Spreadsheets in RDBMS for OLAP

Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya, Gregory Dorman, Nathan Folkert, Abhinav Gupta, Lei
Shen, Sankar Subramanian

Some algorithms in this paper have US patent pending

{andrew.witkowski, srikanth.bellamkonda, tolga.bozkaya, gregory.dorman, nathan.folkert, abhinav.gupta, lei.shen,
sankar.subramanian}@oracle.com

Abstract lack of language constructs to treat relations as arrays and to define

N o) formulas over them and lack of efficient random access methods for
One of the critical deficiencies of SQL is lack of support for n- 5rray accesses.

dimensional array-based computations which are frequentin OLAP gpreadsheets provide a terrific user interface but, on the other
environments. Relational OLAP (ROLAP) applications have tonang have their own problems. They offer two dimensional “row-
emulate them using joins, recently introduced SQL Window cojymn” addressing, i.e. physical addressing using row and column
Functions [18] and complex and inefficient CASE expressions. Theytsets. Hence, it is hard to build a symbolic model where formulas
designated place in SQL for specifying calculations is the SELECTeference actual data values. A significant scalability problem exists
clause, which is extremely limiting and forces the user to generatgyhen either the data set is large (can one define a spreadsheet with
queries using nested views, subqueries and complex jOingerapytes of sales data?) or the number of formulas is significant
Furthermore, ~ SQL-query ~optimizer is pre-occupied with (can one process tens of thousands of spreadsheet formulas in
determining efficient join orders and choosing optimal acc?sjcnarallel?). In collaborative analysis with multiple spreadsheets,
methods and largely disregards optimization of complex numericatonsolidation is difficult as it is nearly impossible to get a complete
formulas. Execution methods concentrated on efficient computatioictyre of the business by querying multiple spreadsheets each
of a cube [11], [16] rather than on random access structures fofsing its own layout and placement of data. There is no standard
inter-row calculations. This has created a gap that has been filled bBetadata or a unified abstraction inter-relating them akin to
spreadsheets and specialized MOLAP engines, which are good gingms dictionary tables and RDBMS relations.
formulas for mathematical modeling but lack the formalism of the This paper proposes spreadsheet-like computations in RDBMS
relational model, are difficult to manage, and exhibit scalabilitythrough extensions to SQL, leaving the user interface aspects to be
problems. This paper presents SQL extensions involving array,angled by OLAP tools. Here is a glimpse of our proposal:
based calculations for complex modeling. In addition, we presenf Relations can be viewed as n-dimensional arrays, and
optimizations, access structures and execution models for formylas can be defined over their cells. Cell addressing is
processing them efficiently. symbolic, using dimensional columns.
1 Introduction e The formul'as can automatically be ordered based on the
dependencies between the cells.
One of the most successful analytical tools for business dataisa Recursive references and convergence conditions are
spreadsheet. A user can enter business data, define formulas over it supported providing for a recursive execution model.
using two-dimensional array abstractions, construct simultaneous ~OLAP applications frequently fill gaps in sparse data, an
equations with recursive models, pivot data and compute aggregates operation called densification which is difficult in ANSI SQL,
for selected cells, apply a rich set of business functions, etc. They ~ but natural in the proposed SQL-spreadsheet.
also provide flexible user interfaces like graphs and reports. « Formulas are encapsulated in a new SQL query clause
Unfortunately, analytical usefulness of the RDBMS has not €valuated after the existing query clauses. Since this is an
measured up to that of spreadsheets or specialized MOLAP tools ~€xtension to the query block, the result is a relation and can be
[2]. It is cumbersome and in most cases inefficient to perform array- ~ further used in joins, subqueries, etc.

like calculations in SQL -- a fundamental problem resulting from* The new clause supports partitioning of the data. This allows
evaluation of formulas independently for each partition

Permission to make digital or hard copies of all or part of providing a natural parallelization of execution.
this work for personal or classroom use is granted without ~ ® Formulas support UPSERT and UPDATE semantics as well as
fee provided that copies are not made or distributed for correlation between their left and right side. This allows us to
profit or commercial advantage and that copies bear this simulate the effect of multiple joins and UNIONs using a
notice and the full citation on the first page. To copy single access structure.
otherwise, or republish, to post on servers of to redistribute This paper also describes optimizations and execution strategies
to list, requires prior specific permission and/or a fee. possible with the proposed extensions. For instance:

SIGMOD 2003, June 9-12, 2003, San Diego, CA
Copyright 2003 ACM 1-58113-634-x/03/06..$5.00

52

e The partitioning of data provides an obvious way to parallelize SELECTr, p, t, s
the computation of spreadsheet and provide scalability. If the FROMf
partitioning is not explicitly specified, our optimizer can ~ SPREADSHEET PBY(r) DBY (p, t) MEA (s)
automatically infer the partitioning in some cases. (

« Efficient hash based access structures on relations can be used
for symbolic array addressing, enabling fast computation of

s[p="dvd’,t=2002] = s[p="dvd’,t=2001]*1.6,
s[p="vcr’,t=2002] = s[p="vcr’,t=2000]
+ s[p="vcr',t=2001],
formulas. _ s[p="tv’, t=2002] =avg(s)[p="tv’,1992<t<2002]
e The formulas whose results are not referenced in outer blocks)
can be removed from spreadsheet, thus removing unnecessg¥rtitions tablef by region r and defines that within each region,
computations. sales of 'dvd’ in 2002 will be 60% higher than in 2001, sales of
* The predicates from other query blocks can be moved insideycr’ in 2002 will be the sum of sales in 2000 and 2001, and sales of
query blocks with spreadsheets, thus considerably reducingy’ will be the average of years between 1992 and 2002. As a
the amount of data to be processed. Conditions for validity ofshorthand, a positional notation exists, for example: s['dvd’,2002]
this transformation are given. instead of s[p="dvd’,t=2002].

This paper is organized as follows. Section 2 provides SQL The left side of a formula defines calculations which can span a
language extensions for spreadsheet. Section 3 provides motivatirpgnge of cells. A new functiorurrentv() (referred to ascv() in
examples and comparisons to equivalent processing in SQLlshort) carries the value of a dimension from the left side to the right
Section 4 describes analysis of the spreadsheet clause and quefie thus effectively serving as a join between right and left side.

optimizations with spreadsheets. Section 5 discusses our executiqthe * operator denotes all values in the dimension. For example:
models. Section 6 reports results from experiments on spreadsheet

queries. Section 7 concludes and suggests topics for further
research.

SPREADSHEET DBY (1, p, t) MEA (s)

s['west’,*,t>2001]=
2 SQL Extensions For Spreadsheets) L.2xs[ev(r).cev(p).t=ev(D)-1]
Notation. In the following examples we will use a fact table f(t, States that sales of every product in ‘west’ region for year > 2001
r, p, S, C) representing a data-warehouse of electronic products withill be 20% higher than sales of the same product in the preceding
three dimensions: time (t), region (r), and product (p), and twoyear. Observe that region and product dimensions on the right side

measures: sales (s) and cost (c). reference functiorcv() to carry dimension values from left to the
right side.
Spreadsheet clause OLAP applications divide relational ~ Formulas may specify a range of cells to be updated. A formula

attributes into dimensions and measures. To model that, wéeferring to multiple cells on the left side is called existential
introduce a new SQL query clause, called Qmeadsheet claes formula For existential formulas, the result may be order
which identifies, within the query result, PARTITION, dependent. For example the intention of

DIMENSI(_)N and MEAS_UR_ES cglgr_nns. The PARTITION (PBY) gprEADSHEET PBY(r) DBY (p, t) MEA (s)

columns divide the relation into disjoint subsets. The DIMENSION

(DBY) columns uniquely identify a row within each partition, s['ver t<2002]=

which we call acell, and serve as array index to the measure avg(s)['ver',cv(t)-2<=t<cv(t)]

columns. The MEASURES (MEA) columns identify expressions)

computed by the spreadsheet. Following this, there is a sequence isfthat the sales of ‘ver’ for all years before 2002 is an average of
formulas, each describing a computation on cells. Thus thdwo preceding years. Processing rows in ascending and descending

structure of the spreadsheet clause is: order w.r.t dimension t produces different results as we are both
updating and referencing measure s. Such cases are detected by the
<existing parts of a query block> compiler [Section 4 on page 4] and executed using cyclic algorithm
SPREADSHEET PBY (cols) DBY (cols) MEA (cols) [Section 5 on page 7]. To avoid ambiguity, the user can specify an
<processing options> order in which the rule should be evaluated :
(<formula>, <formula>,.., <formula> SPREADSHEET PBY(r) DBY (p, t) MEA (s)

)

It is evaluated after joins, aggregations, window function and, S[ver’, t<2002] ORDER BY t ASC =
final projection, but before the ORDER BY clause.. avg(s)lev(p),ev(t)-2<=t<cv(t)]

Cells are referenced using a familiar array notation. Cell)An innovative feature of SQL spreadsheet is creation of new
references can designatesimgle cell referencavhen dimensions P

are uniquely qualified e.g., s[p="dvd’, t=2002], or set of cells called Irof\;vs :3 the risult srett. An?/trf]orrrT}zlaL,nglDtZTaE&nrgIS;glllzrs{_erzntf:e clntn
a range referencee.g. s[p="dvd’, t<2002] where dimensions are elt side, can operale erhe DATE or UPob (default)

o : mode. The latter creates new cells within a partition if they do not
qualified by predicates.

Each formula represents an assignment and contains a left sioeé('usst’ ;;?zngfqe I(Iet updates them. UPDATE ignores nonexistent
that designate target cells and a right side that contains expressioﬁg) xampie,

involving cells or ranges of cells within the partition. For example: SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(

53

UPSERT s['tv’, 2000] = of iterations or the convergence criteria for cycles and recursion.
s['black-tv’,2000] + s['white-tv’,2000] The ITERATE (n) option requests iteration of the formulas 'n’
) times. The optional UNTIL condition will stop the iteration when
will create for each region a row with p="tv’ and t=2000 if this cell iye <condition> has been met upto a maximum of “n” iterations as
is not present in the input stream. An existential formula defines &pecified by ITERATE(n). The <condition> can reference cells
range of dimension values on left side. Since these dimensions Mg¥fore and after the iteration facilitating definition of convergence

belong to a continuous domain and it is not always possible to finggngitions. A helper functioprevioug<cell>) returns the value of
out the individual set of values, we do not allow upsert mode with<ce||> at the start of each iteration. For example

an existential formula.
SPREADSHEET DBY (x) MEA (s)

ITERATE (10) UNTIL (PREVIOUS(s[1])-s[1] <= 1)
(s[1]=s[1)/2)
will execute the formula s[1] = s[1]/2 until the convergence

- . . . condition is met, up to a maximum of 10 iterations (in this case if
dimensions, while the budget allocation table has only regjon(... . .
g y regon(initially s[1] is greater than or equal to 1024, evaluation of the

dimension. To account for that, our query block can have, informulas will stop after 10 iterations)
addition to the main spreadsheet, multiple, read-only reference)
spreadsheets which are n-dimensional arrays defined over otherS readsheet Processin Options and Miscellaneous
query blocks. Reference spreadsheets, akin to main spreadshe?s P 9 P

have DBY and MEA clauses indicating their dimensions and unctions. There are other processing options for the SQL

measures respectively. For example, assume a budget tabferﬁﬁ]d;?oenetgp Cai?étéonpfr tgfa?nnelz f?,\:eorcdaer:lnsg :(;ff; rS;:;‘ZTaEr}d
budget(r,p) containing predictions for sales increase for each Y : pie, P

regionr. The following query predicts sales in 2002 in region ‘west’ UPSERT options as default for the entire spreadshe_et. The optlon
: ; L IGNORE NAV allows us to treat NULL values in numeric
scaling them using predictignfrom the budget table.

operations as 0, which is convenient for newly inserted cells with

Reference Spreadsheet©LAP applications frequently deal, in
a single query, with objects of different dimensionality. For
example, the sales table may have regipmroductf), and timef)

SELECTr,t, s the UPSERT option.
FROM f GROUP by r, t The new predicatecell> IS PRESENTindicates if the row
SPREADSHEET indicated by the <cell> existed before the execution of the
REFERENCE budget ON (SELECT r, p FROM budget) spreadsheet clause and is convenient for determining upserted
DBY(r) MEA(p) values

DBY (r, t) MEA (s) '

(3 Motivating Example of Spreadsheet Usage
s['west’,2002]= p['west’]*s['west’,2001],

s['east’,2002]= s['east’,2001]+s['east’,2000] Here is an example demonstrating the expressive power of the
) SQL spreadsheet and its potential for efficient computation as

The purpose of a reference spreadsheet is similar to a relation%mpared to the alternative available in ANSI SQL.

jom, bUt_ 't_ aIIOV\{s us to perform, within a spreadsheet clause, An analyst predicts sales for the year 2002. Based on business
multiple joins using the same access structures (e.g., hash tabletrénds, sales of 'tv' in 2002 is their sales in 2001 scaled by the
see Section 5), thus self-joins within spreadsheet can be cheapgieorage increase between 1992 and 2001. Sales of 'ver' is the sum
than outside of it. of their sales in 2000 and 2001. Sales of 'dvd’ is the average of the
three previous years. Finally, the analyst wants to introduce in every
region a new dimension member video’ for the year 2002, defined
Sas sales of 'tv’ plus sales of 'vcr'. Assuming that rows for ‘tv’,
‘dvd’, ‘ver’ for year 2002 already exist, we can express the

Ordering The Evaluation Of Formulas. By default, the
evaluation of formulas occurs in the order of their dependencie
and we refer to it as the AUTOMATIC ORDER. For example in

SPREADSHEET PBY(r) DBY (p, t) MEA (s) analyst's query as:
o — Py - SELECTr, p, t, s
s['dvd’,2002] = s['dvd’,2000] + s['dvd’,2001] FROM f

s['dvd’,2001] = 1000
)
the first formula depend_s on the second and conseque_ntly_ we will le: UPDATE s['tv,2002] =
evaluate the latter one first. However, there are scenarios in which slope(s, f[tv', 1992<=t<=2001]*s['v',2001]
lexicographical ordering of evaluation is desired. We provide an + s['tv’,2001]
explicit processing option, SEQUENTIAL ORDER, for that as in: F2: UPDATE s['ver’, 2002] =
s['ver’, 2000] + s['ver’, 2001],
F3: UPDATE s['dvd’,2002] =
(s['dvd’,1999]+s['dvd’,2000]+s['dvd’,2001])/3,
F4: UPSERT s['video’, 2002] =

SPREADSHEET PBY(r) DBY (p, t) MEA (s)

SPREADSHEET DBY(r,p,t) MEA(s) SEQUENTIAL ORDER
(. ..<formulas>....)

Cycles and Recursive Models. Similarly to existing s['tv',2002] + s['ver’,2002]

spreadsheets our computations may contain cycles, as in the)

formula: Theslope()aggregate is a recent addition to ANSI SQL [18] and
s[1] = s[1)/2 denotes linear regression slope. To express the above query in

Consequently we have processing options to specify the numbeNS| SQL, formula F1 would require an aggregate subquery plus a

54

join to the fact table f, formula F2 a double self-join of the fact filtered, migrates predicates from outer queries into inner WHERE
table, formula F3 a triple self join of the fact table, and formula F4 aclause to limit the data processed by the spreadsheet, and generates
union operation. Such a query would not only be difficult to a filter condition to identify the cells that are required throughout
generate but would also result in an inefficient execution aghe evaluation of the spreadsheet formulas.

compared to the query with spreadsheet. For the latter we need to The analysis also determines one of two types of execution
scan the data and generate a point addressable access structure fikethods: one for acyclic and one for (potentially) cyclic formulas.

a hash table or an index for all formulas only once. If we canBecause of complex predicates in formulas, analysis cannot always
deduce from database constraints that t is from an integer domaiascertain acyclicity of formulas in the spreadsheet. Hence, we
then formula F1 is first transformed into sometimes end up using the cylic execution method for acyclic

F1: UPDATE s['tv’,2002] = spreadsheets which is expensive compared to the acyclic method.

slope(s,t)['tv’,t in (1992,.,2001)]*s['tv’,2001 . .
+s‘[3‘tv(’,2())[01] (st] Formula dependencies and Execution Order The order of

This way, the access structure can be used for random, mump@valuation of formulas is detfermined from _their dependency graph.
accesses along the time dimension as opposed to a scan to find difmulaF; depends or; (written F; -> Fy) if a cell evaluated by
the rows satisfying the predicate. Formulas F2, F3, and F4 can ude2 S used byF;. For example in:
the structure directly. The structure is then used multiple times F. s['video’,2000]=s['tv’, 2000]+s['vcr’, 2000]
giving a performance advantage over multiple joins required by F,:s['ver’, 2000]=s['vcr,1998]+s['ver', 1999]
equivalent ANSI SQL. In real applications, we expect hundreds of
formulas and consequently building a single point access structure F,-> F; asF; requires a cell s['vcr’,2000] computed . To
in place of hundreds of joins provides a significant performanceform the -> relation, for each formulawe determine cells that are
advantage. referenced on its right side R(F) and cells that are modified on its
As another example consider the “densification” of a dimensionleft side, L(F). ObviouslyF, -> F iff R(F,) intersects LE,). In the
d - a process which assures thatcillalues are present in the output presence of complex cell references, like s[’t\?’-i-lf’+t4< t5], itis
for every combination of other dimensions. This operation ishard to determine the intersection of predicates. In this case, we
frequently used in time-series where all time values must be presenrtssume that the formula references all cells. This may result in
in the output. This is used for moving averages, prior-periodover-estimation of the -> relation leading to spurious cycles in the
computation, calendar construction, etc. Assume that for eacdependency graph.
productp) and region() we want to ensure that all years presentin The -> relation results in a graph with formulas as nodes and
the dimension tabletime_dt are present in the output. The fact their dependency relationship as directed edges. The graph is then
table f, is sparse, and may not have all time periods for everyanalyzed for (partial) ordering.
product-region pair. Using our spreadsheet this is expressed as: A spreadsheet formula can access a range of cells (e.g., an

SELECT T, p. t, s aggregate - avg(s)[‘tv’,*] or left side of an existential formula - s[*,

FROM f *] = 10) and thus require a scan of data. If two formulas are
SPREADSHEET PBY(r, p) DBY () MEA (s, 0 as x 1 independent (unrelated in the partial order derived from the graph),
(they can be evaluated concurrently using a single scan. To enable
UPSERT X[FOR t IN (SELECT t FROM time_dt)]= 0 concurrent evaluation, formulas are grouped into enumerated levels
) such that each level contains independent formulas, and no formula

This partitions the query byr,(p) and within each partition in the level may depend on a formula in a higher level.
upserts all values from the time dimension. An equivalent The path through the partial order with the maximum number of
formulation using ANSI SQL involves a cartesian product od scans represents the minimum number of total scans possible, since
time_td and a joinback tof, a series of operations much less they are all related by the partial order. If we have an acyclic graph
efficient than these required for the above spreadsheet execution:(j.e., a partial order), then we can minimize the number of levels

SELECT fr, £.p, fit, f.5 containing scans to this value. The following algorithm generates

FROM f RIGHT OUTER JOIN the levels such that number of scans is minimized - for a proof of a
((SELECT DISTINCT r, p FROM f) minimality please refer to the extended version of the paper.
CROSS JOIN Let G(F, E) be the graph of the -> relation whérare formulas
(SELECT t FROM time_dt) andE the -> edges. We will call a formula with no incoming edges
)V asourceand formulas with only single cell referenc@sgle_refs

ON (f.or=v.rand f.p=v.pand f.t = v.t) GenLevels(G) {
enLevels

LEVEL <- 1
4 Spreadsheet Analysis And Optimization WHILE (F is not empty) {
Find the set FS of all the SOURCES in F
The spreadsheet analysis determines the order of evaluation of If (cycle is detected) {
formulas, prunes formulas whose results are fully filtered out by break the cycle /* see below */

} else if (FS contains single_refs) {
assign single_refs in FS to level LEVEL;
F =F - single_refs in FS
(1)This initializes the measure x to “0” before the execution of } else (FS contains only scans) {
spreadsheet and is similar to naming constants in ANSI views assign formulas in FS to level LEVEL;

outer queries, restricts the formulas whose results are partially

55

F=F-FS then F3 cannot be pruned as it is referenced by F4.

} The evaluation of a formula becomes unnecessary when the
LEVEL <- LEVEL +1, following conditions are satisfied:
} « The cells it updates are not used in evaluation of any other
}For example formula in the spreadsheet. _ _
’ * The cells updated by the formula are filtered out in the outer
SELECT * FROM f query block or the measure updated by the formula is never
GROUP BY p, t referenced in the outer query block.
SPREADSHEET DBY/(p,t) MEA(sum(s) s) Identification of formulas that can be pruned is done by the
(following algorithm based on the dependency graph G simtbe
F1: s[tv, 2000] = sum(s)[tv’, 1990<t<2000], a formula with no outgoing edge, i.e., one no other formula depends
F2: s['ver’,2000] = sum(s)['ver’, 1995<t<2000], on.
F3: s['ver',1999]=s['vcr’,1997]+s['vcr’,1998]
) PruneFormulas(G)
Here, the spreadsheet graph has one edge: F3 -> F2. The{
algorithm will assign the point reference F3 to level 1 and the scan Find a set FS of all SINKS
F2 to level 2, but will delay assigning the scan F1 until level 2 so WHILE (FS is not empty) {
that F1 and F2 can share a single scan. Pick a formula Fi from FS,

The GenLevelsalgorithm presented simplifies the cyclic case. FS=FS-{Fi} /*remove Fifrom FS*/

Before generating the levels, the graph is analyzed for strongly
connected components using algorithms in [17]. We can then
isolate cyclic subgraphs from acyclic parts of the graph and from

If (all the cells referenced on the left
side of Fi are filtered out in the outer

; e g query block
other cyclic subgraphs. This is important because the computational OR
complexity of cyclic evaluation is proportional to the total number the measure updated by the left side
of rows updated or upserted in a cycle (seso-acyclicalgorithm of Fiis not referenced in the outer
in Section 5). After assigning levels to formulas a cyclic subgraph is query block)
dependent on, the cyclic subgraph can be broken by removing {
formulas from the subgraph and assigning them to individual levels F =F - {Fi} /* delete Fi from list F */

in the same order until the subgraph is exhausted. E = E - {all incoming edges into Fi},

For spreadsheets with sequential order of evaluation, the
dependency edges created always point from the earlier formula to
the latter formula. A spreadsheet graph can therefore never be
cyclic. We still generate levels in order to group the independent
formulas together and hence, minimize the number of scans that are}
required for computation of aggregates and existential rules in the
spreadsheet. Rewriting Formulas. Pruning formulas alone is not sufficient to

avoid unnecessary computations during spreadsheet evaluation. In

Pruning Formulas: We expect that, to encapsulate common some cases, the results computed by a formula may be partially
computations, applications will generate views containingfiltered out in the outer query block. Consider the following query
spreadsheets with thousands of formulas. Users querying thesehich predicts the sale of all products in 2002 to be twice the cost
views will likely require only a subset of the result, putting of the same product in 2002, and then selects the sale and cost
predicates over the views. This gives us an opportunity to prunealues for ‘dvd’ and ‘vcr’ for years > = 2000.
formulas that compute cells discarded by these predicates. For

If deletion of F generates new 'sink’
nodes, insert them into the set FS

SELECT * FROM

example: . (SELECTr, p, t, s FROM f
(SSEELLEECCTT rFR?'\i FROM | SPREADSHEET PBY(r) DBY (p, t) MEA (s,c) UPDATE
Pt (

SPREADSHEET PBY(r) DBY (p, t) MEA (s) UPDATE F1: s[* 2002]=cev(p), 20022

)v
)
WHERE p in ('dvd’,’'vcr’) and t >= 2000;

(

F1: s['dvd’,2000]=s['dvd’, 1999]*1.2,

F2: s['ver’,2000]=s['vcr’,1998]+s['ver’',1999],
F3: s['tv’, 2000]=avg(s)['tv’, 1990<t<2000]

)) v The formula F1 cannot be pruned away as part of its result is

WHERE p in (dvd', 'ver', video'); needed in the outer query block. Still, we do not need to compute

The evaluation of the formula F3 is unnecessary as the outei€ S values for all products in 2002 as the outer query filters out all
query filters out the cell that F3 evaluates. The above formulas ard1® rows except for products ‘dvd’ and ‘ver'. Hence we rewrite the
independent, which makes the pruning process simple. If, howeveléft side of formula F1 as follows to avoid unnecessary
we had a formula that depends on F3, for example, computation:

F4: s['video’,2000]=s['vcr’,2000]+s['tv’,2000] F1% s[p in (dvd’,'ver),2002]= clcv(p), 2002]*2]
The rewriting of formulas is done with a small extension of the

56

algorithm PruneFormulas In the newPruneFormulas we try to a union of bounding rectangles for each formula. This in our case is
rewrite the formulas in all sink nodes that we cannot prune. Notep in ('vcr’, 'dvd’) andt in (1997, 1998, 1999)Then the predicates
that similar to pruning of a formula, the rewrite of a formula may on DBY columns from the outer query are extended with the
also change the dependency graph (some incoming edges of tlwerresponding predicates from the spreadsheet bounding rectangle,
formula might be deleted) possibly leading to generation of newand these are pushed into the query. In our example we extend the
sink nodes, so it is only natural that both rewrite and pruning ofouter predicaté = 2000 with t in (1997, 1998, 1999hich results
formulas are handled in the same process. in pushingt in (1997, 1998, 1999, 2000Yhe predicates on DBY
Rewriting of formulas that are not sink nodes is also possible buexpressions in the outer query block are kept in place unless the
the rewrite in that case is complicated as it is not only based ompushdown filter is the same as the outer filter and there are no upsert
outer predicates, but also on the reference predicates of the othtarmulas in the spreadsheet.
formulas that depend on the formula being rewritten. A challenging scenario arises when the bounding rectangle for a
formula cannot be determined at optimization time since it may
Pushing predicates through spreadsheet clausefushing depend on a subquey whose bounds are known only after S’s
predicates into an inner query block [15], [13] and its generalizationexecution. This is common in OLAP queries which frequently
‘predicate move-around’ [12] is an important optimization and hasinquire about the relationship of a measure at a child level to that of
been incorporated into queries with spreadsheets. We perform thrégs parent (e.g., sales of a state as a percentage of sales of a country),
types of pushing optimization: pushing on PBY and independenbr inquire about a prior value of a measure (e.g., sales in March-
DBY dimensions, pushing based on bounding rectangle analysi2002 vs. sales the same month a year ago or a quarter ago). These
and pushing through reference spreadsheets. relationships are obtained by querying dimension tables. For
Pushing predicates through the PBY expressions in or out of thexample, assume that the primary key of time dimensioe_dtis
query block is always correct as they filter entire partitions. Formonthm and the tablgime_dtstores the corresponding month a
example, in: year ago asn_yago.and the corresponding month a quarter ago as
m_gago. Note that quarter ago means the same month in the

SELECT * FROM previous quarter, so quarter ago of 1999-01 is 1998s&6 Table 1)

(SELECT, p, t, s FROM f

SPREADSHEET PBY(r) DBY (p, t) MEA (s) UPDATE)
Table 1: Mapping between m and y_ago/m_qgago

F1:s['dvd’,2000]=s["dvd’,1999]+s['dvd’,1997],
F2:s['vcr’,2000]=s['vcr’,1998]+s['ver’,1999] m m_yago m_gago

1999-01 1998-01 1998-10

)
v
WHERE r = "east’ and t = 2000 and p = 'dvd’;
we push the predicate r = 'east’ through the spreadsheet clause into
the WHERE clause of the inner query. 1999-03 1998-03 1998-12
Pushing can be extended to independent dimensions. A
dimensiond is called anindependent dimensioif, for every
formula, the value ofl referenced on the the right side is the same AN analyst wants to compute for a product ‘dvd’ and months
as the value ofd on the left side. For example, in the above (1999-01, 199-03) the ratio of that month’s sales to the sales in
spreadsheet, the left side of F1 refers to the same valyea®the ~ corresponding months a year and quarter ago respectivefgdo
right side. The same is true for formula F2 as well, thereby making"dr_dago).Using SQL spreadsheet, this query is:
p an independent dimension,. however is not an independent g1
dimension. Observe that in the absence of UPSERT rules, SELECT p, m, s, r_yago,r_gago FROM
independent dimensions are functionally equivalent to the (SELECT p, m, s FROM f GROUP BY p, m
partitioning dimensions and can moved from the DBY to the PBY = SPREADSHEET
clause. For example, in the above spreadsheet, we could replace REFERENCE prior ON

1999-02 1998-02 1998-11

PBY/DBY clauses with (SELECT m, m_yago, m_gago FROM time_dt)
SPREADSHEET PBY(r, p) DBY () MEA (s) UPDATE DBY(m) MEA(m_yago, m_gago)
Consequently, we can push predicate p = ‘dvd’ into the inner (PBY(p) DBY (m) MEA (sum(s) s,r_yago.r_qago)

query.

We also pull predicates on PBY and independent DBY E; [_ézgz[[:]]Z2[[?\//((2%]]//2[[2_22%%[[00\\//((”;))]]]]

expressions out of the query to effect predicate move around of)v
[12].
The outer predicates on the DBY expressions which are not 3/\/HEREp= 'dvd’ and m IN (1999-01, 1999-03);

independent can be also pushed in but we need to extend them soThe reference spreadsheet serves as a one-dimensional look-up
they do not filter out the cells referenced by the right sides of theable translating month into the corresponding month a year ago
formulas. For each formula we construct a predicate defining then_yagoand a quarter agm_gago An alternative formulation of
rectangle bounding the referenced cells. For example for F2 theste query using ANSI SQL requires the joifis< time_dt>< f ><
predicates arp="vcr’ andtin (1998, 1999pnd for Flp="dvd’ and f, where the first join gives the month values a year and a quarter
t in (1997, 1999 Then a bounding rectangle for the entire ago for each row in fact table and the other two joins give the sales
spreadsheet is obtained using methods described in [8], [3] which igalues in the same month, a quarter ago and an year ago

57

respectively. Thus, using reference spreadsheet, the number of joinsSELECT p, m, s, r_yago, r_gago FROM
is reduced to one. (SELECT p, m, s FROM f
The predicate p = ‘dvd’ on the PBY column can be pushed into ~ WHERE m IN (1999-01, 1999-03, /* outer preds */
the inner block. Howevem is neither an independent dimension 1998-01, 1998-03, /*; prev year *i
nor can bounding rectangles be determined for it as the values GROUF}QB%B;?]’EQ%'Q)/ prev quart */
m_yagaandm_gagoare unknown. Consequently, a restrictionmon SPREADSHEET
cannot be pushed-in resulting in all time periods pumped to the . 45 ahove in query S1. >
spreadsheet out of which all except 1999-01 and 1999-03 are)
subsequently discarded in the outer query. Let’s call a dimermbion WHERE p = 'dvd’ and m IN (1999-01, 1999-03);
afunctionally independent dimensidrior every formula, the value
of d referenced on the right side is either the same as the valde of In the third transformation, calledormula unfolding, we
on the left side or a function of the value @n the left side via a transform the formulas by replacing the reference spreadsheet with
reference spreadsheet. In query 8ilis a functionally independent its values. Similarly to the second transformation, we execute
dimension, as the right side useslirectly or uses a function of the reference spreadsheet and obtain its measure for each of the
value ofmon the left sidem_yago[cv(m)landm_gago[cv(m)] dimension values requested by the outer query. These values are
We experimented with three transformations to push predicatethen used to unfold the formulas. For example, fo- 1999-01,
through functionally independent dimensions. In the first, calledvalue ofm_yago= 1998-01, andn_gage 1998-10, and fom =
ref-subquery pushingwe add into the inner block a subquery 1999-03, value ofn_yago= 1998-03, anan_gage 1998-12. Thus
predicate which selects all values needed by the spreadsheet and faemulas are unfolded as:
outer query. The transform is similar to the magic set
trans'formatllon [14]. which pushes a query derived from outer (SELECT p, m. s FROM f GROUP BY p, m
predicates into the inner block. In the above case, the outer query SPREADSHEET
needsm IN (1999-01, 1999-03), and the spreadsheet needs these gerERENCE prior ON
values plus their corresponding_yagoand m_qgagovalues from (SELECT m, m_yago, m_gago FROM time_dt)
the reference spreadsheet. These values can be obtained by pBY(m)MEA(M yago, m_gago)
constructing a subquery over the reference spreadsheet: PBY(p) DBY (m) MEA (sum(s) s,r_yago,r_gago)

(
S2 F1: r_yago[1999-01] = s[1999-01] / S[1998-01],

SELECT p, m, s, r_yago, r_gago FROM

WITH ref_subquery AS

(SELECT m, m_yago, m_gago FROM time_dt
WHERE m IN (1999-01, 1999-03))
SELECT m AS m_value FROM ref_subquery
UNION
SELECT m_yago AS m_value FROM ref_subquery
UNION
SELECT m_gago AS m_value FROM ref_subquery

and then pushing it into the inner block of the query:

SELECT p, m, s, r_yago, r_gago FROM
(SELECT p, m, s FROM f
WHERE m IN (SELECT m_value FROM S2)
GROUP BY p, m
SPREADSHEET
<.. as above in query Sl.>

)
WHERE p ="dvd’ and m IN (1999-01, 1999-03);

F1': r_yago[1999-03] = s[1999-03] / s[1998-03],
F2: r_gago[1999-01] = s[1999-01] / s[1998-10],
F2': r_gago[1999-03] = s[1999-01] / s[1998-12]
v
)
WHERE p ='dvd’ and m IN (1999-01, 1999-03);

Following formula flattening we perform analysis of the
bounding rectangles described above and push the resulting
bounding predicate into the inner query.

In our experiments, see Section 6, teetended pushingnd
formula unfoldingtransformations, resulted in similar performance
as in most cases they push-in the same predicates. In comparison,
theref-subquery puskransform had inferior performance. The use
of ref-subquerygives the optimizer a choice of picking either index
nested loop join, hash join, or sort join between the subquery and
the main query block. The optimizer is more likely to make
mistakes with subquery predicates than with simple qualified index
predicates. And, in the ref-subquery case, the optimizer sometimes

In the second transformation, calleektended pushingwe PICks up awrong join method, thereby slowing down the query (see
construct the pushed-in predicates by executing the referenc@XPerimental results in Section 6 on page 10).
spreadsheet query, obtaining the referenced values and buildi ;
predicates on the dimension, and finally disjuncting them with the SQL SpreadSheet Execution

outer predicates. In the above case we execute Access structures For efficient access to single cells (like

SELECT DISTINCT m_yago, m_gago FROM time_dt s[p="dvd’, t=2000]), we build a two-level hash access structure. In
WHERE m IN (1999-01, 1999-03) the first level, data is hash partitioned on the PBY columns, and in
to obtain the values fo‘n_yag(nndm_qagmorresponding ton IN the second |eVe|, a hash table is built on the PBY and DBY columns
(1999-01, 1999-03). Let's assume that the corresponmiingagds within each first level partition. The formulas are evaluated for one
(1998-01, 1998-03) anah_gagais (1998-10, 1998-12) i.e., the first Spreadsheet partition at a time. A spreadsheet partition contains all
and third month of the previous quarter. Finally we push thisfows with the same PBY column values. Hence, one spreadsheet
predicate into the inner query: partition lies completely within one first level hash partition of the
access structure. Therefore, if the second level hash tables of each

58

of the first level partitions fit in memory, we altogether avoid {
spilling to disk for evaluating the formulas. To further minimize

size and build time of hash tables, we build this access structure
only on rows required by the formulas as defined by the spreadsheet
bounding rectangle (see Section 4).

Hash access structure supports operations like probe, update,
upsert, insert and scan of all records within a spreadsheet partition.
The hash access structure maintains records within a hash bucket
clustered on PBY and DBY column values, thereby making the

for level L

{

i fromL ;toL |

*LS i = set of formulas in Li with

* single cell refs on left side
* LE; = set of formulas in Li with exist-
* ential conditions on left side

* First, evaluate all aggregates in set

*LS i » then all formulas in that set

scan and probe on a spreadsheet partition efficient.
The number of first level partitions is chosen based on estimated

size of data to be inserted into the access structure and the amount

of available memory. The goal is to fit second level hash tables for
each first level partition in memory. However, the spreadsheet
partitions may be really big and we may not have enough memory
to fit a partition. In such cases, we build a disk based hash table
employing a weighted LRU scheme for block replacement,and
pointer swizzling to make references lightweight.

Execution. Formulas in SQL spreadsheet operate in automatic

order or sequential order. Figure 1 classifies the spreadsheet based
on the evaluation order and dependency analysis and identifies the

execution algorithm. There are three algorithrigito-Acyclic
Auto-Cyclic& Sequential

Figure 1Classification of Spreadsheet

Spreadsheet

/\

Automatic Orde Forced Order
(with/without iterate)

only single cell X i.
refs on left side | | On leftside
complete depen} | partial or no dep-
dency graph endency graph
acyclic cyclic or cycle not
known
Auto-Acyclic Auto-Cyclic Sequential
algorithm algorithm algorithm

Automatic Order. The order of evaluation of formulas in an

*
for each record rin P -
for each aggregate A in LS i
apply rto A;
for each formula F in LS i
evaluate F;

/* Evaluate all formulas in LE
for each record rin P

{

i
- (I

find all formulas EF in LE
evaluated for r
for each record r' in P
for each aggregate A in EF
apply r' to A;
for each formula EF
evaluate EF;

i tobe

-

}
}
}
Notice that all the aggregates at any level are computed before

evaluation of formulas at that level so they are available for the
formulas. This requires a scan of records in the partition for each
level. In the absence of existential formulas, and presence of only
those aggregate functions for which an inverse is defined (for
example, SUM, COUNT etc.), the aggregates for all the levels are
computed in a single scan. And, with each formula we store a list of
aggregates dependent on the cell being upserted (or updated) by it.
It is possible to determine such a list because there are only single
cell references on the left side. So, if a formula changes the value of
a measure, the corresponding dependent aggregates are updated by
applying the current value and inverse of the old value of the
measure. In the above algorithm, we can also combine the scan (l)
with the scan (ll) or scan (llI).

An example of an acyclic spreadsheet:

SELECTr, p,t, S
FROM f
SPREADSHEET PBY(r) DBY (p, t) MEA (s)
(
s['tv, 2002] =s['tv’, 2001] * 1.1,
s['ver',2002] =s['ver’, 1998] + s[vcr’, 1999],
s['dvd’,2002] =(s['dvd’,1997]+s['dvd’,1998])/2,
s[*, 2003] =s[cv(p), 2002] * 1.2

automatic order spreadsheet is given by their dependencies (see)

Section 4 on page 4). We have two methods of its execution.

The above query makes sales forecasts for years 2002 and 2003.

The Auto-Acyclic algorithm is taken when a complete and The formulas are split into 2 levels. The first level consists of the
accurate dependency graph can be built and no cycles are detectgdt 3 formulas, projecting sales for 2002, and the second level,

in the dependency graph.
Auto-Acyclic()

dependent on the first level, consists of the last formula, projecting
sales for 2003. The algorithrAuto-Acyclicevaluates formulas in

{ the first level before evaluating formulas in the second level.

for each partition P in the spreadsheet

59

Auto-Cyclic Algorithm. There are also automatic order small cardinality as in PBY(gender) where only two partitions
spreadsheets which are either cyclic, or have complex predicatgdmale’ and 'female’) exist.
that make the existence of cycles indeterminate. In such cases In such cases, we can include, in addition to PBY columns, some
(Section 4 on page 4), the dependency analysis approximatelBY columns for data partitioning. For example, the following
groups the formulas into levels by finding sets of formulasquery:
comprising strongly connected components (SCCs -- the largest s3
union of |nter§ectlng cycles), and assigning the formulas inan SCC SPREADSHEET PBY(r) DBY(p, t) MEA(S) UPDATE
to consecutive levels. TheAuto-Cyclic algorithm evaluates
formulas that are not contained in SCCs as in the acyclic case, but 1. g+ 2002)=

when formulas in SCCs are encountered, it iterates over the avg(s)[cv(p), t in (1998,2000)],
consecutive SCC formulas until a fixed point is reached, but only F2: s[*,2003]=
upto a maximum of ‘N’ iterations where N = number of cells avg(s)[cv(p), tin (1999,2001)]

upserted (or updated) in the first iteration. If the spreadsheet was)

actually acyclic, the formulas will converge after at most ‘N’ is changed to

iterations. In the worst case, if the formulas were evaluated in gprREADSHEET PBY(r, p) DBY(t) MEA(s) UPDATE

exactly the opposite order of (real) dependency, each iteration will

propagate one correct value to another formula, hence requiring ‘N’ s[2002] = avg(s)[t in (1998, 2000)],

iterations. Therefore, to evaluate all acyclic spreadsheets which s[2003] = avg(s)[t in (1999, 2001)]

could not be classified as acyclic and limit the number of iterations)

for cyclic spreadsheets, the maximum number of iterations foras formulas are independent of the dimension colgmfihis can
evaluation of formulas is fixed at 'N’. If the spreadsheet does notbe done for any independent dimension - see Section 4.

converge in 'N' iterations, an error is returned to the user. To Higher granularity of partitioning results in better load balancing
determine if the spreadsheet has converged after an iteration, a fl&gd processor utilization as parallelization takes place onrbatil

is stored with the measure. This flag can be set whenever thp. All PEs execute the same set of formulas but with different data
measure is referenced while evaluating a formula. Later, update of gets. If the column corresponding to an independent dimension on
measure, which the flag set, to a different value indicates thathe left side doesn't qualify all values of that dimension, (i.e., in our
additional iterations are required to reach a fixed point. Similarilynotation is not a “*”), it will not be possible to promote the
an insert of a new cell (by an UPSERT formula) signals additionalindependent dimension to PBY. This is because promoting to PBY
iterations. This technique will require resetting flags for eachwould incorrectly update all values for that dimension. Instead, we
measure after each iteration - an expensive proposition. Hencayill duplicate the independent dimension in the PBY clause as well
instead of a single flag, two flags are stored, each one being used ia get better parallelization. For example:

alternate iterations - as one of the flags is set, the other one can beS4

cleared. SPREADSHEET PBY(r) DBY(p, t) MEA(S) UPDATE

Sequential Order. In a sequential order spreadsheet, formulas (s[p 1= ‘bike’,2002]= avg(s)[cv(p),t<2001]
are evaluated in the order they appear in the spreadsheet clause. The
dependency analysis still groups the formulas into levels consisting is rewritten by optimizer for parallelization to:
of independent formulas so that the number of scans required for
computation of aggregate functions is minimized. The algorithm is
similar to Auto-Acyclic, but there may be multiple iterations as s[p 1= *bike’,2002]= avg(s)[cv(p),t<2001]
specified in the spreadsheet processing option - 'ITERATE’.)

_ Complex scenarios exist where different PEs need to execute
Parallel Execution of SQL Spreadsheet.We execute the (ifferent sets of formulas. One such scenario is the presence of
spreadsheet scalably by evaluating the formulas over partitions iYPSERT option as in:

parallel. The data is distributed to Processing Elements (PE) based
on the PBY columns so that each PE can work on partitions
independent of other PEs. The distribution of partitions to PEs can
be hash or range based on PBY columns. The work of PEs is

SPREADSHEET PBY(r, p) DBY(p, t) MEA(s) UPDATE

SPREADSHEET PBY(r) DBY(p, t) MEA(s) UPSERT

F1: s['dvd’,2002] = sum(s)['dvd’, t<1999]
+ avg(s)['dvd’,1999<=t<= 2001],

coordinated by a single process called theery coordinator For F2 : s['ver,2002] = avg(s)[ver, t <= 2001]
example, the following spreadsheet query can be evaluated by hash g3 sj* 2003] = 1.2*s[cv(p), 2002]
partitioning the data on r:)

In this spreadsheep is again an independent dimension. But

because of the UPSERT option, usipgs a partitioning column
s['dvd’, 2000] = 1.2*s['dvd’, 1999] with all PEs evaluating the same set of formulas can lead to an

) incorrect result. Assume that products 'dvd’ and 'vcr’ get assigned

In some cases, data partitioning on just the PBY columns limitgo different PEs: PE1 and PE2 respectively. If the same formulas are
the degree of parallelization and hence the scalability. That is thexecuted by both PEs, the result would have spurious rows - for
case when there are no PBY columns, or PBY columns have vergxample, PE1 working on product 'dvd’ would introduce a row for
‘ver' while this row might already exist in the data set passed to

SPREADSHEET PBY(r) DBY(p, t) MEA(s)

60

PE2. In such cases, spreadsheet formulas need to be grouped and PBY (c,h,t) DBY (p)
assigned to PEs based on data distribution so that the formula Fis MEA (s, 0 share_1, 0 share_2, 0 share_3)
assigned to PE iff PE is processing data which F touches. For RULES UPDATE

example, PE1 might evaluate formulas F1 and F3 while PE2 (
evaluates formulas F2 and F3. F1: share_1["] = scv(p)] / s[parentlicv(p)]

This process of grouping formulas cannot be done at compile Eg zgz:g—g{*} ; z%gzgg;};z{g:imgg%ﬁ
time as it is data dependent. Instead this is done by passing an extra -
condition to each PE, indicating the data set for which the formulas The analyst indicates products of interest via a predicageian
should be evaluated. In this case, if data is distributed to PES byhe outer query. We studied three algorithms (namelystisguery

HASH partitioning, the extra condition is of the form: extended-pushinagndformula-unfolding for pushing predicates by
WHERE HASH(p) = hash_value_of_P_for_this_PE. changing the selectivity (fraction of rows selected) of the predicate.
The value forhash_value_of P_for_this_PE passed to each Figure 2Pushing Predicates

PE by the query coordinator. Then each PE, before evaluating aA
non-existential formula, i.e., one which explicitly qualifies all P0_
dimensions would find the value fprand verify that the triggering
condition holds. If so, the formula is executed, otherwise it is

skipped. The HASH(p) is the hash function used for data o[L5 p 4 1o Psing
partitioning. For existential formulas we do not need to evaluate the= y | - - subquery-nested loop
condition as they never generate new rows operating only in thez / | ---. subquery-forced hash
update mode. So in the above spreadsheet assume thet;,lo Y | — extended-pushing
HASH'dvd’) = 1 andHASH'vcr’) = 2, and PE1 and PE2 operate v |

in hash partitions 1 and 2 correspondingly. Then PE1 evaluates F1 / |

and F3 while PE2 evaluates formulas F2 and F3.

6 Experimental Results

We conducted experiments on the APB benchmark [1] populated selectivity
with 0.1 density data. The APB schema has a fact table with 4 0.002 0.004 0.006 0.008 0.010 0%12
hierarchical dimensions: channel with 2 levels, time with 3 levels,
customer with 3 levels and product with 7 levels. We constructed a As shown in Figure 2, we observed 5 to 20 times improvement in
cube over the fact table and materialized itdpb_cubetable the query response time (serial execution) by pushing predicates as
Similar to the fact table, the cube has 4 dimensiongime), compared to not pushing them at all. In general, the improvement
p(roduct), c(ustomer), h(channel), each represented as a singlecan be arbitrarily large. Theextended-pushingand formula-
column with all hierarchical levels encoded into a single value. Theunfoldingalgorithms performed almost identically as expected and
cube had bitmap indexes on the dimensions and had 22,721,99B8eir response times were predictable (Figure 2 shows only the
rows. The experiments were conducted on a 12 CPU, 336 MhZAormer). Thesubquery pushinglgorithm offered a surprise as the
shared memory machine with a total of 12 GB of memory. Perresponse time curve was not smooth. For low selectivity of the
commercial product, only relative units of time are reported. predicates (up to 0.006) the optimizer chose nested loop join

between the subquery and thpb_cube gee thesubquery-nested

Pushing predicates experimentWe used a spreadsheet query loop curvg. This was not the optimal choice and caused linear
which calculates ratio of sales for every product level to its 1st, 2nddegradation in performance up to 3 times over the extended-
and 3rd parent in the product hierarchy. APB product hierarchy hapushing method. Beyond the 0.006 selectivity, the optimizer chose
7 levels:prod, class, group, family, line divisipandtop. Thusfora more optimal hash join. However, the response time was still 20%
product in theprod level, we calculate the share of its sales relative worse than the response time for the extended-pushing method.
to its correspondinglass, groupandfamily levels. Assuming that When we forced the optimizer to always chose hash join between
the parent information of a product is stored in a dimension tablghe subquery andpb_cube geesubquery-forced hasprapl), the
product_dtwith columnsp, parentl, parent2 parent3(product, its ~ response time for the subquery method was about 20% worse than
parent, grand parent and great-grand parent respectively), the queeytended-pushing for the entire range of investigated selectivities.
has the form:

Hash-Join vs. SQL Spreadsheet experiment Many SQL

SgELE cT Spreadsheet operations can be expressed with standard ANSI SQL
s, share_1, share_2, share_3, p, ¢, h, t using joins and UNIONSs. For example, query S5 can be expressed
FROM - - using joins three self joins abp_cubeand a join tgroduct_dt
apb_cube
SPREADSHEET SELECT
REFERENCE ON s, al.s/a2.s AS share_1, al.s/a3.s AS share_2,
(SELECT p, parentl, parent2, parent3 al.sla4.s AS share_3,p, ¢, h, t,
FROM product_dt) FROM
DBY (p) MEA (parentl, parent2, parent3) apb_cube al, apb_cube al, apb_cube a3,

61

apb_cube a4, product_dt p product_td>< apb_cubeln the experiment, the physical memory

WHERE was large enough to accommodate every individual partition of the
alp=p.p& apb_cubewhich in our case was a maximum of 15MB - about 20%
az.p=p.parentl & a2.c=al.c & az.h=al.h & a3.t=al.t of the cube. The formulas were processed in parallell (12

a3.p=p.parent2 & a3.c=al.c & a3.h=al.h & a3.t=al.t
a4.p=p.parent3 & ad.c=al.c & ad4.h=al.h & ad.t=alt

processors) with close to linear (about 80%) parallel efficiency.
Figure 5Scalability with size of physical memory

The number of self joins is equal to the number formulas ($ay A
and all joins to the originagpb_cubdal) are right outer joins. For
hash joins this requires constructionhash tables while our SQL o
Spreadsheet needs only one hash access structure per spreadsheet.
Consequently there is a break even pointwhen the cost of the
spreadsheet access structure is amortized, and spreadsrvéee
outperforms ANSI hash-join formulation as shown in Figure 4. In2
the above query, Nis 3 (i.e, 3 rules). Above 14 rules, spreadsheelg
execution is twice as fast as that using joins. In the experiment joins
and spreadsheet were processed serially and the access structurgs
for both fit in memory.

—~

Figure 3Hash Join vs. SQL Spreadsheet function of # rules
7/

& . 4 20% 40% 60% . 80% 100% 120%
00 % memory Vs size largest partifion

Aormulation with self joins

m
N

Figure 5 shows the performance of our access structure as a
150 7 function of available memory. The memory size is expressed as a
percentage of the size required to fit the largest partition of data in

the hash access structure in physical memory. Recall from Section
5, that we first partition the data on the PBY columns, and process
one partition at a time to execute the formulas. In the experiment

we executed a single formula, F1, from query S5:

F1: share_1[*] = s[cv(p)] / s[parent1[cv(p)]]

uni ts of t

100 formulation with SQL spreadsheet

> i 5 g 10 75 The formula accesses, within each PBMh(t) partition, sales
% number of rules or self joins for a product and its parent. If a partition does not fit in memory we
incur an /O if a referenced cell is not cached. In a severe case of
memory shortage, each reference may be a cache miss, reducing
Access Method - Hash TableWe tested the scalability of our our access method to an un-cached, nested loop join. In the case of
execution methods as a function of the number of formulas, angormula F1 which references a product and its parent, this occurs
memory available for the hash structure. when the available memory is less than 30% of the largest partition
Figure 4 Scalability with number of formulas - see Figure 5. Thus our method works very well and outperforms
equivalent simulations of formulas with joins (for hash, sort and
nested loop join methods) when the PBY partitions fit in memory as
30 in those cases, we reduce the number of required joins. Note that
the equivalent simulations must prefoabp_cube >< product_dt
>< abp_cube while with spreadsheet we effectively build access
structure for only one joirabp_cube >< product_dtFor extreme

A units of time

20 cases of memory shortage, we degrade to the equivalent
performance of simulation with nested loop joins. Observe that in
these cases, hash join simulations would not perform better as they

10 would have to spill to disk all of its data.

7 Conclusions and future research

of formulas
2 4 6 8 10 12 >

This paper extends SQL with a computational clause which
allows us to treat a relation as a multi-dimensional array and
specify a set of formulas over it. The formulas replace multiple

Figure 4 shows an almost linear scalability between the responsins and UNION operations which must be performed for
time of a spreadsheet and the number of formulas. Each formulgquivalent computation with current ANSI SQL. This not only
came from query S5, and simulated a double japb_cube>< allows for ease of programming, but also offers the RDBMS an

62

opportunity to perform better optimizations as there are fewer2]
complex query blocks to optimize - an Achilles heel of many
RDBMSs. We also create a single run time access structure which
replaces multiple hash or sort structures needed for equivalent joins
and UNIONs. Our intent is an eventual migration of computations 3]
from classical spreadsheets into the RDBMS. Such migratior{
would offer an unprecedented integration of business models which
are currently distributed among thousands of incompatible and
incomparable spreadsheets. In our model, the result of an SQI4]
Spreadsheet is a relation with well defined semantics and can easily
be compared to other SQL spreadsheets via joins, unions, and oth]
relational operations. The SQL Spreadsheet can be stored in a
relational view and hence, become known to tools through the
RDBMS catalog, thereby enhancing their cooperation.

There are several topics we are now investigating: (6]

Materialized Views. A SQL Spreadsheet can be stored in a
materialized view [4], [5], [7] and providing incremental refresh on
this view would offer an automatic what-if analysis. Modification to 7
detail data would be incrementally propagated through the formulas
allowing us to observe the change. A rollback operation would
remove it. A significant performance improvement could be
achieved if a query with an SQL Spreadsheet were rewritten with
an MV containing another spreadsheet. In general this is andl
undecidable problem; however, there are practical restrictions on
the formulas which make the problem solvable. [9]

Parametric Models. ANSI SQL doesn't provide a good
separation between data and computation. ANSI SQL views, which
could store SQL Spreadsheet, do not allow us to pass data to the
formulas during view invocation. We are working on extending the[lo]
SQL View model, such that tables or subqueries could be passed as
parameters to the SQL Spreadsheet formulas. Conversely, SQL
Spreadsheet could be passed to views as subqueries with §mn1]
important advantage of performing dynamic optimizations (see
Section 4).

Automatic Migration of Classic Spreadsheet to the RDBMS.

We would like to support all the classical spreadsheet functions irglz]
the RDBMS so that it is easy to migrate classic spreadsheets into
the RDBMS. Another problem is that Classic Spreadsheets are very
unstructured with data intermixed with formulas and the latter[13]
expressed in unreadable row-column references, which makes user
assisted translation necessary.

Access ModelsOur initial implementation of the access method
was based on a B-tree supported by our RDBMS. This proved mor
expensive than the current hash table mostly due to code pa
length for the B-Tree. We are investigating a very light B-Tree
structure that could be useful as an alternate access method for
formulas which need ordering - see the ORDER BY formula clausd15]
in Section 2. We are also investigating methods of reducing 10
when a hash partition cannot fit in the available memory, and the
formulas resemble these in query S5, i.e., scenarios in Figure 5. In
many of these cases there is a correlation between dimension vaIuPl%]
on the left and right side, so re-clustering or ordering the data using
existing hash or sort merge join methods would reduce physical |O.

4]

8 References [17]

[1] APB Benchmark Specifications. http://

18
www.olapcouncil.org/research/APB1R2_spec.pdf [18]

63

A. Balmin, T. Papadimitriou, Y. Papakonstantinou.
“Hypothetical Queries in an OLAP Environment,” In
Proceedings of the 26th VLDB ConferenCairo, Egypt,
2000.

N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, “The
R*-tree: An efficient and Robust Access Method for Points
and Rectangles,” IRroc. 1990 ACM SIGMOD Conf

R. G. Bello, et al, “Materialized Views In Oracle”,
Proceedings of VLDB'98, New York, USA, 1998

J. A. Blakeley, P. Larson, and F. W. Tompa. “Efficiently
Updating Materialized ViewsProceedings of ACM
SIGMOD 1986

D.Chatziantoniou and K.Ross, “Querying Multiple Features
of Groups in Relational Database$roceedings of
VLDB'96.

A. Gupta, I.S. Mumick, and V. S. Subrahmanian.
“Maintaining views incrementally"'Proceedings of ACM
SIGMOD 1993 International Conference on Management
of Datg, Washington DC, 1993.

A. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial SearchingProc. 1984 ACM SIGMOD Conf

Joseph M. Hellerstein. “Practical predicate placement,”
Proceedings of ACM SIGMOD 1994 International
Conference on Management of Dat894.

J. M. Hellerstein and M. Stonebraker. “Predicate migration:
Optimizing queries with expensive predicatdzbdceedings
of ACM SIGMOD 1993, Washington DC, 1993

L. Lakshamanan, J. Pei, Y. Zhao, “QC-Trees. Efficient
Summary Structure for Semantic OLARProceedings of
ACM SIGMOD 2003, San Diego, CA 2003

A. Y. Levy, I. S. Mumick, and Y. Sagiv. “Query
optimization by predicate move-aroun&foceedings of the
20th VLDB Conferengé&antiago, Chile, 1994.

K. Ross, D. Srivastava, P. Stuckey, and S. Sudarshan.
“Foundations of aggregation constrainélan Borning,
editor, Principles and Practice of Constraint Programming,
1994.

I. S. Mumick, S. Finkelstein, H. Pirahesh, and R.
Ramakrishnan. “Magic is relevanBtoceedings of the
ACM SIGMOD 1990Atlantic City, New Jersey, 1990

D. Srivastava and R. Ramakrishnan. “Pushing Constraint
Selections,Proceedings of the Eleventh Symposium on
Principles of Database Systems (POD&)n Diego, CA,
1992.

Y. Sismanis, N. Roussopoulos, A. Deligiannakis, Y. Kotidis,
“Dwarf: Shrinking the Petacube’RProceedings of ACM
SIGMOD2002, Madison, WI,2002.

R. Tarjan. “Dept-first search and linear graph algorithms,”
SIAM J. Computing, 1997.

F. Zemke. “Rank, Moving and reporting functions for
OLAP,” 99/01/22 proposal for ANSI-NCTS.

	Abstract
	1 Introduction
	2 SQL Extensions For Spreadsheets
	3 Motivating Example of Spreadsheet Usage
	4 Spreadsheet Analysis And Optimization
	Table 1: Mapping between m and y_ago/m_qago
	S1
	S2

	5 SQL Spreadsheet Execution
	Figure 1 Classification of Spreadsheet
	S3
	S4

	6 Experimental Results
	S5
	Figure 2 Pushing Predicates
	Figure 3 Hash Join vs. SQL Spreadsheet function of # rules
	Figure 4 Scalability with number of formulas
	Figure 5 Scalability with size of physical memory

	7 Conclusions and future research
	8 References
	[1] APB Benchmark Specifications. http:// www.olapcouncil.org/research/APB1R2_spec.pdf
	[2] A. Balmin, T. Papadimitriou, Y. Papakonstantinou. “Hypothetical Queries in an OLAP Environmen...
	[3] N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, “The R*-tree: An efficient and Robust Acc...
	[4] R. G. Bello, et al, “Materialized Views In Oracle”, Proceedings of VLDB’98, New York, USA, 1998
	[5] J. A. Blakeley, P. Larson, and F. W. Tompa. “Efficiently Updating Materialized Views,” Procee...
	[6] D.Chatziantoniou and K.Ross, “Querying Multiple Features of Groups in Relational Databases, “...
	[7] A. Gupta, I.S. Mumick, and V. S. Subrahmanian. “Maintaining views incrementally”. Proceedings...
	[8] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. 1984 ACM SIGMOD...
	[9] Joseph M. Hellerstein. “Practical predicate placement,” Proceedings of ACM SIGMOD 1994 Intern...
	[10] J. M. Hellerstein and M. Stonebraker. “Predicate migration: Optimizing queries with expensiv...
	[11] L. Lakshamanan, J. Pei, Y. Zhao, “QC-Trees. Efficient Summary Structure for Semantic OLAP”, ...
	[12] A. Y. Levy, I. S. Mumick, and Y. Sagiv. “Query optimization by predicate move-around,” Proce...
	[13] K. Ross, D. Srivastava, P. Stuckey, and S. Sudarshan. “Foundations of aggregation constraint...
	[14] I. S. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. “Magic is relevant,” Proceed...
	[15] D. Srivastava and R. Ramakrishnan. “Pushing Constraint Selections,” Proceedings of the Eleve...
	[16] Y. Sismanis, N. Roussopoulos, A. Deligiannakis, Y. Kotidis, “Dwarf: Shrinking the Petacube”,...
	[17] R. Tarjan. “Dept-first search and linear graph algorithms,” SIAM J. Computing, 1997.
	[18] F. Zemke. “Rank, Moving and reporting functions for OLAP,” 99/01/22 proposal for ANSI-NCTS.

	Spreadsheets in RDBMS for OLAP

	page1: 52
	page2: 53
	page3: 54
	page4: 55
	page5: 56
	page6: 57
	page7: 58
	page8: 59
	page9: 60
	page10: 61
	page11: 62
	page12: 63

