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Abstract

We conducted two experiments designed to examine whether animations of algorithms would help
students learn the algorithms more e�ectively. Across the two studies we used two di�erent algorithms
Ð depth-®rst search and binomial heaps Ð and used two di�erent subject populations Ð students with
little or no computer science background and students who were computer science majors Ð and
examined whether animations helped students acquire procedural and conceptual knowledge about the
algorithms. The results suggest that one way animations may aid learning of procedural knowledge is by
encouraging learners to predict the algorithm's behavior. However, such a learning improvement was
also found when learners made predictions of an algorithm's behavior from static diagrams. This
suggests that prediction, rather than animation per se, may have been the key factor in aiding learning
in the present studies. These initial experiments served to highlight a number of methodological issues
that need to be systematically addressed in future experiments in order to fully test the relationship
between animation and prediction as well as to examine other possible bene®ts of animations on
learning. # 2000 Published by Elsevier Science Ltd. All rights reserved.
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Educators constantly are seeking new ways to improve instruction, to facilitate learning and

to hold the attention of their students. The power of computers to store vast quantities of
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information and to simulate environments and conditions that would otherwise be unavailable
makes them an intriguing possibility as an instructional aid.
Our work examines whether multimedia capabilities, particularly animation, can facilitate

learning about computer algorithms and programs. The use of pictures and visualizations as
educational aids is accepted practice; textbooks are ®lled with pictures and instructors often
diagram concepts on the blackboard to assist an explanation.
Animation goes one step further. While static visualizations can provide people with the

essence of how something looks, is laid out, or is constituted, animation appears better able to
explain a dynamic, evolving process. Animations may aid learners in constructing a mental
model (a mentally-runnable simulation) of various ``processes'' such as the movements of
components of a mechanical system. Various studies have suggested that mental models help
learners more accurately predict the behaviors of various processes or systems such as a system
made up of a set of hypothetical components for a ``phaser bank'' (Kieras & Bovair, 1984) or
a set of interconnected pulleys (Hegarty & Just, 1993).
In general, animation helps viewers track patterns and observe relationships in a display

(Robertson, Card & Mackinlay, 1993). For instance, animation has been used to provide on-
line help with interface tasks (Sukaviriya, 1990) and to help users follow interface operations
(Baecker & Small, 1990).

1. Background

Our research focus is the use of animation to help teach programming and to help teach
students how algorithms work. This is called algorithm animation (Brown, 1988a) and is one
particular instance of software visualization (Price, Baecker & Small, 1993; Stasko, Domingue,
Brown & Price, 1998) which is the use of images, graphics and animation to illustrate
computer algorithms, programs and processes. The video Sorting Out Sorting, presented at
SIGGRAPH `81, is generally credited with initiating the ®eld of algorithm animation (Baecker,
1998). It showed views of data being sorted by di�erent algorithms to help students understand
how the algorithms work and how they compare. Since then, many algorithm animation
systems have been built (Brown, 1988b; 1991; Brown & Najork, 1997; Gloor, 1992; Naps,
1990; Roman, Cox, Wilcox, & Plun, 1992; Stasko, 1990; Stasko & Kraemer 1993) and a
number are publicly available. Many universities use the systems to help teach algorithms to
students. This type of instruction is facilitated by the availability of an ``electronic'' classroom
to conduct lectures and by the availability of powerful computers with multimedia capabilities
on which students can work out of the classroom (Bazik, Tamassia, Reiss & van Dam, 1998).
Animations are now relatively easy to design and produce with computers.
Much more research has been performed on algorithm animation system technologies than

on the pedagogical e�ects of such systems. The intuition of computer scientists has led them to
believe that the animations must provide a learning bene®t, but prior experimental studies of
the in¯uence of algorithm animation on student understanding have provided mixed results.
Some studies have found bene®ts, but not at the levels hoped for by system developers, while
others did not uncover bene®ts.
One of the ®rst studies in this area examined students learning about the pairing heap data
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structure and algorithm (Stasko, Badre & Lewis, 1993). The study included two test conditions:
students learning about the algorithm by reading only a textual explanation and students
learning about the algorithm using the text and interacting with an animation of the algorithm.
Each group had an identical amount of time to study the algorithm, which was followed by a
post-test including a variety of questions about the algorithm. The post-test was mostly
questions about the procedural, methodological operations of the pairing heap, but it included
a few concept-oriented questions as well. There was no signi®cant di�erence in the two groups'
performances on the post-test, but the trend favored the animation group.
Lawrence's doctoral dissertation studied a variety of introductory computer science

algorithms such as sorting and graph algorithms and examined the addition of animation to
help teach them (Lawrence, 1993). In one experiment she found a signi®cant learning bene®t,
as measured on a post-test, when students used an algorithm animation in a laboratory session
outside of a class (Lawrence, Badre & Stasko, 1994). The learning bene®t involved the ability
to understand and perform algorithm procedures and to answer conceptual questions about
the algorithm. The students who bene®ted were the ones who were able to enter trial data and
values to the algorithm and then watch the resulting animation. The learning bene®t was
relative to two other groups: those students who did not attend the after-class laboratory and
those who did attend a lab session, but viewed animations of the algorithm on prede®ned data
sets.
Hansen, Schrimpsher and Narayanan (1998) did ®nd signi®cant learning bene®ts via using a

hypermedia system that included animation to help teach students about algorithms. In their
study, however, the learning bene®t may have resulted from any number of attributes of the
system, so it is inappropriate to attribute the improvements solely to the animations.
Jarc's doctoral dissertation examined algorithm visualizations deployed over the World Wide

Web (Jarc, 1999). He examined students learning about an algorithm by viewing a visualization
as compared to students who viewed the animation and answered interactive questions about
the algorithm. He hypothesized that the interactive questions would aid learning, but no
signi®cant di�erence was found and the trend surprisingly even favored the passive viewing
group.
Other studies have focused on more qualitative issues concerning student learning from

algorithm visualizations. Douglas, Hundhausen and McKeown (1996) found that the visual
depictions commonly used in algorithm visualizations do not accord well with student-
generated conceptualizations of the algorithms. This noncongruence may help to explain some
of the mixed results in the earlier empirical studies. They argue for a more
ethnomethodological approach to evaluating the pedagogical bene®ts of animations.
Gurka and Citrin (1996), by reviewing earlier empirical studies and carrying out experiments

of their own, identi®ed seven factors to consider in studying pedagogical bene®ts of algorithm
animations: animation system usability; animation system availability; training on use of the
animation system; algorithm complexity; animation quality, including graphic design; how,
where and when the animation is used; and individual di�erences among learners.
Because these results have been so uneven, it makes sense to examine a broader context of

related work involving the use of animations to assist learning in domains other than
algorithms and programming. Much prior work exists (Mayer, 1997; Rieber, 1991), but again
the results are perhaps best characterized as mixed.
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Rieber and his colleagues found that the addition of animation to help teach science
concepts such as Newtonian mechanics had no e�ect on learning by adults as measured by a
multiple choice post-test (Rieber, Boyce & Assad, 1990), but it did have a positive e�ect on
children (Rieber, 1990). They speculate that the animations helped the children form internal
mental images of the processes, but this was not necessary for the adults. A later study
examined an animated simulation's role in helping students to understand velocity and
acceleration (Rieber, 1996). Graphical feedback did not in¯uence explicit understanding as
measured by a post-test, but it did bene®t tacit knowledge of the concepts as measured by
student performance on a game involving the concepts.
Palmiter and Elkerton (1993) studied the use of animation to aid computer authoring tasks

(see also Palmiter, 1993). Animation initially assisted both accuracy and speed, but after one
week had elapsed, the subjects exposed to animations actually had regressed behind the non-
animation subjects.
Park and Gittelman (1992) compared animated versus static visual displays in helping

students troubleshoot electronic circuits. They did ®nd a signi®cant bene®t of animated visuals,
that is, the animated visuals supported repairs with fewer trials. The investigators argued that a
key factor in the learning bene®ts of such displays is an appropriate match to the speci®c
learning requirements of the particular tasks being examined.
Studies by Mayer and Anderson (1991, 1992) and Mayer and Sims (1994) found that

animation did help college students learn about mechanical concepts when measured by a
creative problem solving post-test. The bene®ts from the animations occurred when the
animations were accompanied by verbal explanations of the concepts. Mayer (1997) argues
that these results support the dual-coding theory advocated by Paivio (1990), which articulates
how multiple representations of a problem help learners understand new concepts and build
connections among the representations.
If we shift our focus from animation to multimedia in general, a number of prior studies are

pertinent. Pane, Corbett and John (1996) found that a simulation (biology demonstration)
helped learners because each time it was run it probabilistically varied the developmental
sequence being shown. Thus, learners received more information than those who just saw a
movie multiple times. Such a simulation is similar to the types of animations we are studying
in that the initial conditions can be varied each time an animation is run. Faraday and Sutcli�e
(1997) studied multimedia presentations and suggested that for animation to be an e�ective
tool, it must be used to draw learners' attention to appropriate features of the presentation.
Although the above studies of animation clearly are pertinent to our work, we are reluctant

to take too many implications from them with respect to algorithm animation. Algorithm
animations are fundamentally di�erent than the types of animated simulations described above.
In those studies, the animations usually portrayed physical processes, thus the animations
represent real-world phenomena. Algorithm animations, conversely, are symbolic, graphical
representations of computer algorithms that have no physical manifestation. Providing a
learner with a visual representation for something abstract could be just as important to the
learning process as the fact that the representation is an animation.
Advocates of algorithm animation identify the concrete visualization of abstract concepts as

one of the central reasons for their belief in the technology's value. Abstract, conceptual
phenomena are notoriously di�cult for students to understand. Algorithm animations help
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make concepts concrete. The second reason for the belief that algorithm animations should aid
learning involves the animated visuals. Computer algorithms are dynamic processes that evolve
over time. Static images presumably do not convey this time evolution as well as animated
visuals.
These two reasons fuel computer scientists' belief in the pedagogical value of algorithm

animations and they form the basis of our ``theory'' of why algorithm animations bene®t
student learning. Clearly, other processes may be involved such as bene®ts from dual coding or
dual representations (visual and textual) and the stimulation of mental models in learners.
However, our experiences in teaching algorithms to students for a number of years underline
the di�culties that students have with these abstract concepts and the value in providing
concrete, dynamic representations to the concepts. Thus, an examination of the importance of
dynamic versus static presentations seems an appropriate place to begin an empirical
investigation.

2. Study overview

This article describes experiments involving two di�erent algorithms: depth-®rst search and
binomial heap. Our primary objective was to identify how the presence or absence of an
algorithm animation in the instructional environment in¯uenced learning in students.
In the experiments we utilized two already existing algorithm animations rather than

building new ones. This was because we have used these animations in classes and they have
been widely distributed along with accompanying animation systems, thus we sought to
validate this use in a pragmatic manner. The animations originally were constructed to
illustrate the important steps of the two algorithms. The depth-®rst search animation, for
instance, shows the classical vertex and edge representation of a graph. A token (represented as
a circle) moves about the graph during the search, vertices change color as they are visited and
the order of visitation is labeled. Similarly, the binomial heap animation illustrates binomial
heaps just as they are shown in most algorithms textbooks. Additionally, operations on the
heaps are illustrated by smooth animated movements of the nodes.
Because of our desire to make our initial experiments have some ecological validity to

classroom settings, we presented the animations in the context of a larger learning situation.
Students in our studies watched a brief video-lecture on the algorithm and also read a short
text on the algorithm before watching an animation. As mentioned earlier, the animations had
visual representations as shown in current textbook presentations in order to make the
animations consistent with present classroom learning.
Following the learning sessions, students completed a post-test designed to measure their

understanding of the algorithms. Again, this overall methodology was tailored to mimic a
traditional university course ``teach-then-test'' learning scenario. Clearly, many people today
question this traditional scenario as being the best scenario for learning, but that debate is
outside the scope of our study. We simply mimicked what occurs in typical classrooms.
The post-test was designed to assess students' understanding of the algorithm just taught.

Our de®nition of ``understanding'' an algorithm directly in¯uences the form of the exercises/
questions on the post-test. Here again, we chose an approach consistent with traditional testing
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instruments in college courses. Our post-test questions, in general, evaluated the students'
procedural and conceptual knowledge of the algorithms (experiment 1 examined only
procedural knowledge; experiment 2 examined procedural and conceptual knowledge). The
questions involved short answers whose correctness could clearly be determined. By
``procedural'' we mean questions relating to the methodological, step-by-step operations of the
algorithms on di�erent input data sets. For example, given a binomial heap in a particular
con®guration, could a student perform an insert operation and illustrate the heap's
con®guration after the new element was inserted? By ``conceptual'' questions we mean the type
of declarative, fact-based questions common on exams. These questions typically involve
properties of an algorithm. For instance, conceptual questions may ask students what the
running time of an algorithm is or whether a certain size tree data structure could exist as the
algorithm runs.
Clearly, these two classes of questions are interrelated. Conceptual knowledge about the

properties of an algorithm can help a learner to carry out the algorithm's steps. Similarly,
being able to perform the step-by-step operations of an algorithm may assist a learner in
determining the veracity of a conceptual question about it. Nonetheless, we characterize post-
test questions as ®tting into these two broad classes for the experiments described here.
Thus, our operational de®nition of understanding includes a learner's ability to predict

algorithm performance on novel problems and to answer certain conceptual questions.
Obviously, understanding may involve other measures such as the ability to implement an
algorithm and the ability of a student to learn a new algorithm as a function of having studied
a prior algorithm. While these measures are pertinent, they were outside the scope of our initial
focus.
Given this operationalization of understanding, it is reasonable to ask how learners acquire

such an understanding and how animations might aid the acquisition process. As discussed
earlier, prior research has hypothesized that animations and simulations help learners to build
mental models of processes. Such models help learners to reconstruct, run and simulate the
processes. Furthermore, in carrying out earlier experiments, we noticed how the students often
would anticipate the next movement, ¯ash, or color change of an animation re¯ecting the next
algorithm operation. Prior research has suggested that when learners acquire a mental model
for a system or process, one of the bene®ts is that they are better able to make predictions
about the behavior of the system (e.g., Kieras & Bovair, 1984).
However, it is possible to turn this logic on its head. That is, if learners are explicitly led to

make predictions about the animation during training, this might help the development of a
mental model of the algorithm. Thus, if the bene®t of seeing an animation is that it leads a
learner to make predictions, then learners who see an animation, or learners who see static
images but are asked to make predictions based on the images, might be more likely to
develop a mental model that aids them when they attempt to answer post-test questions about
the algorithm.
Therefore, we hypothesize that animations might encourage the learner to make and test

predictions of what is going to happen at each step of the algorithm Ð perhaps by making it
relatively easy for the learner to make and test the predictions. For example, viewing an
animation of a graph traversal may communicate the pattern of operations to the viewer and
facilitate anticipation of its next step. This prediction element could help the learner
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understand the algorithm better than a learner who simply examines static images and thus,
presumably is led to be more passive in how he or she interacts with the material. A learner
could certainly make predictions from a static textual/graphic presentation of an algorithm, but
perhaps the advantage of an animation is that it will encourage a learner to spontaneously
make the predictions without being prompted and will provide the learner with rapid feedback
about the accuracy of his or her predictions.
Because feedback is a critical element in various psychological theories of how people

acquire procedural knowledge (e.g. Anderson, 1993), we decided to concentrate on the ``make
and test predictions'' aspect of algorithm animation. Both of the experiments presented here
manipulate whether learners see animations and whether they are asked to make explicit
predictions about algorithm behavior (and receive feedback from their predictions). If
animations provide advantages to a learner above and beyond those conferred by simply
testing predictions, learners exposed to the animations should outperform those making explicit
predictions from static images. On the other hand, if animations primarily encourage learners
to make predictions Ð either explicitly or implicitly Ð and to examine the accuracy of their

Fig. 1. Screen-shot of animation for depth-®rst search (DFS).
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predictions, then learners in the ``making predictions'' conditions of the experiments should
perform equally well regardless of whether they learn from animations or static images.

3. Experiment 1

Experiment 1 involved students learning about depth-®rst search. In a depth-®rst search, a
graph is searched from vertex to vertex by exploring a path from a given vertex as far as that
path will go. The path is then backtracked until a vertex is reached that has a path (or ``edge'')
going from it that has not yet been explored. By convention, the vertices are assigned letters
and the search starts at the vertex named with the ®rst letter occurring alphabetically. For
instance, in Fig. 1 the search would start at vertex ``a.'' If more than one edge can be followed
from this vertex, the edge connected to the vertex with the lowest letter is chosen ®rst. In Fig.
1, the possible choices would be to go to vertices ``b'', ``c'', ``d'', ``e'', or ``f''. The edge to
vertex ``b'' is chosen since ``b'' is the lowest letter of the possible choices. When that vertex is
reached, the search continues to the next unvisited vertex connected to the just-reached vertex.
This process continues until a vertex is reached that contains no unexplored edges. At this
point, the search backs up to the ``parent'' of the present vertex and an unexplored edge (if
there is one) from that vertex is taken. In Fig. 1 this means that after vertex ``b'' is visited, the
search would back up to vertex ``a'' and then one of the remaining unexplored vertices
connected to ``a'' would be visited (i.e., one of the edges leading to vertex ``c'', ``d'', ``e'', or ``f''
would be taken; the edge to vertex ``c'' would be chosen since ``c'' is the lowest letter of the
possible choices). If no unexplored edges exist, the search backs up again. This process
continues until all vertices have been visited and the search has backed up to the starting
vertex1.
The animation of the depth-®rst search algorithm that we utilized in the experiment was

built with the Polka animation system (Stasko & Kraemer, 1993) and utilizes the traditional
view of a graph as a set of vertices and edges. A frame from an animation on an example
graph is shown in Fig. 1. The vertices are represented by black squares and identi®ed by a
letter label. The edges are simply lines drawn between the vertices. The animation utilizes a
moving circle (seen between vertices J and O in Fig. 1) to represent the progression of the
search. The circle moves throughout the graph incrementally and smoothly, traversing edges
and encountering vertices. When the search is moving to encounter a new vertex, the circle is
solid black. When the search is backtracking from a vertex, the circle is a black outline. When
a vertex is ®rst discovered in the search, the vertex becomes solid green and a number
representing the order of discovery is placed beside the vertex. When the search moves back
past a vertex (i.e., all of its descendants in the depth-®rst search tree have been found) then the
vertex changes to solid blue.

1 The order of vertices visited in Fig. 1 (including all backtracking) are: a, b, a, c, g, m, g, n, t, n, u, n, g, c, h, c, a,
d, i, d, j, o, v, o, w, o, j, p, j, d, a, e, a, f, k, q, r, x, r, y, r, z, r, k, f, l, s, l, f, a.
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3.1. Method

3.1.1. Participants
Participants were 88 undergraduate, non-computer science majors at the Georgia Institute of

Technology who participated for extra credit in a psychology course. Participants were
screened to ensure they had no previous experience with the depth-®rst search algorithm. The
participants were generally high-ability students with a mean self-reported SAT-Quantitative
score of 645 and SAT-Verbal score of 535.

3.1.2. Materials and procedure
Participants were run individually. Participants ®rst ®lled out the consent form and a

screening questionnaire that included self-reports of SAT scores and grade-point average.
Participants were then shown a 6 min videotaped lecture given by one of the authors (JS) that
covered depth-®rst search. After watching the videotape, participants were given a three-page
text describing the depth-®rst search algorithm. This text was adapted from the chapter
covering depth-®rst search in a standard algorithms textbook (Cormen, Leiserson & Rivest,
1990) and included pictures of graphs similar to those that would be seen on the post-test.
Participants were divided into four groups: no animation/no prediction, animation/no

prediction, no animation/prediction, animation/prediction. Participants in the no animation/no
prediction condition were given 10 min to read the text, all others were given ®ve minutes. The
reason the former group was given additional time to study the text was to attempt to roughly
equate the time spent in the training phase. Those who received only ®ve minutes with the text
then either watched the algorithm animation (animation/no prediction condition), made
explicit predictions while watching the animation (animation/prediction condition), or made
explicit predictions from static printed graphs (no animation/prediction condition). This took
approximately ®ve minutes. All participants then received the post-test (on paper), on which
they had unlimited time to work.
Participants in the no animation/prediction condition were given two graphs on paper and

asked to predict the order in which the vertices would be visited. An example of such a task is
presented in Appendix A. If they made an error on any prediction, the error was immediately
corrected by the experimenter. The other half of the participants who made explicit predictions
made those predictions using the animation. The animation was halted immediately after a
vertex was visited and the participant asked to state which vertex they thought would be
visited next. Errors made by these participants were not pointed out by the experimenter since
the animation displayed the correct answer. Thus, the feedback in both the static and
animation cases merely indicated to the participant the next vertex to be visited.
The primary dependent variable in this experiment was the score the participants earned on

a post-test. Questions on the post-test were divided into two categories: ``basic'' and
``challenging''. Basic questions were those that required the participant to determine a single
next step of a search or that required determination of a complete search on a graph very
similar to an example participants had already seen. Challenging questions were those that
involved complete searches of novel graphs. Examples of questions of both types are presented
in Appendix B. Questions on the post-test were scored stringently as being either completely
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correct or incorrect. In addition, the number of training errors made by participants in the
prediction condition were also recorded.
The videotaped lecture was displayed on a 190 color television and participants were free to

adjust the sound volume to suit their preference. The animations were presented on a Sun
SPARCStation2 with a 190 color monitor at a preset speed determined by pilot testing.

3.1.3. Design
The independent variable was training condition and there were 22 participants per

condition. Although animation was crossed with prediction, the resulting design was not
strictly a 2 � 2 design since the two animation groups and the no animation/prediction group
all had the opportunity to work with graphically-oriented materials (either the animation or
the graphs used for making predictions) after reading the introductory text while the no
animation/no prediction group did not. Thus, the initial analyses were done with one-way
analyses of variance using condition as the single independent variable with four levels.
There were two hypotheses concerning animation and prediction that we wished to evaluate:

1. Animation aids learners because it encourages them to test predictions. If this is the case,
then the animation/prediction, animation/no prediction and no animation/prediction
conditions should all be equivalent to each other and superior to the no animation/no
prediction. Evaluating this hypothesis requires a planned comparison between the three
former groups and the latter group.

2. Animation bene®ts learners in ways that are distinct and independent from the bene®ts (if
any) of prediction testing. This can be tested by a planned comparison between the
animation/prediction and no animation/prediction conditions.

3.2. Results

Our ®rst concern was whether or not the participants, who were bright but not sophisticated
with respect to computer algorithms, could understand even the basics of the depth-®rst search
algorithm on the basis of the materials they had seen. Participants performed very well on the
basic post-test questions, scoring an average of 7.58 out of 8, which is about 95% correct.

Table 1
Post-test means for basic problems (experiment 1)a

Condition Score

Animation/prediction 7.59 (0.59)
Animation/no Prediction 7.45 (0.86)
No animation/prediction 7.63 (0.58)
No animation/no prediction 7.63 (0.58)

a Maximum possible score was 8. Standard deviations are in parentheses.
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There were no group di�erences on the basic post-test questions, F�1, 3� � 1:61, p � 0:19,
MSE=3.24, so participants most likely grasped the fundamentals of the algorithm and could
correctly search the post-test isomorphs of the graphs they had seen during training. Groups
means and standard deviations for the basic questions are presented in Table 1.
It seems, then, that participants did not have trouble understanding the procedural

fundamentals of depth-®rst search. We can, then, assess the e�ects of animation on learning
the more complex and subtle aspects of the algorithm by comparing performance on the more
challenging questions on the post-test. For the challenging portion of the post-test, each
problem was scored as either being correct (the participant gave the complete ordered list of
visited vertices correctly) or incorrect (the participant made one or more errors). There were
seven such problems on the post-test and the overall mean was 5.18 correct out of 7, or about
74% correct. The means (with standard deviations in parenthesis) are presented in Table 2.
The ®rst hypothesis, that animation confers bene®t and that bene®t is equivalent to that of

prediction (because the bene®ts of animation are based on prediction-testing), received some
support. First, several participants in the animation/no prediction condition verbally generated
predictions while viewing the animation even though they were not instructed to do so.
Second, if performance of the no animation/no prediction group is compared to the averaged
performance of the other three groups �M � 5:41), an overall di�erence is found,
F�1, 86� � 6:13, p � 0:015, MSE=2.22. Further, as Table 2 suggests, there were no meaningful
performance di�erences among the ®rst three groups in the table. All of this is consistent with
the interpretation that the two interventions, animation and prediction, were of equivalent
e�ectiveness.
As discussed earlier, this was not strictly a 2 � 2 design; however, it can be conceptualized

that way. Treating animation/no animation as one factor and prediction/no prediction as a
second factor, the 2 � 2 ANOVA shows a reliable main e�ect for animation, F�1, 84� � 3:98,
p � 0:049, MSE=2.24, though not for prediction, F�1, 84� � 3:43, p � 0:068: While only the
animation e�ect is reliable at an a criterion of 0.05, the observed e�ect sizes in standard
deviation units (Cohen, 1988) were, in fact, quite similar: the e�ect size for animation was 0.43
standard deviations and the e�ect size for prediction was 0.39 standard deviation units. This
would be classi®ed by Cohen as a medium to small e�ect size for both factors.

Table 2

Post-test means for challenging problems (experiment 1)a

Condition Score

Animation/prediction 5.73 (1.20)
Animation/no prediction 5.27 (1.72)
No animation/prediction 5.24 (1.64)

No animation/no prediction 4.50 (1.40)

a Maximum possible score was 7. Standard deviations are in parentheses.
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Our second hypothesis Ð that animation has bene®ts distinct from prediction Ð was not
supported. The animation/prediction group did not outperform the no animation/prediction
group �p � 0:27; required p � 0:017 using Sha�er (1986) sequential Bonferroni pairwise
comparisons for providing a familywise a of 0.05 for multiple comparisons; see also Seaman,
Levin & Serlin, 1991).
During the training phase, participants in the prediction conditions had to make a total of

42 predictions across two graphs. The average number of errors made by those who saw the
animation was 0.46, while it was 1.19 for participants in the no animation condition. This
di�erence is statistically reliable �F�1, 42� � 7:47, p < 0.01) but, considering the low overall
error rate, it is not particularly large in a practical sense. In addition, number of prediction
errors made during training was not reliably correlated with post-test performance
�r�43� � 0:26, p � 0:096).
In sum, the hypothesis with the strongest support is our ®rst hypothesis, that the bene®ts

conferred by animation center around encouraging learners to make and test predictions, as
animation and prediction have indistinguishable e�ects on post-test performance in this
study.

3.3. Discussion

Experiment 1 provides some support for the hypothesis that the ability to test predictions
and get feedback is what confers any advantage associated with animation, since the
participants who made predictions on paper did just as well as those who saw animations.
However, there was some indirect evidence that those in the animation condition did acquire
the knowledge faster, since they made fewer errors based on a ®xed number of training trials.
There was also some indirect evidence that animations may be motivating for learners.
Participants who saw the animation without being required to make explicit predictions did
about as well as those participants who saw the animation and were required to make
predictions. Whether the former group did as well because they were making predictions on
their own or whether it was some other factor is unclear.
Experiment 1 was limited in its ability to discriminate between the various possibilities for

the results. First, the algorithm may have been too simple, limiting the amount of assistance
that could be provided by either the animation or the prediction task. That is, the simplicity of
the depth-®rst search algorithm involved may not play to the strengths of animation, such as
the ability of the animations to make complex abstractions concrete. Second, the participants
used in experiment 1 were not the typical target population for algorithm animations as they
were not computer science students. Perhaps computer science students would be more likely
to reap the purported bene®ts of animations because they have more practice working with
various sorts of algorithms and visualizations. On the other hand, there may be less of an
advantage for animations for this population since computer science students may be better at
spontaneously generating their own visualizations. Finally, the post-test examined only one
aspect of the students' understanding of the algorithm: their ability to execute the algorithm.
Typical college-level courses on algorithms require knowledge about more than just how to
execute an algorithm; they require students to demonstrate knowledge about the theoretical
properties of the algorithm and the data structures used in the algorithm.
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In order to address some of these concerns, we conducted a second experiment using a
signi®cantly more complex algorithm that may bene®t from animation, advanced computer
science students and a more di�cult post-test that included conceptual questions as well as
procedural ones. It was hoped that these changes would allow us to detect possible advantages
of animations in an ecologically valid situation.

4. Experiment 2

In experiment 2 we wished to compare the results we found with relatively naive students
and a simple algorithm to those based on a more sophisticated audience and a more complex
algorithm. Thus, we tested upper-level computer science students on the use of a relatively
advanced data structure, the binomial heap.
A second key extension from experiment 1 to experiment 2 was the structure of the post-test.

In Experiment 1, even the ``challenging'' post-test questions directly related to the strengths of
the animation and the prediction task, since the test questions were concerned exclusively with
the execution of the algorithm. Animations and predictions are directly tied to the step-by-step
execution of an algorithm and thus may be particularly useful in helping students learn how
the algorithm executes at the micro level. However, the analysis of algorithms and thus typical
computer science courses on algorithms, are also concerned with the macro level behavior of
the algorithms, such as running time or memory use. Using advanced computer science majors
allowed us to test these more analytical aspects of algorithm understanding along with
performance on the step to step execution. It is possible that instead of aiding performance on
conceptual questions, the time spent viewing an animation or making explicit predictions, while
perhaps helping learners to understand the execution of the algorithm, might take their focus
o� the conceptual aspects and hurt their performance on post-test questions about these
aspects.

4.1. Binomial heaps

Binomial heap data structures are used as an implementation for an abstract data type called
a priority queue. Priority queues are utilized in numerous computer science algorithms. They
operate on nodes with key values (for simplicity, we can safely assume the key is an integer).
The most basic version of a priority queue involves two operations, insert and extract-
minimum. Insert simply adds a new key-valued node to the priority queue and extract-
minimum removes and returns the node with smallest key value.
Note that a basic sorted list can be used to implement a priority queue. Under this scheme,

the extract-minimum operation is fast and e�cient because the smallest key is at the head of
the list. The insert operation can be very ine�cient, however, because the entire list may need
to be examined to ®nd the proper insertion point. In general, computer scientists seek data
structures without operations that are proportional to the entire size of the data structure.
Binomial heaps are overall more e�cient than using a simple list in this way.
A binomial heap is a collection (forest) of binomial trees (Fig. 2). A binomial tree is a heap-
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Fig. 2. Screen-shots of animation for binomial heap (BH).
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ordered tree data structure with smaller key values toward the root. Binomial trees always have
a size that is a power of two. Larger binomial trees are made by joining two smaller trees of
the same size. To join two binomial trees, their root values are compared. The root with higher
key value is then linked in as a new child of the root with lower value, thus preserving the
heap property.

The insert operation on a binomial heap simply adds a new binomial tree of size 1. If a tree
of size 1 already exists in the heap, the two are joined to make a tree of size 2. If there are now
two trees each of size two, they are joined to create a tree of size four. This proceeds
analogously until no more joining occurs.

On an extract-minimum operation, the roots of all the binomial trees in the heap are
searched and the smallest is found. It is removed and all of its children are elevated to be trees
in the binomial heap. This may introduce trees of like sizes, so joining may need to be done.
Joining begins by checking for trees of size 1 and proceeds upwards. Both the joining and
extract-minimum operations may require examining the root of all the trees in the binomial
heap. But because of the unique way that trees are combined into power of two sizes, the
number of steps involved is equal to the logarithm of the total size of the heap. For more
details on binomial heaps and their operations, consult any comprehensive computer science
algorithms text such as Cormen et al. (1990).

The animation of the binomial heap data structure and algorithm was built using the
XTango algorithm animation system (Stasko, 1992) and utilizes the representation of a
binomial heap common in algorithms textbooks. The animation uses three work areas, each of
which is indicated by a horizontal line as illustrated in Fig. 2. The top work area is where
stable binomial heaps, that is, heaps after operations, are drawn. All the binomial trees
comprising the binomial heap are drawn in increasing tree size from left to right. The lowest
work area is where nodes from a new insert operation are initially placed and where ``new''
trees from an extract-minimum operation (i.e., the children of the root) are originally placed
(Fig. 2b). The middle work area represents an intermediate state. Trees reside here in the midst
of an insert or extract-minimum operation; trees of the same size are joined, linked and made
into larger trees (see Fig. 2c). All of these linking operations are illustrated using smooth,
gradual animations that allow the viewer to track the context (e.g., heap location, node
position) of the operation. A label at the bottom of the animation window lists the name of
the operation currently taking place.

As described above, the binomial heap algorithm that we examined involves two operations:
insert and extract-minimum. During an insert operation, the new tree appears at the lowest
work area (Fig. 2b) and is then moved to the middle work area. Next, all of the binomial trees
in the heap above are brought down to the middle work area and the appropriate union and
link operations are illustrated (Fig. 2c). Finally, the resulting trees are elevated to the top work
area again (Fig. 2d).

During an extract-minimum operation, the smallest key-valued node in the binomial heap
(one of the roots at the top) is ¯ashed in red and removed. All of the resulting trees (child
subtrees of the root) are moved to the lowest work area. At this point, all the trees at the
lower work area and at the top work area are moved into the middle work level. The trees are
moved in increasing size so that the middle work area contains all the intermediate trees in
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growing size from left to right. The linking operations then commence and the resulting
binomial trees move up to the top stable work area.

4.2. Method

4.2.1. Participants
The participants in experiment 2 were 62 undergraduate computer science majors (primarily

juniors and seniors) at the Georgia Institute of Technology who participated for extra credit in
an upper-level computer science course. Participants were screened to ensure they had no
previous experience with binomial heaps, though they were required to have some background
in algorithm analysis. The participants were again high-ability students with a mean self-
reported SAT-Quantitative score of 672 and SAT-Verbal score of 567.

4.2.2. Materials and procedure
The procedure was similar to that in experiment 1. Participants ®rst ®lled out the consent

form and background questionnaire then watched a videotape of an 11 min lecture on
binomial heaps. After watching the videotape, participants were given a 12-page text describing
binomial heaps that was adapted from a chapter in Cormen et al. (1990) and included pictures
of data structures similar to those that would be seen on the post-test. Participants in the no
animation/no prediction condition were given 35 min to read the text, all others were given 20
min. Once again, the former group was given additional time with the text in order to roughly
equate the amount of training time among conditions since the other conditions would be
receiving additional materials. Those who received only 20 min with the text then either simply
watched the algorithm animation (animation/no prediction condition), made explicit
predictions while watching the animation (animation/prediction condition), or made explicit
predictions from printed graphs (no animation/prediction condition). All participants then
received the post-test, on which they had 25 min to work2.
Participants in the prediction condition had to predict the state of a binomial heap after a

speci®ed operation was performed. A sample of such task is shown in Appendix C. They made
a total of 12 predictions during this phase. Participants were shown a binomial heap Ð either
on the computer screen or on paper Ð and were asked to draw the resulting binomial heap
after a particular insert or extract-min operation was completed. Those watching the animation
were shown the correct answer by the animation after making each prediction, while those
making predictions on paper were shown a static picture of the correct heap. Participants were
not explicitly told to compare their answers to the feedback, but in practice, that is what
occurred.
As in experiment 1, there was a di�erence in the feedback in the animation and no

animation conditions. Participants in the animation condition watched the animation proceed
after they drew their prediction of the resulting heap. Thus they were able to observe the

2 Note that in Experiment 1 participants had an unlimited amount of time to work on the post-test. However,
given the relatively long time we felt participants would require to do Experiment 2, we decided to limit how much
time could be spent on the post-test.
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intermediate states. Participants in the no animation condition were simply shown a picture of
the resulting heap after they made their prediction. Thus, they did not see intermediate states3.
The number of errors during prediction was again recorded for those participants who made

explicit predictions, thus the range of errors could be from 0±12. The questions on the post-test
could be divided into two categories, procedural and conceptual. Procedural questions focused
on the execution of the algorithm and required participants to perform operations on binomial
heaps. Most conceptual questions, on the other hand, required knowledge about the abstract
properties of binomial heaps. Examples of each of these two types of questions are presented
in Appendix D. Questions on the post-test were again scored stringently as being either
completely correct or incorrect.
The apparatus was identical to what was used in experiment 1.

4.2.3. Design
The independent variable was training condition. There were 15 participants in both the

animation/prediction and animation/no prediction conditions and 16 participants in both the
no animation/prediction and no animation/no prediction conditions. As in experiment 1, the
initial analyses were done with one-way analyses of variance using condition as the single
independent variable with four levels.

4.3. Results

We expected to see di�erential performance among the various groups on the procedural
questions. Mean number correct out of a possible seven are shown in Table 3. The relative
ordering of the means mirrors the results of experiment 1, though the di�erences are not as
robust as the di�erences found in experiment 1. This might be due partly to the relatively high
variability in the conditions.

Table 3
Post-test means for procedural questions (experiment 2)a

Condition Score

Animation/prediction 5.13 (1.30)
Animation/no prediction 5.00 (1.60)
No animation/prediction 4.94 (2.05)

No animation/no prediction 4.00 (2.19)

a Maximum possible score was 7. Standard deviations are in parentheses.

3 Would viewing the intermediate states (either dynamically or through a set of static images) make a di�erence in
performance? This question can not be answered based on the current experiment, however, it can be examined in a
future study.

M.D. Byrne et al. / Computers & Education 33 (1999) 253±278 269



We wanted to evaluate the same hypotheses examined for experiment 1. The ®rst hypothesis,
that animation confers bene®t and that bene®t is equivalent to that of prediction, does have
some statistical support. Again, several participants in the animation/no prediction condition
verbally generated predictions while viewing the animation even though they were not
instructed to do so. Second, if performance of the no animation/no prediction group is
compared to the averaged performance of the other three groups �M � 5:02), an overall
di�erence is found, F�1, 60� � 3:81, p � 0:055, MSE=3.25. Further, as Table 3 suggests, there
were no meaningful performance di�erences among the ®rst three groups in the table. All of
this suggests that, as in experiment 1, the two interventions, animation and prediction, were of
equivalent e�ectiveness.
As with experiment 1, this was also not strictly a 2 � 2 design; however, it can be

conceptualized that way. Animation/no animation can be treated as one factor and prediction/
no prediction as a second factor. As in experiment 1, the observed e�ect sizes were very
similar: 0.33 standard deviations for animation and 0.30 standard deviations for prediction.
The 2� 2 ANOVA reveals that neither of these e�ects are reliable, animation: F�1, 58� � 1:65,
p � 0:204, MSE=3.36, and prediction: F�1, 58� � 1:32, p � 0:255: This again suggests that
there is no di�erence in overall impact between animation and prediction and both of these
e�ect sizes would be classi®ed by Cohen (1988) as small e�ects.
As in experiment 1, the second hypothesis, that animation has bene®ts distinct from

prediction, was not supported by the data. The animation/prediction group did not outperform
the no animation/prediction group �p � 0:77; required p � 0:017).
In contrast to one of the results found in experiment 1, there was no advantage on the

accuracy of predictions during training for those who saw the animation compared to those
who saw the graphs on paper. Participants who saw the animation averaged 2.77 errors (out of
a possible 12) during training and those who worked from the static images averaged 2.54
errors. Also unlike experiment 1, the number of errors in the prediction phase was correlated
with performance on the procedural post-test questions, r�30� � 0:70, p < 0.01. That is,
students who made fewer prediction errors also made fewer post-test errors.
No di�erences were found among any of the groups on the conceptual post-test questions.

Mean number correct out of a possible 17 conceptual questions are shown in Table 4, with
standard deviations in parentheses. Performance on the conceptual questions was correlated
with performance on the procedural questions, r�61� � 0:51, p<0.01.

Table 4

Post-test means for conceptual questions (experiment 2)a

Condition Score

Animation/prediction 9.93 (3.17)
Animation/no prediction 10.80 (3.08)
No animation/prediction 10.94 (3.11)

No animation/no prediction 9.94 (3.11)

a Maximum possible score was 17. Standard deviations are in parentheses.

M.D. Byrne et al. / Computers & Education 33 (1999) 253±278270



4.4. Discussion

While experiment 2 provided some evidence for bene®ts of animation and prediction similar
to those found in experiment 1, this evidence is weakened by the generally high variability in
performance. It may be the case that the animation and predictions were useful only to those
participants who already had some above-threshold understanding of the algorithm by the time
they reached that phase of the experiment. The animations and predictions may simply not
have been comprehensible to those participants who were still struggling with the basics of the
algorithm. Some aspects of the data suggest this, as one of the more common errors found in
the answers to the procedural questions among the weak performers was the creation of data
structures that did not even meet the de®nition of a binomial heap. This suggests that the
students did not fully understand the foundational material presented in the videotape and the
text. This claim is further supported by the fact that performance on the prediction task was
strongly correlated with performance on the procedural part of the post-test. That is,
participants who made a lot of errors in the prediction task did not seem to learn enough from
this experience to improve their later performance. In general, good performers did well in
every phase of evaluation and poor performers did poorly on all phases. Thus, it is not clear
that viewing the animation or making predictions provides any bene®t if the learner has not
acquired some fundamentals4.

5. General discussion

The results from the two experiments show a trend towards a bene®t of animations and
predictions on students' ability to solve procedural problems about algorithms. It seems clear,
however, that the sheer use of algorithm animation does not automatically and signi®cantly
enhance learning as some instructors and researchers hope Ð there are a host of unresolved
issues to consider.
While we have discussed the present results in terms of how animations may lead learners to

produce predictions and that predictions are actually what aided (procedural) learning, it is
also possible that the mere presence of ``good'' visual representations of the algorithms is what
really mattered. That is, the two animation groups and the no animation/prediction group all
saw a similar, enhanced graphic depiction of the algorithm beyond that of the ®gures
accompanying the text. The no animation/no prediction group only saw the ®gures included in
the textbook materials, which, while not too di�erent from those used in the animations or

4 To test the possibility that learners are not much a�ected by the animation and prediction manipulations once
the basic information is presented via a lecture or textbook, a future experiment could replicate Experiment 2, but

include assessments after both the lecture/text portion of the experiment and after the animation/prediction portion.
The changes, if any, could be compared. This within-subject approach might be more sensitive to the e�ects of ani-
mation/prediction and could shed light on the conjecture that animation/prediction aids learning only if a basic

foundation has been previously acquired (e.g., from the lecture/text). One methodological concern of such an
approach is that the inclusion of the ®rst post-test might cue learners in the animation/no prediction condition to
make predictions more frequently than they might otherwise.
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static images, were perhaps not as compelling. Thus, to really test the claim that prediction
a�ected our results, a future experiment would need to include a condition in which learners
see the static graphical material used in the no animation/prediction condition, but are not
asked explicitly to make predictions. If this group were to do as well as the animation groups
and the no animation/prediction group, this would suggest that the graphical materials
themselves were the source of improved learning. If, however, this group were not to do as
well as the three mentioned above, this would allow us to even more con®dently conclude that
making predictions is what primarily aided performance in the present study.
One possible explanation for the lack of a strong animation e�ect in the present study is that

prior knowledge of learners, particularly in experiment 2, might have interacted with the
animations and predictions in unanticipated ways. That is, it is not obvious how the
information conveyed in the animation or provided by making predictions interacts with the
knowledge that the learners bring to bear when they initially engage in these activities.
Animations and predictions with complex algorithms may help only some learners, those with
just the right amount of knowledge to make use of the information provided, but not so much
so that the information provided is redundant with what they already know.
Another interesting issue is that animations might not aid overall learning or performance,

but may aid how quickly a student learns. We made sure that students in the di�erent training
conditions spent roughly the same amount of time with the training materials, but perhaps that
control wiped out the bene®t that an animation might provide. A related issue is whether
animations play a motivational role for learners. There is some evidence from observational
research that many students prefer to make use of animations in the learning process (Kehoe &
Stasko, 1996). An idea to consider for future research is to allow learners in the di�erent
conditions to spend as little or as much time with the di�erent materials as they wish and then
to examine performance.
In this same vein, we need to consider what sorts of tests best assess the possible bene®ts of

animations. For instance, tasks that require students to make rapid responses might
demonstrate that those who studied animations are able to run their mental models of the
algorithm more quickly than students who did not see the animations.
There are, as yet, no clear guidelines for the construction of algorithm animations, not just

from a psychological perspective but from an implementational one. What visual elements
should be included? How should they look? What should the ¯ow and sequencing be? These
sorts of questions can motivate additional systematic studies into the potential bene®ts of
animations on algorithm learning and understanding.
Two existing animations were chosen for use in the present study. The construction of the

animations was guided by intuition and thus, broad claims about features of animations that
aid learning should not be drawn from the present results. When instructors' preparation time
is so critical, the use of existing animations would seem to be the ®rst option. However, if,
through theory-guided systematic manipulations of animation features, we can show bene®ts of
animations, we can also attempt to determine as precisely as possible which features aided
learning. From such results we can begin to develop useful guidelines about how to construct
and use animations to aid algorithm learning.
An animation might help learning because it displays the features that one should

presumably attend to. That is, the items in the animation might, by their presence, provide
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information to the learner that might not be easily discernible otherwise. An animation might
also encourage the learner to self-explain the behavior of the algorithm. Self-explanation can
increase the likelihood of a learner integrating the new information into existing knowledge
structures, thus making the learner more likely to transfer the information to novel situations
(Catrambone, 1996; Chi, Bassok, Lewis, Reimann & Glaser, 1989; Chi, De Leeuw, Mei-Hung
& Levancher, 1994).
Many animation design issues persist: Should an animation re¯ect a ``novice'' or ``expert''

point of view for how the algorithm operates? Should learners be allowed to choose the inputs
into the algorithm? More generally, what is the e�ect on learning of interactivity of
animations? Should the animation be veridical with respect to the algorithm or should it gloss
over certain details in order to make the big picture clear? Should the animation be relatively
unadorned or should it be annotated with additional features such as pseudocode? Will such
annotation require ``split-attention'' and what e�ects will that have on learning (Ward &
Sweller, 1989)?
The various issues raised above suggest that additional research on algorithm animation can

bene®t from a careful functional analysis. That is, one must ®rst decide what it is a student
should learn about an algorithm and then consider how this information could potentially be
conveyed (text, static images, animations, etc). Alternative presentations of the information can
then be systematically compared. Constructing tailored algorithm animations generally requires
serious programming e�ort and it still has to be demonstrated that the bene®ts justify this cost. If
the same pedagogical advantages can be realized with less labor-intensive materials and analyses,
then the less labor-intensive methods make more sense. It is incumbent upon educators and
animation-builders to carefully examine their assumptions about what students will learn from
an animation and why it is that an animation is best-suited to convey the desired information.
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Appendix A. Sample of depth-®rst search prediction task materials for no animation condition
(experiment 1)

(Excerpt from instructions read to the participant): You will see a graph and I will ask you
at each stage where the depth-®rst search will go next. Take your time and try to answer the
questions correctly.
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Appendix B. Sample of post-test questions for depth-®rst search (experiment 1)

B.1. ``Basic'' question

In the following graph, assume that all darkened vertices have already been visited in a
depth-®rst search. Also assume that we have just visited vertex G. What would be the next
vertex that we visit?
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B.2. ``Challenging'' question

Starting with vertex A, list the order of vertices as they are encountered in a depth-®rst
search of the graph below. Also list the order in which vertices are ®rst encountered.

Appendix C. Sample of binomial heap prediction task materials for no animation condition
(experiment 2)

Draw the results of doing an EXTRACT-MIN on the binomial heap below.

(the text and ®gure below would appear on the page following the above text and ®gure)
The correct answer to the previous problem is the binomial heap shown below.
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Appendix D. Sample of post-test questions for binomial heap (experiment 2)

D.1. Procedural question

Suppose ``33'' were inserted into the heap pictured below. Please draw the result.

D.2. Conceptual question

What is the worst case running time for INSERT on a binomial heap?
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