, whereas the VLIW must have separate
instructions depending on the outcomes of the previous
comparisons. Additional performance gains will only be
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achieved by additional deep loop-level software pipelin-
ing, and this will introduce strain on both the data
cache ports and processor control flow capabilities.

Dynamic Programming has several factors which inhibit
its ability to utilize all instructions within the VLIW
program word. Chief among these is the fact that the
data comes from four separate data streams, increasing
the likelihood that prefetching will not occur in time for
all of the data values. The amount of data that has to
be fetched and compared to determine the next block is
also a limiting factor. Thus additional data ports will
only bring marginal performance improvements.

Matriz is control bound. It is limited by the number of
branches allowed on a line. Additional branching capa-
bilities within the processor would reduce the number
of instructions inside the inner core loop. Currently, the
inner loop must branch to one of four locations depend-
ing upon the input data. This multi-way branch could
be collapsed into a single instruction with additional
VLIW branching capabilities.

DataBase is also limited by the number of branches al-
lowed per instruction. In this application a last name
is being searched for within a simulated database of
records. This comparison requires at least three condi-
tional branches per comparison, plus additional branches
for the loop conditions. Although software techniques
coupled with prefetching can be used to remove data
stalls, the application remains control-bound. Addi-
tional data ports would not significantly increase per-
formance.

Array insert/delete shifts binary data within memory.
The application is clearly data cache port bound and
would benefit from additional cache access ports. Ad-
ditional control-flow capabilities within the processor
are not required.

Array find is both data and control-bound. Applica-
tion performance here is data dependent. Data with
few matches to the search key will benefit from addi-
tional data ports and control-flow instructions, while
data with many matches will see little, if any, benefit.
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5.4 Performance vs. Power and Area

The advantages of our VLIW Active Page implementa-
tion become more pronounced as we examine power and area
requirements. Table 4 compares several of our implementa-
tions. Estimates for our FPGA design are based upon pub-
lished specifications for Altera’s FLEX architecture [Alt] in
0.25 micron technology. Power and area analysis of the var-
ious processor designs were performed using the Synopsys
tools. Each design was modeled in VHDL and synthesized us-
ing LSI Logic’s G10-p 0.25 micron process. Constraint driven
synthesis with high map effort was used to optimize the de-
signs. Once the designs were synthesized, back annotation
was used to gather toggle information for the power analysis.
Our figures are reasonably consistent with recent processors
in 0.25 micron technology [Cho98] [Shi98]. Note that synthe-
sis makes our results conservative. Custom design would give
our processor designs a larger advantage over state-of-the-art
FPGA technologies.

Figure 11 depicts application performance versus power
use for three of our Active Page architectures. These are
the FPGA, the single-issue five-stage pipeline processor, and
the four-wide (two stage) VLIW processor. Figure 12 de-
picts application performance versus relative computational
logic area. Clearly, the FPGA has poor performance per-watt
and performance per-area when compared to the Scalar and
VLIW implementations. Furthermore, Table 4 shows that
the FPGA has a higher absolute power and area cost.

It is clear that for most applications, the VLIW imple-
mentation is the most efficent implementation in terms of
performance per watt and per area. For highly control-bound
applications, the Scalar attains comparable efficiency. This
makes intuitive sense, since control-bound applications can-
not make as efficient use of the available VLIW width.

Finally, we also note that the two-stage pipeline imple-
mentations of the VLIW processor is more efficient in terms
of power and area than the four stage pipeline versions. This
saving is more pronounced for wider VLIW processors due to
the increasingly large forwarding networks needed to prevent
data hazards.
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Architecture Area (mm?) | Power (mW) |
FPGA 1.86 375
Scalar 5 - stage 0.534 137.5
VLIW-4 4 - stage 1.295 306.5
VLIW-4 2 - stage 0.838 225.8

Table 4: Active Page architecture power and area compari-
son (per-Active page). All data is from a 3.3v, 0.25 micron
standard-cell process

5.5 Technology Scaling

Intelligent memory technology is a moving target. The
key to this study is the relative performance, area, and power
of our Active Page alternatives. One issue not yet discussed
is processor saturation. Since Active Page applications de-
pend upon both the main processor and the Active Pages,
the memory computation may complete before the processor
is ready. Figure 13 illustrates the effect of speeding up our
Active Page logic while holding the rest of the system param-
eters constant. We can see that the sparse matrix application
is saturated; Performance is limited by the main processor as
we increase Active Page logic speed. This graph also allows us
to compare architectures with differing clock speeds. For ex-
ample, we assume power constraints which prevent the scalar
and VLIW implementations from being clocked much faster
than our FPGA implementations in equivalent technologies.
If these constraints were relaxed in the future, the scalar and
VLIW clocks could scale well beyond the FPGA clock — a
cost of reconfigurability.

Our power and area figures assume a .25 micron tech-
nology. Power will decrease as the square of future process
shrinks. We expect future process technologies to reduce Ac-
tive Page power consumption dramatically and make com-
modity packaging of Active Page memory practical.

6 Related Work

DRAM densities have made intelligent memory designs at-
tractive as commodity components. Intelligent memory, how-
ever, was proposed well before the current commodity thrust.
The SWIM project [ACK94] combined reconfigurable logic
and memory to perform fast protocol computations. The J-
Machine integrated processor, memory, and network router in
a single chip to form building blocks for a fine-grained mul-
tiprocessor [NWD93). The RAW [L*98], MORPH [CG96],
and RaPiD [E*97] projects continue to explore the use of
reconfigurable technology to exploit parallelism. The HPAM
project [MEFT96] takes a hierarchical approach to intelligent
memory.

The Impulse project [C*99] has similar goals to Active
Pages but focuses on adding address manipulation functions
to the memory controller. Their applications, such as gather-
scatter for sparse matrix multiplied by dense vector, are also
enhanced by more efficiently feeding the microprocessor with
data. All of our applications, however, require some small
computations which can not be supported without more gen-
eralized computation in the memory system than provided
by Impulse.

Intelligent disks {AUS98] [(G*98] have also been proposed.
These systems are meant for streaming applications that do
not fit in main memory. After processing by an intelligent
disk, data may still benefit from computations in an intelli-
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Figure 13: Performance scaling with respect to Active Page computational logic clock

gent memory. A unified view of intelligence at all levels of
the memory hierarchy may eventually prove useful.

7 Future Work

For Active Pages to become a successful commodity archi-
tecture, the application partitioning process must be auto-
mated. Current work uses hand-coded libraries which can be
called from conventional code. Ideally, a compiler would take
high-level source code and divide the computation into pro-
cessor code and Active Page functions, optimizing for mem-
ory bandwidth, synchronization, and parallelism to reduce
execution time. This partitioning problem is very similar
to that encountered in hardware-software co-design systems
[GVNGY94] which must divide code into pieces which run on
general purpose processors and pieces which are implemented
by ASICs (Application-Specific Integrated Circuits). These
systems estimate the performance of each line of code on al-
ternative technologies, account for communication between
components, and use integer programming or simulated an-
nealing to minimize execution time and cost. Active Pages
could use a similar approach, but would also need to bor-
row from parallelizing compiler technology [H*96] to produce
data layouts and schedule computation within the memory
system.

This study does not explore the implications of inter-
page communication. The current method of handling such
communication requires that the main processor move the
data between memory pages. Such operations are expen-
sive, and form the dominating component of computation
time of communication intensive applications such as dy-
namic programming. However, this method simplifies protec-
tion and security. Transactions through the main processor
can be filtered by the operating system which can also per-
form virtual address translation and protection checks. The
drawback to such an approach is that data must travel off-
chip, through the main-processors caches, and then back out
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again to the appropriate DRAM device. Future work will ex-
plore adding various inter-page communication mechanisms
on each Active-Page chip. The performance benefits, how-
ever, must be balanced with a weaker protection model and
more radical change to commodity DRAM designs.

Finally, the effects of synchronization upon the data and
instruction caches of the computational logic, need to be stud-
ied. Current work is investigating options for efficient syn-
chronization of processor caches, and the Active Page mem-
ory system. All but the most basic of synchronization pro-
tocols will require hardware mechanisms for operation. The
cost of these mechanisms is not factored into the designs of
the three Active Page memory system alternatives presented
here.

8 Conclusion

Active Pages is a page-based computational model for in-
telligent memory which can lead to substantial performance
benefits. This study has explored several alternative imple-
mentations of Active Pages. We found that reconfigurable
implementations perform well due to fine-grained parallelism
in the memory system rather than logic specialization. This
finding led us to design a 4-wide VLIW processor that exploits
this parallelism without the high cost of reconfiguration. Un-
like conventional VLIW processors, our Active Page VLIW
processor uses a short pipeline to optimize performance under
the strict power and area constraints of the DRAM environ-
ment. Our simulations demonstrate that the VLIW Active
Pages perform as well as their reconfigurable counterparts
but with substantial additional benefits in power, area, and
programmability.
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