
A Tutorial Program for Propositional Logic

with Human/Computer Interactive Learning

Stacy Lukins, Alan Levicki, and Jennifer Burg

Department of Computer Science

Wake Forest University

Winston-Salem, NC 27109

bur~(~cs.wfu.edu

Abstract

This paper describes a tutorial program that serves a double
role as an educational tool and a research environment.
First, it introduces students to fundamental concepts o f
propositional logic and gives them practice with theorem
proving. Secondly, the program provides an environment
in which we can track student learning, explore cognitive
issues o f human problem solving, and investigate the
possibilities o f interactive human/machine learning. We
have tested the tutorial program on two groups of Discrete
Mathematics students and report the results o f our
assessment. We also discuss the contributions and future
directions of our research in interactive human/machine
learning.

1 Background

Propositional logic is a staple of inlroductory computer
science courses, often taught in CS I, Discrete Mathematics,
or both. Mastery o f the concepts of formal logic, so basic
to the problem-solving inherent in computer science,
requires practice, particularly in the deductive methods o f
formal theorem-proving.

To supplement the logic exercises given in typical
textbooks, we have created a logic tutorial program called
P-Logic Tutor. In an interactive Web-based environment,
the program introduces students to concepts o f
propositional logic and gives them practice in creating
well-formed formulas, applying inference rules, and
proving theorems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'02, February 27- March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 ACM I-58113--473-8/02/0002...$5.00.

In addition to its usefulness as a teaching tool, the tutorial
program serves as a research testbed in which we can
monitor student learning patterns and investigate how
humans and machines can learn interactively - the human
being prompted with clues for how to proceed with a proof,
and the computer improving in its ability to provide useful
clues over multiple tutorial sessions with multiple students.

This interactive human/machine learning component
distinguishes P-Logic Tutor from previous tutorial
theorem-proving systems.

Earlier systems have generally fallen into five categories:
interactive theorem provers, proof checkers, p roof
assistants, p roof editors, and formal logic tutorial programs.
Only the last category puts the emphasis on pedagogy, and
none o f these has an interactive human/machine learning
component.

A number of interactive theorem provers have been created,
but they differ from P-Logic Tutor in that they are targeted
toward having the computer generate proofs rather than
teaching humans how to do so. Their interactivity is
motivated by a need to improve the efficiency o f fully-
automated theorem provers - i.e., those in which the
computer does all the thinking. Examples o f interactive
theorem provers include Nqthm (also known as the Boyer-
Moore Theorem Prover) [5, 15, 16], ACL2 [11], HOL [9],
and INKA [10]. In these systems, the user can help guide
the theorem prover by suggesting lemmas or undoing
previous steps. In this sense, such systems do the reverse
o f P-Logic Tutor, where the computer suggests steps to the
us er.

Proof checkers, p roof assistants, and proof editors put more
emphasis on teaching the user how to do a proof, although
that is not necessarily their primary purpose. Proof
checkers simply determine i f the construction o f a p roof is
correct (e.g., Wai Wong et al. 's Proof Checker for HOL

381

[9].) They are often part o f a larger theorem-proving
system.

Proof assistants also can help the user to check proofs for
correctness, but they provide a more fully-developed
environment for constructing proofs. Some include built-in
hints for particular problems, often predefined either by the
programmer for sample problems, or by the user for user-
defined problems. Examples o f proof assistants include
ETPS (the interactive component o f TPS) [18], Coq [7],
CPT I (the Carnegie Mellon Proof Tutor project) [6], Kumo
[13], and WinKe [20]. All of these assistants provide proof
checking. Their user interfaces are quite varied, ranging
from command-driven systems (ETPS and C o n to those
with GUIs (WinKE, CPT I, Kumo, and an updated version
o f Coq called Pcoq [17]).

Proof editors allow users to construct their own proofs in a
specified logic. They seek to make the tasks involved in
constructing proofs easier by, for example, providing tools
for developing proof trees or giving simple methods for
applying inference rules to axioms. Those with more
sophisticated user interfaces allow the user to view and edit
proofs graphically. Proof editors may or may not have the
ability to check for the correct application o f inference
rules or the correct construction of the entire proof.
Examples of proof editors include Alfa [8], where proofs
are done in natural deduction style; Jape [4], a generic
proof editor where the logic formalism can be described in
a metalanguage; and the editing component o f
PLAGIATOR [12].

Tutorial systems that, like P-Logic Tutor, are designed to
teach concepts o f formal logic include the commercially
available packages of Barwise and Etchemendy. Tarski's
World introduces students to the language o f first-order
logic through reasoning with graphical objects [2]. Its
extension, Hyperproof, is a system for learning the
principles o f analytical reasoning and proof construction
[3]. The Logic Tutor of Abraham et al. [1] also helps
computer science students learn techniques o f formal
proofs, but it is distinguished by its adaptability to different
logic languages (i.e., prepositional and predicate) and by its
ability to characterize types o f mistakes and respond to
them appropriately. The main emphasis in these systems is
not on generating proofs for some other application, but on
teaching humans how to reason in logic formalisms.

The word "intelligent" is sometimes applied to tutorial
systems. Generally, intelligent tutoring systems are those
that do not simply give generic feedback to student
mistakes. Instead, they tailor the feedback to the type of
mistake, and some also develop a student profile over time
so that they can individualize problems and feedback
accordingly. (See [19] for a review of intelligent tutoring
systems.)

We use the term "intelligent" in a different way as applied
to P-Logic. P-Logic Tutor is an intelligent tutorial system
in that it has its own built-in theorem-proving ability, and it
is designed to learn better theorem-proving strategies over
time so that it earl offer increasingly useful clues. However,
P-Logic Tutor is also extensible to intelligence in the more
conventional sense in that student activity is monitored and
stored and can be evaluated in subsequent tutorial sessions
for customized feedback.

2 P - L o g i c T u t o r : A T u t o r i a l P r o g r a m C o m b i n i n g
P e d a g o g y a n d R e s e a r c h

The primary purpose o f P-Logic Tutor is to teach students
fundamental concepts of propositional logic and theorem-
proving techniques. The tutorial is divided into three
learning modules:

...... -.~=...

~.~.jiii~.~iHiHiii.~:;Ir.,.~,~...'.~,;.~iiiii~!..,i~i:~i. ::'; .i=Ziii;:;i? ! ii=.i;i:i~ "= • "~!i;;;!ii~i=>.Miiiii=:;!;L= .=,iZ:~==~i!;rTii~!;iiii::~:i=.~':': "~iiiiiiiiii;~iiiiiii~i~'~. • ~===i!i

~"i ,~;~;~ , " " : • :!: "=. " . :.:.::=;i:. ..

[A~),HC.~,Dk.,.([-~J
PARSE TE.~Z

//-/Gin ~..L_
I?.~ "SI
I -~-]
ES-m~ [-.~.--

imp. -
E~--.J

[" I ¢ ~ - -

~ J m l m k b ~ ,

Figure 1. Checking Logical Propositions

M o d u l e

Figure 1

1 - In this module, the student can
attempt to compose a well-formed formula and
check its syntax;
ask that the formula be parsed;
pop open a truth table;
enter values in individual rows and columns o f the
truth table and check their c o r r e c t n e s s ;

ask that the truth table be automatically filled in;
set truth values for atomic propositions within the
formula, say what the resulting truth value for the
formula would be, and check correctness;
say i f the formula is satisfiable and check
correctness; and
say i f the formula is a tautology and check
c o r r e c t n e s s .

gives a view o f Module 1.

M o d u l e 2 - In this module, the student can
attempt to show how a conclusion can be derived
from one or two axioms (using problems that are
automatically generated by the system);

382

• tell what rule of inference or equivalence justifies
this derivation;

• cheek for correctness; and
• see the proper rule application if his/her answer is

incorrect.
Figure 2 gives a view of Module 2.

. -L,S L,.;....;,,,,; .

~.-P ~ -Q) ~ -U

~ . : -S v (- V ¢ o - W }

V ~ ~ I r - ~ ; ~ ~ : ! : : : : : : ~::::~,-m-t
.= = • .+:.~. ~ • =..... :.

• .. ~ . " . ' i . . i
• = t .

~ l :

- " ' : " . ~ .L .~i.

• :=~ ~ ~ - ~ m l l ~ m ~ t :.i:.

. : .

Figure 2, Checking Logical Implications

Module

Figure 3

3 - In this module, the student can
attempt to prove a theorem by incrementally
applying rules o f inference and equivalence (using
problems that are automatically generated by the
system);
input a problem o f his/bar own, consisting o f
axioms and a theorem to prove; and
request a "clue" from the tutorial program as a
proof proceeds.

gives a view o f Module 3.

~md i iTL~ .q

P I iU IV] I : IIC v]t,[

I ~WN FEGPOSn~GNS:

I - .~J
J -~X

L~M
| vL

I R f l m l ~ l O ~ : " I l l ~ l t l l a ~ a i t i m m l I l i a d l a t l a w i l l o w l i c k 4 ~ P & O P O S l l

b Ihs~stJlnw, almgwtLt, m ru lw .d l n l h lmmml=bndsm. ' l . Sl~l ~. T lmrtct l / lh , .~APPt,Yl~
~ ~ dmtm. l r ~ d m h a t l ~ b n m w ~ t h a l m q m d i ~ i ~ = a w l a I i ~ I m

e r a , m e l m r m ~ u e w i g e p t ~ a r .

Figure 3. Proofs

~, I I I r l _ I

!" (~"~ ' /L- -W)
t: ~+t0

I l , • ,

.i ~ 'e-f;: :7 "~ - : ~ ' ~

At any time during a tutorial session, the student can pop
open a Help window, which gives help both on the user

interface and the subject matter itself, i.e., concepts in
propositional logic.
An additional tabbed pane is always available containing a
list o f rules o f inference and equivalence applicable to the
problems and proofs o f Modules 2 and 3.

P-Logic Tutor serves as a learning tool in a second way,
providing a research vehicle through which we can
examine how students solve logic problems and how
humans and machines might be helped to learn from each
other. This aspect o f P-Logic Tutor exists behind the
scenes of the tutorial system and fuels the investigations o f
the faculty/student team that has worked on the project in
the past two years.

3 T h e I m p l e m e n t a t i o n

3 .1 I m p l e m e n t a t i o n o f t h e T u t o r i a l S y s t e m

P-Logic Tutor is implemented in Java and accessible from
the Web at www. cs.wfu.edu/-burg/JavaPackages/
indexswingnet.htard. Visitors can log in with the user name
anonymous and password plogic.

The purpose of requiring student log-ins is to identify the
student at each tutorial session so that his/her activity can
be monitored and saved at the tutorial Web site. These
files provide us with our assessment data, and they can also
be used for later customization of a user's difficulty level
and feedback.

The program also includes a context-sensitive Help feature
implemented by means of the JavaHelp extension.
Students can pop up the Help window at any time during a
tutorial session to look up definitions of terms in formal
logic. Use of this Help window is also monitored,
transparent to the user.

3 . 2 I m p l e m e n t a t i o n o f I n t e r a c t i v e T h e o r e m - P r o v i n g

The tutorial system described above is fully implemented
and has been tested on two groups o f students. In the
meantime, we are designing and have partially
implemented an interactive learning system to enhance the
effectiveness o f the tutorial environment.

The learning system is divided into four components
divided into two phases, as pictured in Figure 4.

The theorem prover consists o f the environment in which
the user can construct proofs, including facilities for
allowing the user to apply inference and equivalence rules
and checking the correctness of their application. In
addition, the theorem prover can present potentially useful
steps, or subgoals, to the student. This component is fully
operational and has been tested on student users.

383

The remaining three components arc still in the design and
implementation stage, but since they operate behind the
scenes as enhancements to the tutorial process, we are able
to use the tutorial system with students while we continue
to develop these components.

Learning System

L.-- !
Sm Prover A p p f i c a t i o n

•. P h a s e

~; ?:,:;i!:!i.:: k e a m h) g

Figure 4. A Model of the Learning System

The purpose o f the knowledge base is to store data about
past p roof problems, p roof types, and methods that work
well with certain problem types. This is the tutorial
sys tem's memory.

The purpose o f the critic is to analyze what takes place in
the theorem-proving component. The critic determines
whether a suggested subgoal is ever used in the
construction o f a proof. It also analyzes whether a
suggested subgoal contributes to an efficient proof.
(Measures o f an "efficient" proof include the number o f
steps taken in the p roof compared to other known solutions,
and the number o f subgoals generated that are never
ultimately used in the proof.) The results o f the critic's
analysis arc sent to the modifier.

The purpose o f the modifier is to determine when revisions
should be made to the knowledge base. The modifier can
store new data, modify existing data, or name and store
new inference rules.

3.3. Suggesting Subgoals

We have spent the majority o f our t ime thus far on the
subgoal-suggestion feature within the learning system.

Subgoals are suggested by four methods:

(1) Parse trees of the axioms are created. Shared atomic
propositions are constrained to have the same values. A
recursive procedure propagates logic through the parse tree
for each axiom, and where the truth values o f atomic
variables or subexpressions can be determined, these are
put on a list o f provable subgoals.

(2) Expressions are transformed into equivalent forms.
Equivalence rules that arc particularly useful include
distribution, absorption, and DeMorgan's laws. It is the

role of the critic to identify types o f problems to which
these rules best apply. For now, we check their
applicability in all problems by searching for expressions
that match their pattern. When an expression has been
transformed to an equivalent form, it can be suggested as a
subgoal or processed through one of the other methods in
this list.

(3) Logic is propagated across expressions that share
operands. For example, i f we know that P ~ Q is true
and P A Q is false, then P must be false, so - P can be
suggested as a subgoal. For another example, consider a
problem with the axioms Y ~ Z, Z ---~[Y ~ (R ¢ S)],
R ~ S, and - (R A S). The expressions R ~ S, R A S, and
R v S share the variables R and S. I f the truth values o f the
first two are known - true and false, respectively - then
they necessitate that the third be false. Thus, - (R v S)
could be suggested as a subgoal.

(4) Some atomic variable P is set to either true or false,
and its logical conclusion, i f there is one, is determined. I f
some subexpression 2/must be true where P is true, then

P ~ S may be suggested as a subgoal.

4 Assessment of the Tutorial System

4.1 Implementation Issues

Although Java has the advantage o f being Web-portable, its
frequently changing versions created some implementation
problerns. The GUI requires Java ' s Swing classes, which
in turn require the Java Plug-In for Web browsers, and we
found that students with an older version o f Java and the
plug-in on their computers could not access the tutorial.
This was quickly remedied with an upgrade. Some classes
also did not prove to be as portable as we would have liked.
The HTMLEditor class was particularly problematic in the
Unix environment, not displaying formatted html properly
in the Help window. Aside from these problems, 3ava
proved to be a good language for development and Web-
distribution o f the tutorial system.

4.2 User Friendliness and Pedagogical Effectivenss

We tested P-Logic Tutor on two classes o f Discrete
Mathematics students in consecutive semesters. Students
reported very few problems in the tutorial system other
than some small interface bugs that were uncovered.

Most students found the first two modules quite easy to use.
The Proofs module gave students the most trouble mostly
because the exercises that they were being asked to do -
prove theorems - were the most difficult in the tutorial.
Some comments related to user-friendliness. For example,
a few students said they would like the panel containing the
Rules and Inference and Equivalence to be constantly in
view while they are doing a proof. Several said that they

384

would like a "back" button that would allow them to return
to previous problems.

Quite a few comments had to do with the manner in which
students were required to prove the theorems. Rules have
to be applied in exactly the form they are given, a
restriction that some students found unnecessary. For
example, before the conjunctive simplification rule can be
applied to A.~B in order to derive B, A^B must be
commuted to B^A, since the rule is stored in the form
pmq .'.p. Allowing implicit commutation would not be
difficult to implement, but deciding how many rules we
could allow to the student to collapse into one step is
trickier with regard to implementation.

The subgoal suggestion feature was considered helpful by
many students, but some said that they could have used
more guidance in which subgoal to try. (In some cases,
other subgoals would have to be proven before the one
suggested could be proven. Our intention is to have the
computer "learn" the intermediate steps.)

The most interesting comments from students related to
their manner of thinking through proofs, which did not
always match the rule-application proof method they were
asked to put into practice. Many felt that they knew,
logically, why a theorem was true, but they couldn't find
rules to match the way they were thinking. For example,
some wanted to use a substitution method - proving the
truth value of a subexpression, substituting it out with true
or false, and using a rule like 'false ^ X is always false" to
simplify the expression. Alternatively, they may have
wanted to do case-base reasoning or proof by contradiction.
Applying rules in a syntactical term-rewriting process did
not necessarily match their logical thinking process.

5 Future Work

The long-term goals of this project take two branches:

(1) Continue to develop the interactive human/machine
learning component of the tutorial system. Investigate and
compare theorem-proving methods that are natural to
humans and computers, respectively, and determine ways
in which each can learn from the other.
(2) Continue to investigate how humans best learn logical
thinking. Implement an alternative tutorial module that is
more graphical and intuitive (as opposed to a rule-based
term-rewriting process), allowing the student to visualize
logic propagation and proof strategies. Do pre- and post-
testing of students using English-language-based logic
problems to determine the extent to which the study of
formal logic can improve a person's problem solving
ability with real-world logic problems expressed in
everyday language.

References

[1] Abraham, D., Crawford, L., Lesta, L., Merceron, A.,
and Yacef, K. The Logic Tutor: A Multimedia
Presentation. The IME3 of Computer Enhanced Learning 3
(2), Oct. 2001. http://imej.wfu.edu/artieles/2001/2/
index.asp.
[2] Barwise, J. and Etchemendy, J. Logic Software from
CSLI. Sept. 2, 2001. htttp://www-csli.stanford.edu/lap/
Logic-software.html.
[3] Barwise, J. and Etchemendy, J. Hyperproof. Stanford,
CA: CSLI Publications, 1994.
[4] Bornat, R. and Sufrin, B. Jape - A Framework for
Building Interactive Proof Editors. Sept. 2, 2001. http://
users.comlab.ox.ac.uk/bemard.sufrin/j ape.htrnl.
[5] Boyer, R. S. Nqthm, the Boyer-Moore Prover. Sept. 2,
2001. http://www.cs.utexas.edu/users/boyer/ftp/nqthm/.
[6] The Carnegie Mellow Proof Tutor Project. Sept. 2,
2001. http://hss.cmu.edu/HTML/departments/philosophy/
Proof Tutor.html.
[7] The Coq Proof Assistant Sept. 2, 2001.
http://coq.inria, fr/.
[8] Hallgren, T. The Proof Editor Alfa. Sept, 2, 2001.
http://vcww, es. ehalmers.se/-hallgren/Al fa/.
[9] The HOL Theorem Proving System. Sept. 2, 2001.
Laboratory for Applied Logic, Brigham Young University.
http://lal.cs.byu, edu/lal/hol-documentation.html.
[10] The Inductive Theorem Prover, INK.A, Version 4.0.
Sept, 2, 2001. http://www.dfki.de/vse/systems/inka/.
[11] Kaufmann, M. and Moore, J. S. ACL2 Version 2.5.
Sept. 2, 2001. http://www.cs.utexas.edu/users/moore/
acl2/acl2-doc,html.
[12] Kolbe, T. and Brauburger, J. PLAGIATOR - A
Learning Prover. Proceedings CADE-14. Springer LNAI
1249, 1997.
[13] Kumo: A Web Based Proof Assistant. Sept. 2, 2001.
http://www.cs.ucsd.edu/groups/tatami/kumo.
[14] LogiCoq. Sept. 2, 2001. http://wims.unice.fr/-wims/
it U3-1ogie-logicoq.en.htrnl.
[15] Moore, J. S. The Boyer-Moore Theorem Prover
(NQTHM). Sept. 2, 2001. http://www.cs.utexas.edu/users/
moore/best-ideas/nqthm/index.html.
[16] PcNqthm: An Interactive "Proof-checker"
Enhancement of the Boyer-Moore Theorem Prover. Sept.
2, 2001. http://www'cli'c°m/s°ftware/pc'nqthrn/index'html"
[17] Pcoq: A Graphical User Interface for Coq. Sept. 2,
2001. http://www-sop.inria, fr/lemme/pcoq/.
[18] TPS: Theorem Proving System. Sept. 2, 2001.
http ://gtps.math.cmu.edu/tps.html.
[19] Urban-Lurain, Mark. Intelligent Tutoring Systems:
An Historic Review in the Context of the Development of
Artificial Intelligence and Educational Psychology. Sept. 7,
2001. http://aral.cse.msu.edu/Publications/ITS/its.htm.
[20] WinKe: A Proof Assistant for Teaching Logic. Sept.
2, 2001. http://www.dcs.kcl.ac.uk/--endriss/WinKE.

385

