Automatic architectural synthesis of VLIW and EPIC processors

Shail Aditya

B. Ramakrishna Rau

Vinod Kathail

{aditya,rau, kathail}@hpl.hp.com

Hewlett-Packard Laboratories
1501 Page Mill Road, MS 3L-5, Palo Alto, CA 94304

Ahstract

This paper describes a mechunism for automatic design
and synthesis of very long instruction word {(VIIW), and
its generalization, explicitly parallel instruction computing
(EPIC} processor architectures starting from an abstract
specification of their desired functionality. The process of
architecture design makes concrete decisions regarding the
number and types of functional units, number of read/write
ports on register files, the datapath interconnect, the in-
struction format, its decoding hardware, and the instruction
unit datapath. The processor design is then automatically
synthesized into a detailed RTL-level structural model in
VHDL along with an estimaie of its area. The system also
generates the corresponding detailed machine deseription
and instruction format description that can be used to re-
target a compiler and an assembler respectively. All this is
part of an overall design system, called Program-In-Chip-
Out (PICO), which has the ability to perform automatic ex-
ploration of the architectural design space while customiz-
ing the architecture to a given application and making in-
telligent, quantitutive, cost-performance tradeoffs.

1. Introduction

VLIW (Very Long Instruction Word) processors have
started ¢stablishing themsclves as the processor of choice in
high performance embedded computer systems, cspecially
in situations where an efficient compiler for a high level lan-
guage is available, Although a fair amount of work has been
done on providing the capability to automatically design the
architecture of a sequential, application-specific instruction-
scl processor {ASIP) — primarily a matter of designing the
opcode repertoire — there has been relatively little work in
the area of automatic architecturc synthesis of VLIW pro-
cessors or, for that matter, processors ol any kind that pro-
vide significant levels of instruction-tevel parallelism (ILP),
The work which has been done tends to focus largely upon

1080-1820/99 $10.00 © 1999 IEEE

107

the synthesis of a VLIW processor's datapath {5, 6, 8], The
automatic design of a non-trivial instruction format, and the
synthesis of the corresponding instruction fetch and decode
micro-architecture have not been addressed tor VILIW pro-
cessors. And yet, it is these issues that consume the major
portion of a human designer's efforts during the architecture
and micro-architecture phases of a VLIW design project.

In this paper, we present a fully automated system lor
designing the architecture and micro-architecturce of VLIW
processors and their generalization, EPIC (Explicitly Par-
allel Instruction Computing) processors', We refer to this
process as architeciure synthesis to distinguish it from be-
havioral or logic synthesis which are at a lower level. In ad-
dition to the well understood features of the VILIW siyle of
archilecture, the space of processors that we are interested
in exploring includes features such as predication, control
and data speculation, rotating registers, and explicit source
and destination specifiers for load and store operations al
various levels of the memory hierarchy [9]. Processors
with these features have the ability to exploit high degrees
of compiler-specified 1L.P both in numerically-intensive ap-
plications as well as in applications that are intensive in
branches and pointer-based memory references,

The architecture synthesis system that we describe in this
paper is part of PICO (Program-In-Chip-Out), a broader
system synthesis and design exploration tool which per-
forms hardware-software co-synthesis. In addition to the
custom VEIW processor, PICO may design one or more
non-programmable, systolic-array co-processors (ASICs)
and a two-level cache hicrarchy to support these proces-
sors. 1L partitions the given application between hardware
(the systolic arrays) and software, compiles the software to
the custom VLIW, and synthesizes the intetface between the
processors, We refer to PICO's VLIW design capability as
PICO-VLIW which is the subjcet of this paper.

The major contribution of the work reported here is not
necessarily in the specific heuristics used but in establishing

IFor the sake of brevity, we use the term YLIW 1o include EPIC as well
in the rest of this paper.

————— Spacowalker opcode Application
stats. program
l archspec
VI__IW Synthes!s mdes
« Architecture synthesis ———
Synth. * Microarchitecture synthesis T
stats. » mdes extraction
l g Elcor Compiler
T e—
e Perf.
" Inst. _.Igembler
Pareto-optimal | 8 format
designs |& & v
area Processor

VHDL object code

Figure 1. The PICO-VLIW design system.

a framework which formalizes and makes algorithmic what
has thus far been an ad hoc, manual process.

2. Overview of the PICO-VLIW System

In PICO-VLIW, we decompose the process of automat-
ically designing an application-specific VLIW processor
into three closely inter-relaled sub-systems as shown in Fig-
ure 1. The first sub-system is our design space explorct,
the Spacewalker, whose responsibility is to search for the
Parcto-optimal architectures, L.e., those architectures whose
implementations are either cheaper or [aster (or both) than
any other architecture, In order to do this cfficiently, the
Spaccwalker uses sophisticated search strategies and heuris-
tics that are, however, beyond the scope of this paper.

The second sub-system is the VLIW architecture syn-
thesis sub-system whose responsibility is to take the ab-
stract architecture specification generated by the Space-
walker and to creale the best possible concrete archilecture
and micro-architecture, as well as a machinec-description
database used to retarget the compiler. The system outputs
a RTL-level, structural VHDL description of the processor
and estimates the chip arca consumed by it.

The third sub-system consists ol Elcor, our retargetable
compiler for VLIW processors whose operation repertoire
is a subset of the HPL-PD repertoire [9], and a retargetable
assembtler. Both arc automatically retargeted by supplying
the machine-description database. Elcor's responsibility is
to gencrate the best possible code lor the application on the
processor designed by the VLIW architecture synthesis sub-
system, and to cvaluate its perfermance by counting the
number of cycles taken to execute the program. The arca
and execution time estimates arc then used by the Space-
walker to guide the next step of its search.

PICO-VLIW design flow. The design low within PICO-
VLIW may be divided into three major activitics. architec-
ture design, micro-archilecture design and code gencration
as shown in Figure 2. The figure also shows the various

Microarchltecture Design

1,i5A Spec 3 [Wdes it
creation MDES
i ai—) o 8
Abstract Dalapalh Processor Coniralpath
design

15A Spec design
& e Cir Porls h

Program

Retargetable
Compil

9. i
_:| Logieal instruction
1 format design

F| atfinity
.| parametars iR

| Physical insiruction :

Insteuction
farmat design d

Format

Figure 2. Design flow in PICO-VLIW,

design steps numbered in design flow sequence, and the de-
pendence relationships among them.

In manual VLIW design as well as related work on
VLIW syathesis [6, 7], the starting point is the concrete ISA
which consists of a specification of the register file structure
and an instruction format. We take a different approach,
since we view the concrete ISA as an overly-constrained in-
put specilication. Instead, we start with an abstract architec-
ture specification (step 1), which specifies the desired lev-
els of concurrency and the opportunities for resource shar-
ing, but which leaves the detailed decisions as to how best
to share register ports and instruction bits to the datapath
and the concrete ISA design sleps, respectively. This allows
PICO-VLIW to go about the design in an uncemventional
order: first, 1o design a datapath that is consistent with the
requircments of the abstract architecture specification {step
2); next, 1o design a concrete ISA in the light of the control
ports of the datapath (steps 5-7), and to then design the con-
trolpath (step 8), i.¢., the instruction prefetch, alignment and
decode hardware. By designing the concrete ISA after the
datapath, we are able to achieve better trade-offs between
code size and the complexity of the controlpath.

In the following sections, we focus our attention on the
VLIW synthesis sub-system of PICO-VLIW (steps 1-3, 5-
8). Further details of each step are provided in [1, 2].

3. Abstract architecture specification

Architecting a VLIW processor is considerably more
complex than a sequential one. In addition to picking an op-
eration repertoire, one must specify the extent and nature of
the processor's ILP. A VLIW processor, when designed by
an expert architect, exhibits certain features which we want
PICO-VLIW to emulate. For example, the processor may
use heterogencous functional units — although one might
include the ability to issuc two adds every cycle, which re-
quires two integer units, only one unit may be capable of
shifting and the other unit able to do multiplication. The
register file ports may be sharcd — a multiply-add opcra-

tion, which requires three register read ports, may be ac-
commodated by “borrowing” one of the ports of another
functional unit which cannot, now, be used in parallel with
the multiply-accnmulate. Likewise, instruction bits may be
shared — a load or store operation, which requires a long
displacement ficld, might use the instruction bits that would
otherwise have been used to specify an operation on some
other functional unit. In order for PICO-VLIW (o yield
well-architected processors, the Spacewalker needs 1o be
able to specify such architectures to the VLIW synthesis
sub-system.

Qur choice of the interface between the Spacewalker and
the VLIW synthesis sub-system is called the abstract archi-
tecture specification (archspec for short) which provides a
delicate balance between giving the Spacewalker adequate
control over the architecture, without burdening it with the
need to specify a detailed instruction format. Through the
archspec, the Spacewalker specifies (Figure 2, step 1) the
register files of the target machine, its operation repertoire
and the requisite level of ILP in terms of concurrent opera-
tion groups, and the opportunities for sharing register ports
and instruction bits in terms of exclusion groups, We will
describe these components shortly. Thereafter, the Space-
walker relies upon the concrete ISA design, the datapath
design and the controlpath design steps o use these oppor-
tunities while honoring the requisite level of concurrency.

As an example, a simple 2-issue machinc is given below:

Register Files
[Name [Width [Registers/Litcrals | Virtual File
[gpr 32 10,.. . 131 I
pr 1 p0,...,pl5 p
lit 10 [-512,511] L
Operation Groups
[Name] Operations | Operation Format |
addsub ADD,SUB | pr? gpr, gpr: gpr
mult MPY pr? gpr, gpr: gpr
multadd || MPYADD | pr 7 gpr, gpr, gpr: gpr
loadinc LI pr? gpr: gpr, gpr
loaddisp || LM pr? gpr, lit: gpr
storedisp || SM pr 7 gpr, gpr, lit :
Exclusion Groups
Name]| Op Groups]
EGO addsub mult multadd
EG1 Toadinc loaddisp storedisp
EG2 addsub mult loadine
EG3 muitadd loaddisp storedisp

Each Register File specified in the archspec identifics its
width in bits, the registers it contains, and a virtual file spec-
ifier that specifies the types of data it can hold. An immedi-
ate literal field within the instruction format of an operation
is also considered to be a (pseudo) register file consisting of

109

ldstw 0

mpyaddw_1

addsubw_2

Figure 3. A datapath example.

a number of “literal registers” that have fixed values. The
example shows that the above machine has a 32-bit general
purpose register file “gpr”, a 1-bit predicate register file “pr”
and a 10-bit literal {pseudo) register file “1it”.

The various instances of HPL-PD opcodes for a given
machinc are grouped into Operation Groups (opgroups for
shott), This example specifies six operation groups, im-
plementing the operations add/subtract, multiply, multiply-
add, load with post-increment, and load/store with displace-
ment respectively. Each operation group also specifies one
or more Operation Formars shared by all the opcodes within
the group. These specify the desired input/output operand
connectivity 1o the register files of the machine. For predi-
cated operations, a separate predicate input is specified.

In addition to the desired opcode repertoire, the arch-
spec also abstractly specifies the amount of parallelism to be
supported in the target machine. By definition, all opcode
instances within an operation group arc mutually exclusive
while, by default, those across operation groups are allowed
to execute in parallel. The parallelism of the machine may
be further constrained by placing two or more operation
groups into Exciusion Groups as shown above. All opera-
tion groups within an exclusion group are deemed to be mu-
tually exclusive, a fact that can be exploited by the datapath
design step to share hardware resources such as functional
units, register file ports and buses. In the above example, the
exclusion groups “EGO”™ and “EG1” serve to represent the
notion of one arithmetic and onc memory functional units
each, while “EG2” and “EG3” allow further sharing of reg-
ister file ports and instruction format bits as shown later.

4. Datapath design

The datapath designed for the machine specified in Sec-
tion 3 is shown pictorially in Figure 3 which also illustrales
our general design scheme. The datapath consists of one
or more [unctional units selected on the basis of the desired

operation functionality connected to the specified register
files via multiple buses. Each bus corresponds to a register
file read or write port. There are several important design
decisions to be made at this step (Figure 2, step 2) that are
outlined below. The details are provided in [1].

Functional unit allocation. The first siep in datapath syn-
thesis is to select a set of functional unit macrocells from
the database that can together implement all the operations
specified in the archspec such that the specified ILP con-
straints are met and the total cost (area or gates) is mini-
mized. Our strategy is to formulate it as a clique finding
problem on the graph of exclusion relationships among the
operation groups and then determining a set of minimum
cost functional units that cover all cliques.

Register file port allocation. VLIW processors typically
need multi-ported register files in order to cater to the needs
of multiple, concurrently-cxecuting functional units., Multi-
ported register files are very cxpensive (in terms of area),
and therefore a novel aspect of our system is that we auto-
matically determine the minimum number of such read and
write ports by taking into account the exclusion constraints
among the operation groups in the archspec,

For cach type of port (read/write) to a register file, we

formulate a separate resource allocation problem. In cach
formulation, the desired port connectivity is determined by
consulting the operation formats of the various operation
groups assigned to each functional unit. A conflict graph
among the requesting functional unit ports is constructed
based on their concurrent use (e.g., two operands of a bi-
nary opcration), and mutual exclusions specified in the arch-
spec. Each problem is then solved using a variation [1] of
the graph coloring approach by Chaitin [3]. In our example
(refer Figurce 3), the two arithmetic macrocclls share all of
their register file ports. More interestingly, input 3 of the
“mpyaddw_1" and input 2 of the “Idstw_0" macrocells also
share a register file port because an exclusion was specificd
between their operations groups.
Register file and interconnect generation. In the final step
of datapath synthesis, we instantiate cach register filc with
the appropriate nuinber of read and write ports and gencrate
the interconnect belween the register file ports and the vari-
ous functional unit ports as specified by the port allocation.

5, Mdes extraction

Once the datapath has been designed, our system auto-
matically ¢xtracts a compiler-oricnted view of it (Figure 2,
step 3) in the form of a machine description (mdes for
short) [10], This is then used to re-target our VLIW com-
piler, Elcor, to the target machine (Figure 2, step 4). Our
system extracts a non-structural and operation-centric mdes
from the archspec and the datapath by combining the in-
dividual mdes contributions of the various functional units

110

and augmenting them with the resource and latency con-
straints of the surrounding hardware. The details are pro-
vided in [1].

6. Concrete ISA design

The concrete ISA consists of a specification of the reg-

ister file structure and the instruction format. The former is
taken directly from the archspec, whereas the latter is gen-
erated automatically by the PICO-VLIW system. A novel
feature of our approach is the distinction we make between
the logical and the physical instruction formats, which is
discussed below. Further details appear in {2].
Logical instruction format design. The logical instruction
Jormat is equivalent 1o what one traditionally thinks of as an
instruction format: a set of instruction templates each con-
sisting of one or more operation groups that can be issued
simuitaneously. Each operation group has one or more op-
cration formats, each of which is a set of instruction fields
encoding the opcode and the various operands. Also, each
operation group may appeat in multiple templates, yielding
multiple instances of cach field.

The objective of the logical instruction format design
step (Figure 2, step 5) is to avoid code wastage due to no-
ops specificd in the program that may result from the use
of a simplistic instruction format. This code wastage comes
in two forms. First, a single instruction template, which
contains an operation slot dedicated to each functional unit
macrocell (akin to horizontal microcode) is quite wasteful
since the archspec and the datapath may not allow all of
those operations to be issued simultaneously, We address
this by designing multiple instruction templates, each of
which is only capable of specifying a set of operations that
can, in fact, be issued simultaneously. Qur design strategy is
to treat each clique of concurrent operation groups specified
in the archspec as a separate instruction template.

Second, a given instruction, as scheduled by the com-
piler, may not have enough ILP to use all the available slots
of its template, The unused operation slots must specify a
no-op, again leading to code wastage, We address this by
providing additional, narrower templates which correspond
to statistically frequent combinations of operations in the
scheduled code. Identifying these custom templates (Fig-
ure 2 step 6) entails invoking the scheduler, which in turn
requires that the datapath has already heen designed.

As an cxample, the exclusions specified in the archspec
of Section 3 stipulates two instruction templates as shown
in Figure 4(a). Each template consists of a consume-to-cnd-
of-packet (EOP) bit which is used lor aligning branch tar-
gets [1, 2], a template sclector field, and one or more con-
current slots encoding the various operation groups.
Physical instruction format design. The physical insiruc-
tion format allows the fields within each tempiate 1o be po-

sitioned in any convenient order, but an order that is fixed
for that template. Furthermore, an individual field is also
permitted to consist of a discontiguous set of bit positions.
One of the objectives of the physical instruction format de-
sign step (Figure 2, step 7) is to exploit these additional de-
grees of [reedom with a view towards minimizing the width
of each instruction template, This is done by assigning the
same or overlapping bit positions to fields that cannot ap-
pear simultancously in the samc instruction while cosur-
ing that ficlds which can be present simultaneously, are as-
signed disjoint bit positions,

A second, somewhat conilicting, objective at this step is
to minimize the complexity of the decode and distribution
network that lies between the instruction register and the
datapath control ports. This is done by minimizing, for cach
control port, the number of distinct bit positions, across all
of the templates, at which the instruction fields controlling
the given port are to be found. Once again, this requires that
the datapath has alrcady been designed.

The physical instruction format is designed using the in-
struction format tree (/F-tree for short) data-structure which
is a hierarchical representation of the grammar ol an instruc-
tion for the target architecture. The leaves of the tree are
the logical instruction fields for which physical bit positions
need to be allocated. The IF-tree is used to compute a con-
flict matrix among the instruction fields where two liclds
are said to conflict if they can be present simultancously in
the same Jogical template, and therefore must be assigned
disjoint bit positions. The allocation algorithm we use 1s a
variant [2] of Chaitin's graph coloring algorithm [3] where
instruction bits are resources and each requesting instruc-
tion ficld may request multiple bits. Heuristics are used (o
reduce the overall template width and the decode complex-
ity by packing the instruction fields to the left (leftmost allo-
cation), assigning contiguous bit positions to multi-bit ficlds
(contiguous allocation), and aligning instruction ficlds cor-
responding to the same control port o the same bit posi-
tion (affinity allocation). Finally, the bits of cach template
arc rounded up to the next multiple of a fixed guantum size
(Q2r) in order to simplify its alignment in the memory and
the instruction register as discussed in Section 7.

The physical format for the template T1 of our example
machine is shown in Figurc 4(b). This template consists of
two concurrent operation groups “multadd” and “loadine”
whose various instruction fields have been assigned bit po-
sitions as shown in the figure. Note that the SRC3 field of
the “multadd™ operation group is positioned in the midst of
the bits corresponding to the “loadine” operation group be-
cause it has affinity with the SRC2 field of the “storedisp”
operation group in template TO. This was duc to the fact
that these two ficlds drive the same register file address port,
which in turn was a result of specilying a exclusion “LG3”
betwecen the two operation groups in the archspec.

[Template [EOP | TSel | OpGroups | OpGroups
TO 0 | addsub loaddisp
mult storedisp
T1 [} 1 multadd loadinc
(2}
multadd: pr? gpr, gpr, gpr : gpr
Template | PREDI SRCI SRC2 SRC3 DESTI
Tl 5 -8 9...13 14.--18 | 35...39 | 19.-.23
loadine: pr ? gpr: gpr, gpr
Tempiate PREDI SRCI DESTI [DEST2
Ti 26--29 | 30---34 | 45 .49 | 40---44
storedisp: pr ? gpr, gpr, lit :
Template | PREDI SRCI1 SRC2 SRC3
TO 26--29 | 30---34 | 35.-.39 | 40---49
(b

Figure 4. Example instruction templates.

t-cache ' 'yd:
?ﬁ _____

Ta

Ngigo Wlnmu Winin

D>z

Figure 5. The instruction fetch pipeline.

7. Controlpath design

We partition the problem of controlpath design into two
major components: the instruction sequencer and the in-
struction fetch pipeline. The sequencer design is dependent
upon the presence/absence of features such as exception and
interrupt handling, error recovery, branch prediction ete. but
is largely independent of the instruction-set architecture of
the machine. Therefore, we assume that the appropriaic
set of sequencer macrocells is available in our macrocell
databasc. Below, we address the design of the instruction
fetch pipeline (Figure 2, step 8) consisting of the following
components (refer Figure 5).

Instruction Cache. For purpese of the instruction pipeline
design, the cache is characterized by its access time (Ta)
and the size of an instruction packet (W 4) which is the unit
of instruction fetching from the processor side.
Instruction prefetch buffer. An instruction packet is
fetched from the instruetion cache and brought into a FIFO
queue. The prefeich policy is to keep the inventory of use-
tul packets at a constant size [Tq4 X Wiyao/Wal, where
the inventory of useful packets is defined as the sum of the
number of packets in the preletch bufler and the number of
outstanding cache requests. Intuitively, this is the number of
packets required to completely mask the cache latency T4
cven when the maximum sized (Wi,) instructions are be-
ing issued. This pelicy requires one to initiate a cache fetch
whenever the actual inventory falls below this size limit.

The inventory size is also an upper bound on the size of

the prefetch buffer, i.e.,
Nerro € [Ta X Wrmae/Wal

A tighter upper bound is possible if more history is kept
around dynamically regarding the exact number and the
timing of the outstanding cache fetches as discussed in [1].
Instruction alignment network. In order to accommodate
variable length instructions, an instruction alignment net-
work aligns the left boundary of the next instruction to the
first bit position of the instruction register (IR} at each cycle.
This network consists of a series of multiplexors controlled
by the states of the IR, the On-Deck register (ODR), and
the head of the FIFO queue. Not all shift increments are
necessary since the instructions sizes are guaranteed to be
multiples of a quantum size (Qr).

Instruction unit control tables. The alignment network,
the prefetch buffer, and the instruction fetch from the cache
are controlled by logic whose specification as a control table
is generated automatically according to the prefetch policy
described above. This logic is respensible for the following
tasks at each cycle:

¢ keceping track of the width of the instruction as well as
the unused bits in the instruction register and at the head
of the prefetch buffer,

& issuing insituction cache fetches, prefetch bulfer writes
and instruction register fills at the appropriate times, and

= gencrating the appropriate shift signal for the alighment
network to align the next instruction.

Instruction decode tables. At cach cycle, the left aligned
instruction in the instruction register is decoded to yield the
appropriate control signals for the various datapath control
ports. A control table specification for this decode logic is
generated automatically by walking the IF-tree. This may
then be implemented cither as random logic or as a PLLA
using standard logic synthesis tools.

8. Experimental Results

PICO-VLIW has heen operational as a rescarch proto-
type since late 1997. It allows us to explore hundreds or
thousands of architectural alternatives in designing ASIPs,
something that is very hard or impossible to do without an
automnated sysiem. At this point, we have exercised it with
several applications ranging from loop-intensive algorithms
for signal and image processing to less structured ones such
as compress and ghostscript. As an cxample, we present
some of the results from the design space exploration (or
an application whose time-consuming part consists of a fi-
nite impulse response (FIR) filter. 'The following table lists
the parameter ranges that definc the design space to be ex-
plored; the number in parentheses are the step sizes. This
design space contains 17640 different machines.

112

Hoterogenecis

8 - ygaghines |

0.8
[- e .
E 07 - " - SN - N
ot e P
8086 W«' ‘

fa
3 0.5 . W e
® 2 $
04 - % R
2 %, Homogeneous
§ O3 Ry "Mashines
& 02 -{; .
N, -
o4 S i"‘l“""'”-‘i‘:‘h.-m... — -
o] . f
0 20 40 60 80 00 120

Estimated area (mm %)
(based on parametrlc cost madels for 3.18u process)

Figure 6. Sample PICO-VLIW machines.
| Parameter | Range |

[Parameter | Range

predication yes, no speculation | yes, no

mteger FUs 1-3 float FUs 1-5
memory FUs | 1-2 branch FUs | 1

integer regs. 16-64(8) float regs. 16-64(4)
predicate regs. | 256 branchregs. | 8-16(4}

It is very hard to characterize the “quality” of an ar-
chitecture objectively other than its cost and performance
for a given application. In that spirit, Figure 6 shows the
cost/performance characteristics of a number of machines
in the design space that the Spacewalker actuaily considered
to find 68 pareto-optimal designs. The machines displayed
in Figure 6 fall in two categories. Machines represented
by black circles arc homogeneous machines which have
general-purpose functional units and in which all functional
units of a specific type (e.g., integer) are identical. Ma-
chines represented by grey circles arc heterogeneous ma-
chines in which functional units have bheen specialized to
the needs of the application and in which all units of a spe-
cific type are not necessarily identical. The results confirm
the intuition that for a given performance, good hetcroge-
neous designs arc cheaper than good homogeneous designs,
in this case by up to 50%.

9. Related work

The related work focuses on cither the datapath design
using a Spacewalker or the processor design from a con-
crete instruction set architecture (ISA). The MOVE project
at Delft University falls in the first category. The emphasis
is on the design of processor datapaths {or Transport Trig-
gered Architectures [5]. The datapath template used by the
Spacewalker consists of a set of functional units, a sct of
register files and a set of buses connecting the functional
units and the register files. The Spacewalker works with a
structural representation of the datapath, adding and delet-
ing register files, functional units, buses and interconnection

points to come up with a set of pareto-optimal datapaths.
The philosophy tor designing the control is simple, similar
to horizontal microprogramming, i.e., each control point is
controlled by a separate licld in the instruction word. Thus,
the work doesn't address the design of sophisticated instruc-
tion formats optimized for code size and the corresponding
instruction fetch and decode logic within the processor.

The work by Fisher et af. at HP Labs [6] is similar in
nature and focuses on the design of processor datapath for a
clustered VLIW architecture, similar to the Multiflow Trace
architecture [4]. The datapath template used in the design
process is highly stylized; for example, it doesn't permit
register port sharing and assumes that cach functional unit
has dedicated ports to register files. A major component
of their work is directed towards understanding how a pro-
cessor designed for an application or a group ol applications
performs on other applications in the same domain, e.g., im-
age processing.

The approach presented by Hadjiyiannis er al. [8] uscs
Instruction Set Description Language (LISDL) [7] to specify
a concrete [SA, which includes not only the desired oper-
ations but also the detailed instruction format and the con-
straints on instruction issuc. The specificaticon is then used
1o design the processor hardware in the lorm of synthesiz-
able Verilog and to retarget various tools, such as a code-
generator, asscmbler and simulator, nceded to evaluate the
performance. ISDL is a very general language capable of
specifying many different types of architectures. Since an
ISDL specification is at the level of a concrete ISA, the de-
signer (cither a person or a Spacewalker) has to do most of
the work {e.g., instruction format design) that our system
does automatically. In our opinion, this makes it less suit-
able as a tool for comprehensive design space exploration
and morc suitable for a design process that requires only
small incremental changes to an existing specification.

10. Conclusions

PICO-VLIW is a synthesis system for automatically de-
signing the architecture and micro-architecture of VLIW
and EPIC processors. It designs sophisticated processors
with non-trivial requirements and constraints upon their
ILP, shared register ports, variable-length multi-template in-
struction formats that minimize code size, an instruction
prefetch unit that covers the instruction cache latency, and
instruction alignment and distribution nctworks to deal with
the variable length instructions. A novel aspect of our ap-
proach is the distiction we make between the logical and the
physical instruction formats.

PICO-VLIW was designed with automatic design space
exploration in mind; the VLIW synthesis in PICO-VLIW
is driven by an abstract rather than a concrete [SA speci-
fication, since it is easier for the Spacewalker (or, for that

113

matter, a human being) to specify the former. Starting [rom
this specification, PICO-VLIW automatically generates,

1. the concrete ISA for the processor,

2. the detailed micro-architecture including the datapath
and the controlpath output in the form of RTL-level
structural VHDL,

3. a machine description for use by our retargetable com-

piler, assembler and simulator, and,

. an architecture manual and detailed statistics [or the

Spacewalker,

Acknowledgements

The authors would like to thank Mike Schlansker for his
contributions to the archspee definition, and Richard John-
son for his help in custom instruction template design.

References

[1] 8. Aditya and B. R. Rau. Automatic architectural synthesis
and compiler retargeting for VLIW and LPIC processors.
Technical Report HPL-1999-93, Hewlett-Packard Laborato-
ries, 1999,

5. Aditya, B. R. Rau, and R. C. Johnson. Automatic design
of VLIW and EPIC instruction formats. Technical Report
HPL-1999-94, Hewlett-Packard Laboratories, 1999.

G. 1. Chaitin. Register allocation and spilling via graph col-
oring. In Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, pages 98-105, Boston, Mas-
sachusetts, June 23-25, 1982,

R. P. Colwell, R. P. Nix, J. J. O' Donnell, D, P. Papworth, and
P, K. Rodntan. A VLIW architecture for a trace scheduling
compiler. In Second Intl. Conf. on Architectural Support for
Programining Languages and Operating Systems (ASPLOS
1}, pages 180-192, Palo Alto, CA, Octaber 1987.

H. Corporaal and R. Lamberts. TTA Processor Synthesis. In
First Annual Conf. of ASCI, Heijen, The Netherlands, May
1995.

1. A. Fisher, P. Faraboschi, and G. Desoli. Custom-Fit
Processors; Letting Applications Define Architectures. In
208" Annual HEEE/ACM Symposim on Microarchitecture
{MICR()-29), pages 324-335, Paris, December 1996,

G. Hadjiyiannis, S. Hanono, and S. Devadas, ISDL; An
instruction set description language for retargetability. In
ACM/IELEE Design Automation Conference, 1997.

G. Hadjiyiannis, P. Russo, and S. Devadas. A Methodology
for Accurate Performance Evaluation in Architecure Explo-
ration, In Design Automation Conference, New Orleans, LA,
June 1999,

V. Kathail, M. Schiansker, and B. R. Rau. HPL PlayDoh ar-
chitecture specification: Version 1.0. Technical Report HPL-
93-80, Hewlett-Packard Laboratories, Feb, 1994,

B. R. Rau, V. Kathail, and S. Aditya. Machine-description
driven compilers for EPIC and VLIW processors. Design
Automation for Embedded Systems, 4771118, 1999,

[2

Pt}

—
(%)
Pl

[4]

[3]

[6

(7

—_

(8

—_—

9]

[10]

