
Exchanging Intensional XML Data ∗

Tova Milo
INRIA&Tel-Aviv U.
Tova.Milo@inria.fr

Serge Abiteboul
INRIA

Serge.Abiteboul@inria.fr

Bernd Amann
Cedric-CNAM

amann@cnam.fr

Omar Benjelloun
INRIA

Omar.Benjelloun@inria.fr

Fred Dang Ngoc
INRIA

dangfred@yahoo.com

ABSTRACT
XML is becoming the universal format for data exchange between
applications. Recently, the emergence of Web services as standard
means of publishing and accessing data on the Web introduced a
new class of XML documents, which we call intensional docu-
ments. These are XML documents where some of the data is given
explicitly while other parts are defined only intensionally by means
of embedded calls to Web services.

When such documents are exchanged between applications, one
has the choice to materialize the intensional data (i.e. to invoke the
embedded calls) or not, before the document is sent. This choice
may be influenced by various parameters, such as performance and
security considerations. This paper addresses the problem of guid-
ing this materialization process.

We argue that, just like for regular XML data, schemas (ala DTD
and XML Schema) may be used to control the exchange of inten-
sional data and, in particular, to determine which data should be
materialized before sending a document, and which should not. We
formalize the problem and provide algorithms to solve it. We also
present an implementation that complies with real life standards for
XML data, schemas, and Web services, and is used in the Active
XML system [3, 1].

1. INTRODUCTION
XML, a self-describing semi-structured data model, is becom-

ing the standard format for data exchange between applications.
Recently, the use of XML documents where some of the data is
given explicitly while other parts consist of programs that gener-
ate data, started gaining popularity. We refer to such documents
as intensional documents, since some parts in them are defined by
programs. We will call materialization the process of evaluating
some of the programs included in an XML document and replac-
ing them by their results. The goal of this paper is to study the
new issues raised by the exchange of such intensional XML docu-
ments between applications, and in particular how to decide which

∗This project is partially supported by EU IST project DBGlobe
(IST 2001-32645)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

data should be materialized before the document is sent and which
should not.

This work was developed in the context of the Active XML sys-
tem and language [3, 1, 2]. The system is centered around Active
XML documents, which are XML documents where parts of the
content is explicit XML data whereas other parts are generated by
calls to Web services. In the present paper, we are only concerned
with certain aspects of Active XML that are relevant to many other
systems, which we describe below. We will thus use the term in-
tensional documents to denote documents with such features.

To understand the problem, let us first highlight an essential dif-
ference between the exchange of regular XML data and that of in-
tensional XML data. In frameworks such as Sun’s JSP [15], or
php [24], intensional data is provided by programming constructs
embedded inside documents. Upon request, all the code is evalu-
ated and replaced by its result to obtain a regular, fully material-
ized HTML or XML document. This simple scenario has recently
changed due to emerging standards for Web services such as SOAP
and WSDL [27], and UDDI [26]. Web services are becoming the
standard means of accessing, describing and advertising valuable,
dynamic, up-to-date sources of information over the Web. Recent
frameworks such as Macromedia MX [16], Apache Jelly [13] and
Active XML [3, 1, 2], allow for the definition of intensional data
by embedding calls to Web services inside documents.

This new generation of intensional documents have a property
that we view here as crucial: since Web services can be called from
essentially anywhere on the Web, one does not need anymore to
materialize all the intensional data before sending a document. In-
stead, a more flexible data exchange paradigm is possible, where
the sender sends an intensional document and gives the receiver
the freedom to materialize the data if and when needed. In general,
one can use a hybrid approach, where some data is materialized by
the sender and some by the receiver.

As a simple example, consider an intensional document for the
home-page of a local newspaper. It may contain some extensional
XML data, such as general information about the newspaper, and
some intensional fragments, e.g. one for the current temperature in
the city, obtained from a weather forecast Web service, and a listing
of current art exhibits, obtained from the TimeOut local guide. A
newspaper reader may receive the full materialized document, a
smaller intensional one, or one where some data is materialized
(e.g. the temperature) and some left intensional (e.g. art exhibits).

Before getting to the description of the technical solution we
propose, let us see some of the considerations that may guide the
choice of materializing or not some information:

Performance The decision whether to execute calls before or af-
ter the data transfer may be influenced by the current sys-
tem load or the cost of communication. For instance, if the



sender’s system is overloaded or communication is expen-
sive, the sender may prefer to send smaller files and delegate
as much materialization of the data as possible to the receiver.
Otherwise, it may decide to materialize as much data as pos-
sible before transmission, in order to reduce the processing
on the receiver’s side.

Capabilities Although Web services may in principle be called re-
motely from anywhere on the Internet, it may be the case
that the particular receiver of the intensional document can-
not perform them, e.g., a newspaper reader’s browser may
not be able to handle the intensional parts of a document.
And even if it does, the user may not have access to a partic-
ular service, e.g., by lack of access rights. In such cases, it
is compulsory to materialize the corresponding information
before sending the document.

Security Even if the receiver is capable of invoking service calls,
she may prefer not to do so for security reasons. Indeed,
service calls may have side effects. Receiving intensional
data from an untrusted party and invoking the calls embedded
in it may thus lead to severe security violations. To overcome
this problem, the receiver may decide to refuse documents
with calls to services that do not belong to some specific list.
It is then the responsibility of a helpful sender to materialize
all the data generated by such service calls before sending
the document.

Functionalities Last but not least, the choice may be guided by the
application. In some cases, e.g. for a UDDI-like service reg-
istry, the origin of the information is what is truly requested
by the receiver, hence service calls should not be material-
ized. In other cases, one may prefer to hide the true origin of
the information, e.g., for confidentiality reasons, or because
it is an asset of the sender, so the data must be materialized.
Finally, calling services might also involve some fees that
should be payed by one or the other party.

Observe that the data returned by a service, say TimeOut, may
itself contain some intensional parts. Therefore, the decision of
materializing some information or not is inherently a recursive pro-
cess. For instance, for a receiver who cannot handle intensional
documents, the newspaper server would have to recursively mate-
rialize all the data before sending it.

How can one guide the materialization of data? For purely ex-
tensional data, schemas (like DTD and XML Schema) are used to
specify the desired format of the exchanged data. Similarly, we use
schemas to control the exchange of intensional data and, in particu-
lar, the invocation of service calls. The novelty here is that schemas
also entail information about which parts of the data are allowed to
be intensional and which service calls may appear where in the doc-
uments. Before sending information, the sender must check if the
data, in its current structure, matches the schema expected by the
receiver and if not, the sender must perform the required calls for
transforming the data into the desired structure, if possible.

A typical such scenario is depicted in Figure 1. The sender and
the receiver, based on their personal policies, have agreed on a spe-
cific data exchange schema. Now, consider some particular data t to
be sent (represented by the grey triangle in the figure). In fact, this
document represents a set of equivalent, increasingly materialized,
pieces of information – the documents that may be obtained from
t by materializing some of the service calls (q, g and f ). Among
them, the sender must find at least one document conforming to the
exchange schema (e.g., the dashed one) and send it.

The contributions of the paper are as follows:

... ...

...r
q

g g

f

......

...

f q g

f gq

g

... ...

g
fq

g

r

r

q
g

...

ACL
capabilities

cost
...

Reciever

ACL
capabilities

cost
...

Sender

Data exchange schema

Figure 1: Data exchange scenario for intensional documents

1. We provide a simple but flexible XML-based syntax to em-
bed service calls in XML documents, and introduce an ex-
tension of XML Schema for describing the required struc-
ture of the exchanged data. This consists in adding new type
constructors for service call nodes. In particular, our typing
distinguishes between accepting a concrete type, e.g. a tem-
perature element, and accepting a service call returning some
data of this type, e.g., () → temperature.

2. Given a document t and a data exchange schema, the sender
needs to decide which data has to be materialized. We present
algorithms that, based on schema and data analysis, find an
effective sequence of call invocations, if such a sequence ex-
ists (or detect a failure if it does not). The algorithms provide
different levels of guarantee of success for this rewriting pro-
cess, ranging from “sure” success to a “possible” one.

3. At a higher level, in order to check compatibility between
applications, the sender may wish to verify that all the doc-
uments generated by its application may be sent to the target
receiver, which involves comparing two schemas. We show
that this problem can be easily reduced to the previous one.

As explained above, our algorithms find an effective sequence
of call invocations, if one exists, and detect failure otherwise. In
a more general context, an error may arise because of type dis-
crepancies between the caller and the receiver. One may then want
to modify the data and convert it to the right structure, using data
translation techniques such as [6, 8]. As a simple example, one
may need to convert a temperature from Celsius degrees to Fahren-
heit. Although such aspects are clearly complementary and could
be added to our framework, they are not considered here. The fo-
cus here is on partially materializing the given data to match the
specified schema.

The core technique of this work is based on automata theory.
For presentation reasons, we detail a simplified version of the main
algorithm. We briefly sketch a more dynamic, optimized one, that
is based on the same core idea and is used in our implementation.

Although the problems studied in this paper are related to stan-
dard typing problems in programming languages [20], things are
different here, due to the regular expressions present in XML schemas.
Indeed, the general problem that will be formalized here is still



open. We introduce a restriction that is practically founded and
leads to a tractable solution.

All the ideas presented here have been implemented and tested in
the context of the Active XML system[3, 1]. This system provides
persistent storage for intensional documents with embedded calls
to Web services, along with active features to automatically trigger
these services and thus enrich/update the intensional documents.
Furthermore, it allows users to declaratively specify Web services
that support intensional documents as input and output parameters.
We used the algorithms described here to implement a module that
controls the types of documents being sent to (and returned by)
these Web services. This module is in charge of materializing the
appropriate data fragments to meet the interface requirements.

In the following, we assume that the reader is familiar with XML
and its typing languages (DTD or XML Schema). Whereas basic
notions of SOAP and WSDL might be helpful to understand the
details, they are not necessary.

The paper is organized as follows: Section 2 describes a simple
data model and schema specification language and formalizes the
general problem. Additional features for a richer data model that
facilitate the design of real life applications are also introduced in-
formally. Section 3 focuses on difficulties that arise in this context,
and presents the key restriction that we consider. It also introduces
the notions of “safe” and “possible” rewriting which are studied in
Section 4 and 5 respectively. The problem of checking compati-
bility between intensional schemas is considered in Section 6. The
implementation is briefly described in Section 7. The last section
studies related works and concludes.

2. THE MODEL AND THE PROBLEM
To simplify the presentation, we start by formalizing the prob-

lem using a simple data model and a DTD-like schema specifi-
cation. More precisely, we define the notion of rewriting, which
corresponds to the process of invoking some service calls in an in-
tensional document, in order to make it conform to a given schema.
Once this is clear, we explain how things can be extended to pro-
vide the features ignored by the first simple model, and in particular
we show how richer schemas are taken into account.

Simple intensional XML. We model intensional XML docu-
ments as labeled trees consisting of two types of nodes: data nodes
and function nodes. The latter correspond to service calls. We as-
sume the existence of some disjoint domains: N of nodes, L of
labels, F of function names 1, and D of data values. In the sequel
we use v, u, w to denote nodes, a, b, c to denote labels, and f, g, q

to denote function names.

DEFINITION 1. An intensional document d is an expression
(T, λ), where T = (N, E, <) is an ordered tree. N ⊂ N is a finite
set of nodes, E ⊂ N × N are the edges, < associates with each
node in N a total order on its children, and λ : N → L ∪ F ∪ D
is a labeling function for the nodes, where only leaf nodes may be
assigned data values from D.

Nodes with a label in L ∪ D are called data nodes while those
with a label in F are called function nodes. The children subtrees
of a function node are the function parameters. When the function
is called, these subtrees are passed to it. The return value then re-
places the function node in the document. This is illustrated in Fig-
ure 2, where function nodes are represented by squares. Here, the
1We assume in this model that function names identify Web service
operations. This translates in the implementation to several param-
eters (URL, operation name, . . . ) that allow one to invoke the Web
services.

newspaper

title

"The Sun"

date

"04/10/2002"

Get_Temp

city

"Paris"

TimeOut

"Exhibits"

temp

"16°C"

a. Before b. After

newspaper

title

"The Sun"

date

"04/10/2002"

TimeOut

"Exhibits"

Figure 2: An intensional document before/after a call.

Get Temp Web service is invoked with the city name as a param-
eter. It returns a temp element, which replaces the function node.
An example of the actual XML representation of intensional doc-
uments is given in Section 7. Observe that the parameter subtrees
and the return values may themselves be intensional documents,
i.e. contain function nodes.

Simple schema. We next define simple DTD-like schemas for
intensional documents. The specification associates (1) a regu-
lar expression with each element name that describes the structure
of the corresponding elements, and (2) a pair of regular expres-
sions with each function name, that describe the function signature,
namely its input and output types.

DEFINITION 2. A document schema s is an expression (L, F, τ ),
where L ⊂ L and F ⊂ F are finite sets of labels and function
names respectively, τ is a function that maps each label name l ∈ L
to a regular expression over L ∪ F or to the keyword ”data” (for
atomic data), and maps each function name f ∈ F to a pair of
such expressions, called the input and output type of f and denoted
by τin(f) and τout(f).

For instance, the following is an example of a schema.

(∗)

data :
τ (newspaper) = title.date.(Get Temp | temp)

.(T imeOut | exhibit∗)
τ (title) = data

τ (date) = data
τ (temp) = data
τ (city) = data
τ (exhibit) = title.(Get Date | date)
functions :
τin(Get Temp) = city

τout(Get Temp) = temp
τin(T imeOut) = data
τout(T imeOut) = (exhibit | performance)∗

τin(Get Date) = title
τout(Get Date) = date

We next define the semantics of a schema, i.e., the set of its in-
stances. To do so, if R is a regular expression over L ∪ F , we
denote by lang(R) the regular language defined by R. The expres-
sion lang(data) denotes the set of data values in D.

DEFINITION 3. An intensional document t is an instance of a
schema s = (L, F, τ ) if for each data node (resp. function node)
n ∈ t with label l ∈ L (resp. l ∈ F ), the labels of n’s children
form a word in lang(τ (l)) (resp. in lang(τin(l))).

For a function name f ∈ F , a sequence t1, . . . , tn of intensional
trees is an input instance (resp. output instance) of f , if the labels
of the roots form a word in lang(τin(f)) (resp. lang(τout(f)),
and all the trees are instances 2 of s.
2Like in DTD’s, every subtree conforms to the same schema as the
whole document.



It is easy to see that the document of Figure 2.a is an instance of
the schema of (∗), but not of a schema with τ ′ identical to τ above,
except for:

(∗∗) τ
′(newspaper) = title.date.temp.(T imeOut | exhibit

∗)

However, the document can always be turned into an instance of
the schema of (∗∗), by invoking the Get Temp service call and re-
placing it by its return value. On the other hand, consider a schema
with τ ′′ identical to τ , except for:

(∗∗∗) τ
′′(newspaper) = title.date.temp.exhibit

∗

According to the signature, a call to TimeOut may also return per-
formance elements. Therefore, in general, the document may not
become an instance of the schema of (∗∗∗). However, it is possible
that it becomes one (if T imeOut returns a sequence of exhibits).
The only way to know is to call the service.

This type of ”on-line” testing is fine if the calls have no side
effects or do not cost money. If they do, we might want to warn the
sender, before invoking the call, that the overall process may not
succeed, and see if she wants to proceed nevertheless.

Rewritings. When the proper invocation of service calls leads
for sure to the desired structure, we say that the rewriting is safe,
and when it only possibly does, that this is a possible rewriting.
These notions are formalized next.

DEFINITION 4. For a tree t, we say that t
v
→ t′ if t′ is obtained

from t by selecting a function node v in t with some label f and
replacing it by an arbitrary output instance of f 3. If t

v1→ t1
v2→

t2 . . .
vn→ tn we say that t rewrites into tn, denoted t

∗

→ tn. The
nodes v1, . . . , vn are called the rewriting sequence. The set of all
trees t′ s.t. t

∗

→ t′ is denoted ext(t).

Note that in the rewriting process, the replacement of a function
node v by its output instance is independent of any function seman-
tics. In particular, we may replace two occurrences of the same
function by two different output instances. Stressing somewhat the
semantics, this can be interpreted as if the value returned by the
function changes over time. This captures the behavior of real life
Web services, like a temperature or stock exchange service, where
two consecutive calls may return a different result.

DEFINITION 5. Let t be a tree and s a schema. We say that t
possibly rewrites into s if ext(t) contains some instance of s. We
say that t safely rewrites into s either if t is already an instance of
s, or if there exists some node v in t s.t. all trees t′ where t

v
→ t′

safely rewrite into s.

The fact that t safely rewrites into s means that we can be sure,
without actually making any call, that we can choose a sequence
of calls that will turn t into an instance of s. For instance, the
document of Figure 2.a safely rewrites into the schema of (∗∗) but
only possibly rewrites into that of (∗ ∗ ∗).

Finally, to check compatibility between applications, we may
want to check whether all documents generated by one applica-
tion (e.g. the sender application) can be safely rewritten into the
structure required by the second application (e.g. the agreed data
exchange format).

3By replacing the node by an output instance we mean that the
node v and the subtree rooted at it are deleted from t, and the forest
trees t1, . . . , tn of some output instance of f are plugged at the
place of v (as children of v’s parent).

DEFINITION 6. Let s be a schema with some distinguished la-
bel r called the root label. We say that s safely rewrites into another
schema s′ if all the instances t of s with root label r rewrite safely
into instances of s′.

For instance, consider the schema of (∗) presented above with
document as the root label. This schema safely rewrites into the
schema of (∗∗) but does not safely rewrite into the one of (∗ ∗ ∗).

The results. Going back to the data exchange scenario described
in the introduction, we can now specify our main contributions:
(1) We present an algorithm that tests whether a document t can be
safely rewritten into some schema s and, if so, provides an effective
rewriting sequence, and
(2) when safe rewriting is not possible, we present an algorithm
that tests whether, nevertheless, t may be possibly rewritten into s,
and finds a possibly successful rewriting sequence, if one exists.
(3) We also provide an algorithm for testing, given two schemas,
whether one can be safely rewritten into the other.

2.1 A Richer Data Model
In order to make our presentation clear, and to simplify the def-

inition of document and schema rewritings, we used a very simple
data model and schema language. We will now present some use-
ful extensions that bring more expressive power, and facilitate the
design of real life applications.

Function patterns. The schemas we have seen so far specify
that a particular function, identified by its name, may appear in the
document. But sometimes, one does not know in advance which
functions will be used at a given place, and yet may want to allow
their usage, provided that they conform to certain conditions. For
instance, we may have several editions of the newspaper of Fig-
ure 2.a, for different cities. A common intensional schema for such
documents should not require the use of a particular Get temp
function, but rather allow for a set of functions, which have a proper
signature. The particular weather forecast function that will be used
may depend on the city and be, for instance, retrieved from some
UDDI service registry. We may also want to check that the function
is safe according to some security policy.

To specify such sets of functions, we use function patterns. A
function pattern definition consists of a boolean predicate over func-
tion names and a function signature. A function belongs to the pat-
tern if its name satisfies the boolean predicate and its signature is
the same as the required one.

In terms of implementation, one can assume that the boolean
predicate is implemented as a Web service that takes a function
name as input and returns True/False.

Let P be a domain of function pattern names. A schema s =
(L, F, P, τ ) now also contains, in addition to the elements and
functions, a set of function patterns P ⊂ P . τ associate with each
function pattern p ∈ P a signature and a boolean predicate over
function names. We can now, for instance, write a schema for our
local newspapers as:

ρ(newspaper) = title.date.(Forecast | temp)
.(T imeOut | exhibit∗)

τname(Forecast) = UDDIF ∧ InACL
τin(Forecast) = city
τout(Forecast) = temp

This schema enforces the fact that the function used in the docu-
ment has the proper signature and satisfies the boolean predicates
UDDIF and InACL. The first predicate (UUDIF ) is a Web



service that checks if the given function (service) is registered in
some particular UDDI registry. Predicate InACL then verifies
if the client has the necessary access privileges for executing the
given function (calling the service).

Wildcards. Together with function patterns, one may also use
wildcards in schemas. Their use is already common for data, to
express the fact that a certain part of a document may contain an
arbitrary unconstrained subtree. XML Schema further allows one
to restrict wildcards to (or exclude from them) certain domains of
data, through the use of namespaces [29]. This extends naturally
to our context, using wildcards to allow certain document parts to
contain arbitrary sub-trees with arbitrary functions, or restrict it to
(resp. exclude from it) certain classes of functions.

The combination of wildcards and function patterns allows for
great flexibility in describing the structure of documents. For in-
stance, one may specify that the temperature is obtained from an
arbitrary function that returns a correct temp element, but may take
any argument, being data or function call.

Restricted service invocations. Another interesting exten-
sion is the following: We assumed so far that all the functions ap-
pearing in a document may be invoked in a rewriting, in order to
match a given schema. This is not always the case, for the same rea-
sons as mentioned in the Introduction (security, cost, access rights,
etc.). The logic of rewritings will have to take this into account,
essentially by considering, among all possible rewritings, only a
proper subset. For that, the function names/patterns in the schema
can be partitioned into two disjoint groups of invocable and non-
invocable ones. A legal rewriting is then one that invokes only
invocable functions. The notions of safe and possible rewritings
extend naturally to consider only legal rewritings. Since we are
interested here only in such rewritings, whenever we talk in the
sequel about a function invocation, we mean an invocable one.

XML and XML Schema. The simple XML trees considered
above ignore a number of features of XML, such as attributes, and
use a single domain for data values. A richer setting may be ob-
tained by using the full fledged XML data model [29]. Similarly,
richer schemas may be defined by adopting XML Schema [29],
rather than using the simple DTD-like schema used above. Indeed,
our implementation is based on the full XML model and on an ex-
tension of XML Schema.

In our prototype, functions embedded in XML documents are
represented by special function elements that identify the Web ser-
vices to be invoked and specify the value of input parameters. XML
Schemas are enriched for intensional documents (to form XML
Schemaint) by function and function pattern definitions. In both
cases, things are very much along the lines of the simple model we
used above. We will see an example and more details of this in
Section 7.

3. EXCHANGING INTENSIONAL DATA
We start by considering document rewriting. Schema rewriting

is considered later in Section 6.
Given a document t that the sender wishes to send, and an agreed

data exchange schema s, the sender needs to rewrite t into s. A
possible process is as follows:

1. Check if t safely rewrites to s and if so, find a rewriting se-
quence, namely a sequence of functions that need to be in-
voked to transform t into the required structure (preferably
the shortest or cheapest one, according to some criteria).

2. If a safe rewriting does not exist, check whether at least t may
rewrite to s. If it is acceptable to do so (the sender accepts
that the rewriting may fail), try to find a successful rewriting
sequence if one exists (preferably with the least side effects
on the path to find it, and at the least cost).

A variant is to combine safe and possible rewritings. For instance,
one could consider a mixed approach, that first invokes some func-
tion calls, and then attempts from there to find safe rewritings.
There are many alternative strategies.

We will first consider safe document rewriting, then move to the
unsafe case, and finally consider the mixed approach. As in the
previous section, to simplify the presentation, we first consider the
problems in the context of the simple data model defined above.
Then in Section 7 we will show that the proposed solutions natu-
rally extend to richer data/schemas and in particular to the context
of full fledged XML and XML Schema.

Before presenting solutions, let us first explain some of the diffi-
culties that one encounters when attempting to rewrite a document
to a desired exchange schema. While the examples given in the pre-
vious sections were rather simple - and one could determine by a
simple observation of the document which service calls need to be
issued - things may in general be much more complex. We explain
next why this is the case and present a restriction that will make the
problem tractable.

Going back and forth. The rewriting sequence may depend
on the answers being returned by the functions: we may call one
function at some place in the document, and then decide, possibly
based on its answer, that another function in the new data or in a
different part of the document needs to be called, and so on. In gen-
eral, this may force us to analyze the same portion of the document
many times, re-examining the same function call again and again,
deciding at each iteration whether, based on the answers returned
so far, the function now needs to be called or not. Such an itera-
tive process may naturally be very expensive. We thus restrict our
attention here to a simpler class of “one-pass” left-to-right rewrit-
ings 4 where for each node, the children are processed from left to
right, and once a child function is invoked, no further invocations
are applied to its left hand sibling functions (i.e. successive chil-
dren invocations are limited to the new children functions possibly
returned by the call, plus the right hand siblings.).

Observe that in general, with this restriction, one can miss a suc-
cessful rewriting that is not left-to-right. In all the real-life exam-
ples that we considered, left-to-right rewritings were not limiting.

Infinite search space. The essence of safe rewriting is that
it succeeds no matter what specific answers, among the possible
ones, the invoked functions return. The domain of the possible an-
swers of each function is determined by its output type. Since the
regular expression defining this type may contain starred (“*”) sub-
expressions, the domain is infinite, and the safe rewriting should ac-
count for each possible element in this infinite domain. Moreover,
the result of a service call may contain intensional data, namely
other function calls. In general the number of such new functions
may be unbounded. For instance, consider a Get Exhibits func-
tion, with output type

τout(Get Exhibits) = Get Exhibit
∗
.

When Get Exhibits is invoked, an arbitrary large number of
Get Exhibit functions may be returned, and one has to check for
4One could choose similarly right-to-left.



each of the occurrences whether this particular function call needs
to be invoked and whether, after the invocation, the document can
still be (safely) rewritten into the desired schema.

Recursive calls. As explained above, when a function is in-
voked, the returned data may itself contain new calls. To conform
to the target schema, these calls may need to be triggered as well.
The answer again may contain some new calls, etc. This may lead
to infinite computations. Observe that such recursive situations do
occur in practice. For example, a search engine Web service may
return, for a given keyword, some document URLs plus (possibly)
a function node for obtaining more answers. Calling this function,
one can obtain a new list and perhaps another function node, etc.
If the target schema requires plain XML data we need to repeat-
edly call the handles until all the data has been obtained. In this
example, and often in general, one may want to bound the recur-
sion. This suggests the following definition and our corresponding
restriction:

DEFINITION 7. For a rewriting sequence t
v1→ t1 . . .

vn→ tn, we
say that a function node vj depends on a function node vi if vj ∈ ti

but 6∈ ti−1 (namely if the node vj was returned by the invocation
of the function vi).

We say that a rewriting sequence is of depth k if the dependency
graph among the nodes contains no paths of length greater than k.

The restriction. The restriction that we will impose below is the
following: We will consider only k-depth left-to-right rewritings.

Note that while this restriction limits the search space, the lat-
ter remains infinite, due to the starred sub-expressions appearing in
the schema. However, under this restriction, we can exhibit a fi-
nite representation (based on automata) of the search space and use
automata-based techniques to solve the safe rewriting problem.

Even with this restriction, the framework is general enough to
handle most practical cases. It remains open whether the problem
of arbitrary safe rewriting (without the left-to-right k-depth restric-
tion) is decidable. We proved decidability of arbitrary safe rewrit-
ing for a restricted class of schemas but those are only of theoretical
interest. Due to space limitations, this will not be presented here.

4. SAFE REWRITING
In this section, we present an algorithm for k-depth safe rewrit-

ing.
We are given a document tree t and a schema s0 = (L0, F0, τ0)

describing the signature of all the functions in the document (as
well as the elements/functions used in these signatures). This corre-
sponds to having a WSDL description for each service being used,
which is a normal requirement for Web services. We are also given
a data exchange schema s = (L, F, τ ), and our goal is to safely
rewrite t into s (with a k-depth rewriting).

To simplify, we assume that common functions have the same
definitions in s0 and s. This is reasonable since the function defini-
tions represent the WSDL description of the functions, as given by
the service providers. While this assumption simplifies the rewrit-
ing process, it is not essential. The algorithm can be extended to
handle distinct signatures, but we omit this here for space reasons.

For clarity, we decompose the presentation of the algorithm into
three parts.

1. The first part explains how to deal with function parame-
ters. The main point is that, since the parameters may them-
selves contain other function calls (with parameters), the tree

rewriting starts from the deepest function calls and recur-
sively moves upward.

2. The second part explains how the rewriting in each such it-
eration is performed. The key observation is that this can be
achieved by traversing the tree from top to bottom, handling
one node (and its direct children) at a time.

3. Finally, the third and most intricate part, explains how each
such node, and its direct children, is handled. In particular,
we show how to decide which of the functions among these
children needs to be invoked in order to make the node fit the
desired structure.

For presentation reasons, we give here a simplified version of the
actual algorithm used in the implementation. To optimize the com-
putation, a more dynamic variant, based on the same idea, is used
there. We explain the main principles of this variant in Section 7.

Rewriting function parameters. To invoke a function, its pa-
rameters should be of the right type. If they are not, they should be
rewritten to fit that type. When rewriting the parameters, again, the
functions appearing in them can be invoked only if their own pa-
rameters are (or can be rewritten into) the expected input type. We
thus start from the “deepest” functions, i.e. those having no func-
tion occurrences in the parameters, and recursively move upward:

• For the deepest functions, we verify that their parameters are
indeed instances of the corresponding input types. If not, the
rewriting fails.

• Then moving upward, we look at a function f and its pa-
rameters. All the functions appearing in these parameters
were already handled - namely their parameters can be safely
rewritten to the appropriate type. We thus ignore the parame-
ters of these lower level calls (together with all the functions
included in them) and just try to safely rewrite f ’s own pa-
rameters into the required structure. If this is not possible,
the rewriting fails. (For the same reason as above).

At the end of this process we know that all the outmost function
calls in t are fine. We can thus ignore their parameters (and what-
ever functions that appear in them) and need to safely rewrite t into
s by invoking only these outmost calls.

Top down traversal. In each iteration of the above recursive
procedure we are given a tree (or a forest) where the parameters of
all the outmost functions have already been handled, and we need
to safely rewrite the tree (forest) by invoking only these outmost
functions. To do that we can traverse the tree(forest) top down,
treating at each step a single node and its immediate children.

Consider a node n whose children labels form a word w. Note
that the subtree rooted at n can be safely rewritten into the target
schema s = (L, F, τ ) if and only if (1) w can be safely rewrit-
ten into a word in lang(τ (label(n)), and (2) each of n’s chil-
dren subtrees can itself be safely rewritten into an instance of s 5.
Thus, we can start from the root and, going down, for each node
n try to safely rewrite the sequence of its children into a word in
lang(τ (label(n))). The algorithm succeeds if all these individual
rewritings succeed.

5Note that since we assumed that s0 and s agree on function sig-
natures, we only need to rewrite the original children of n and not
those that were returned by function invocation. Without this as-
sumption these will have to be rewritten as well.



The safe rewriting of a word w involves the invocation of func-
tions in w and (recursively) new functions that are added to w by
those invocations. To conclude the description of our rewriting al-
gorithm we thus only need to explain how this is done.

Rewriting the children of a node n. This is the most intri-
cate part of the algorithm. We are given a word w - the sequence
of labels of n’s children - and our goal is to rewrite w to fit the
target schema. Namely, we need to rewrite w so that it becomes
a word in the regular language R = τ (label(n)). The rewrit-
ing process invokes functions in w and (recursively) new functions
that are added to w by those invocations. Each such invocation
changes w, replacing the function occurrence by its returned an-
swer. The possible changes that the invocation of a function fi

may cause are determined by the output type Rfi
= τout(fi) of

fi
6. For instance, if w = a1, a2, . . . , fi, . . . , am, invoking fi

changes w into some w′ = a1, a2, . . . , b1, . . . , bk, . . . , am where
b1, . . . , bk ∈ lang(Rfi

).
Since the functions signatures, as well as the target schema, are

given in terms of regular expressions, it is convenient to reason
about them, and about the overall rewriting process, by analyzing
the relationships between their corresponding finite state automata.
We assume some basic knowledge of regular languages and finite
state automata, and use in our algorithm standard notions such as
the intersection and complement of regular languages and the carte-
sian product of automata. For basic material, see for instance [11].

Given the word w, the output types Rf1
, . . . , Rfn

of the avail-
able functions, and the target regular language R, the algorithm in
Figure 3 tests if w can be safely rewritten into a word in R, and if
so, finds a safe rewriting sequence.

We give the intuition behind this algorithm next. To illustrate, we
use the newspaper document in Figure 2.a. Assume that we look
at the root newspaper node. Its children labels form the word w =
title.date.Get Temp.T imeOut. Assume that we want to find a
safe rewriting for this word into a word in the regular language
τ ′(newspaper) of the schema of (**), namely

R = title.date.temp.(T imeOut | exhibit
∗).

The process of rewriting involves choosing some functions in w
and replacing them by a possible output; then choosing some other
functions (which might have been returned by the previous calls)
and replacing them by their output, and so on, up to depth k. For
each function occurrence we have two choices: either to leave it
untouched, or to replace it by some word in it output type. The au-
tomaton Ak

w constructed in steps 5-10 of the algorithm represents
precisely all the words that can be generated by such a k-depth
rewriting process. The fork nodes are the nodes where a choice
(i.e. invoking the function or not) exists, and the two fork options
represent the possible consequent steps in the automaton, depend-
ing on which of the two choices was made. Going back to the above
example, Figure 4 shows the 1-depth automaton A1

w for the word
w = title.date.Get Temp.T imeOut, with the signature of the
Get Temp and T imeOut functions defined as in Section 2. q2

and q3 are the fork nodes and their two outgoing edges represent
their fork options for Get Temp and T imeOut, resp. An ε edge
represents the choice of invoking the function while a function edge
represents the choice not to invoke it.

Suppose first that we want to verify that all possible rewritings
lead to a “good” word, i.e. that they belong to the target language

6Recall from the discussion above that the input parameters can be
ignored.

safe rewriting (word w, functions output types Rf1
. . . Rfn

,
target language R)

1 Build finite state automata for the following regular languages:
2 (a) An automaton Aw accepting w as a single word.
3 (b) Automata Afi

, i = 1 . . . n, each accepting the regular
language Rfi

.
4 (c) An automaton A accepting the complement of the regular

language R. The automaton should be deterministic and
complete, namely each state has outgoing edges for all
possible letters.

5 Let Ak
w := Aw .

6 For j = 1, . . . , k

7 Consider all the edges e = (v, u) in Ak
w that are labeled by

an (invocable) function name fi and were not treated in
previous iterations. For each such edge:

8 (a) extend Ak
w by attaching a copy of the automaton Afi

,
with its initial and final accepting states linked to v and
u resp. by ε moves.

9 (b) Denote v as a fork node (for the edge e).
10 (c) The two fork options of v (for e) are e itself and the

new outgoing ε edge.
11 Construct the cartesian product automaton A× = Ak

w × A.
12 The fork nodes and fork options in A× reflect those of Ak

w:
13 (a) the fork nodes [q, p] ∈ A× are those where q was a

fork node in Ak
w .

14 (b) Similarly, a fork option in A× consists of all edges
originating from one fork option edge in Ak

w .
15 Mark nodes in A× as follows.
16 (a) First mark all accepting states, (namely nodes [q, p]

where q and p are accepting states in Ak
w and A resp.

17 (b) Then iteratively: mark regular (non fork) nodes if one of
their outgoing edges points to a marked node; mark fork
nodes if in both their fork options (for some fi) contain
an edge that points to a marked node.

18 A safe rewriting exists iff the initial state is not marked.
19 To obtain such a rewriting:
20 (a) Follow a non marked path (corresponding to w) starting

from the initial state of A× to a state [q, p] where q is an
accepting state of Ak

w .
21 – The non marked fork options on the path determine

the rewriting choices (i.e. which functions to call).
22 – When a function is invoked we continue the path

with the new rewritten word (rather than the original w).
23 (b) To minimize the rewriting cost, chose a path with

minimal number/cost of function invocations.
24 exit

Figure 3: Safe rewriting of w into R.

title date Get_Temp TimeOut

temp

q0 q1 q2 q3 q4

q5 q6 q7

exhibit

performance

Figure 4: The A1

w automaton from the newspaper document.



title date TimeOut

exhibit

temp

exhibit

*

*

** *
*

*

p0 p1 p2 p3 p4 p6

p5

Figure 5: The complement automaton A for schema (**).

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

exhibit
performance

performance

performance
exhibit

exhibit

title date

temp

TimeOut

TimeOut

Get_Temp

q0,p0 q1,p1 q2,p2

q5,p2 q6,p3

q3,p3 q4,p4

q4,p3

q7,p5 q4,p5q4,p6

q7,p6 q3,p6 q7,p6 q7,p3

Figure 6: The cartesian product automaton A×.

R. To put things in regular language terms, the intersection of the
language of Ak

w, consisting of these words, with the complement of
the target language R should be empty. A standard way to test that
the intersection of two regular languages is empty is to (i) construct
an automaton A for the complement of the language R, (ii) build a
cartesian product automaton A× = Ak

w × A for the two automata
Ak

w and A, and (iii) check whether it accepts no words.
The cartesian product automaton of Ak

w and A is built in Step 11
of the algorithm. To continue with the above example, the comple-
ment automaton for the regular language R = τ ′(newspaper) of
the schema of (**) is given in Figure 5. The accepting states are
p0, p1, p2 and p6. For brevity we use “*” to denote all possible al-
phabet transitions besides those appearing in other outgoing edges.
The cartesian product automaton A× = A1

w × A (where A1

w and
A are the automata of Figures 4 and 5, resp.) is given in Figure 6.
The initial state is [q0, p0] and the final accepting one is [q4, p6].

Note however that, when searching for safe rewriting, one does
not need to verify that all possible rewritings lead to a ‘good word’,
i.e., that none the words in Ak

w belongs to A. We only have to
verify that for each function, there is some fork option (i.e. invoking
the function or not) that, if taken, will not lead to an accepting
state. Since we are looking for left-to-right safe rewritings, we need
to check that, traversing the input from left to right, at least one
such ‘good’ fork options exists for each function call on the way.
The marking of nodes in Steps 15-17 of the algorithm achieves
just that. Recall that we required in Step (4) that the complement
automaton A is complete. This is precisely what guarantees that all
the fork nodes/options of Ak

w are recorded in A× and makes the
above marking possible.

The marking for our particular example is illustrated in Figure 6.
The colored nodes are the marked ones. As can be seen, the fork
nodes [q2, p2] and [q3, p3] are not marked. For the first node, this is
because its ε fork option is not marked. For the second one, it is due
to the unmarked T imeOut fork option. Consequently, the initial
state is not marked as well and there is a safe rewriting of the news-
paper element to the schema of (**). The safe rewriting sequence is
the one obtained by following a non marked path. Each fork node
on the path, together with its non-marked fork option, determines

title date

exhibit

temp

exhibit

*

*

** *

*

p0 p1 p2 p3 p6

p5

*

Figure 7: The complement automaton A′ for schema (***).

exhibit
performance

performance

performance
exhibit

exhibit

title date

temp

q4,p3

q7,p5 q4,p5q4,p6

q7,p6 q3,p6 q7,p6 q7,p3

TimeOut

TimeOut

q3,p3

q6,p3q5,p2

q2,p2q1,p1q0,p0

Get_Temp

Figure 8: The cartesian product automaton A′

×.

what needs to be done with the corresponding function - an ε edge
means “invoke the function” while a function edge means “do not
invoke”. In our example, it is easy to see (following the path with
colored background) that Get Temp needs to be invoked while
T imeOut should not.

For another example, consider the schema of (***). Here a news-
paper is required to have the structure conforming to the regular ex-
pression title.date.temp.exhibit∗. The complement automaton
A′ for this language is given in Figure 7. To test whether it is pos-
sible to safely rewrite our newspaper document into this schema,
we construct a cartesian product automaton A′

× = A1

w × A′ (with
A1

w as in Figure 4 and A′ as in Figure 7). A′

× is given in Figure 8.
As one can see, in this case, the two fork nodes [q2, p2] and

[q3, p3] have both their fork options marked. Consequently the ini-
tial state is marked as well and there is no safe rewriting of w into
the schema of (***). Note that this is precisely what our intuitive
discussion from Section 2 indicated: the invocation of T imeOut
may return performance elements, hence the result may not con-
form to the desired structure.

The following proposition states the correctness of our algorithm.
We omit the proof for space reasons.

PROPOSITION 1. The above algorithm finds a k-depth left-to-
right safe rewriting if one exists.

Complexity. We conclude this section by briefly discussing the
complexity of the algorithm. Recall that we use s0 to denote the
schema of the sender and s to denote the agreed data exchange
schema. The complexity of deciding whether a safe rewriting ex-
ists is determined by the size of the cartesian product automaton:
we need to construct it and then traverse and mark its nodes. More
precisely, the complexity is bounded by O(| A× |2) = O((| Ak

w |
× | A |)2). The size of Ak

w is at most O((| s0 | + | w |)k) and the
size of the complement automaton A is at most exponential in the
automaton being complemented [11], namely at most exponential
in the size of the target schema s. This exponential blow up may
happen however only when s uses non deterministic regular ex-



possible rewriting (word w, functions output types Rf1
. . . Rfn

,
target language R)

1 Build finite state automaton for the following regular languages:
2 (a) An automaton Ak

w as in Figure 3
3 (b) An automaton A accepting the regular language R.
4 Construct the cartesian product automaton A× = Ak

w × A.
5 Mark all nodes in A× having some outgoing path

leading to a final state.
6 A rewriting may exist if the initial state is marked.
7 To obtain such a rewriting:
8 (a) Follow a marked path from the initial state of A× to a

final one, with the fork options on the path determining
the rewriting choices (as in Figure 3).

9 (c) Backtrack when the calls return a value that does not
allow to to continue to an accepting state.

10 (d) To minimize the rewriting cost, chose a path with
minimal number/cost of function invocations.

11 exit

Figure 9: Possible rewriting of w into R

pressions (i.e. regular expressions whose corresponding finite state
automaton is non deterministic). Note however that XML Schema
enforces the usage of deterministic regular expressions only. Hence
for most practical cases, the complexity is polynomial in the size of
the schemas s0 and s (with the exponent determined by k).

The complexity of actually performing the rewriting depends on
the size of the answers returned by the called functions. If x is the
maximal answer size, the length of the generated word is bounded
by w × xk.

5. POSSIBLE REWRITING
We considered safe rewriting in the previous section. We now

turn to possible rewriting. While function signatures provide an
“upper bound” of the possible output, when invoked with the ac-
tual given parameters they may return a restricted “appropriate”
output, so a rewriting that looked non feasible (unsafe) may turn to
be possible after some function calls. To test if a rewriting may ex-
ist, we follow a similar three-steps procedure as for safe rewriting:
(1) test functions parameters first, (2) traverse the tree top down,
and (3) check each node individually, trying to rewrite the word w
consisting of the labels of its direct children.

Steps (1) and (2) are exactly as before. For Step (3), Figure 9
provides an algorithm to test if the children of a given node may
rewrite to the target schema. As before we use the automaton Ak

w

that describes all the words that may be derived from the word w
in a k-depth rewriting. w may rewrite to a word in the target lan-
guage R iff some of these derived words belong to R. Namely, the
intersection of the two languages, Ak

w and R, is not empty. To test
this we construct, (in step 4 of the algorithm), the cartesian prod-
uct automaton for these two languages and test, (in step 5), that the
final state is reachable from the initial one [11]. To find the ac-
tual rewriting, we follow an accepting path: We invoke functions,
or not, as indicated by the fork options on the path, and backtrack
when failing (i.e. when the function returns a value that does not
correspond to the acceptance path.)

For instance, consider the automaton A for the schema of (***)
with newspaper structure title.date.temp.exhibit∗ given in Fig-
ure 10. The initial state is p0 and the final accepting states are p3

and p4. The cartesian product automaton A× = A1

w×A (for A1

k as
in Figure 4 and A as in Figure 10) is given in Figure 11. The initial
state is [q0, p0]. The final accepting states are [q4, p3] and [q4, p4],
and all states (including the initial one) have an outgoing path to

title date temp

exhibit

exhibit
p0 p1 p2 p3 p4

Figure 10: An automaton A for schema (***)

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

title date

temp

q0,p0 q1,p1 q2,p2

q5,p2 q6,p3

q3,p3

q4,p3

q7,p3
exhibit

exhibit

q7,p4 q4,p4

Figure 11: Cartesian product automaton for possible rewriting.

a final state. The only possible fork options left in the automaton,
and which may lead to a possible rewriting, are the ones requir-
ing the invocation of both Get Temp and T imeOut functions. If
T imeOut returns nothing but exhibits the rewriting succeeds.

The correctness of this algorithm is stated below.

PROPOSITION 2. The above algorithm finds a k-depth left-to-
right rewriting, if one exists.

The complexity here is again determined by the size of the carte-
sian product automaton. However, in this case, it uses the schema
automaton A (rather than its complement, as for safe rewriting).
Hence, the complexity is polynomial in the size of the schemas s0

and s (with the exponent determined by k).

A Mixed Approach. As seen above, much of the work in search-
ing for a safe rewriting comes from the size of the automaton Ak

w

that accounts for all possible outputs of function invocation. A
mixed approach, that invokes some of the functions (e.g. ones with
no side effects or low price) to get their actual output, while safely
verifying other functions can be clearly beneficial. In terms of the
algorithm of Figure 3 above, rather than using the full function sig-
nature automaton Afi

, we will use a smaller one that describes just
the type of the actual returned result. This may greatly simplify the
resulting automaton Ak

w . The output of the invoked calls can also
be later used in the actual rewriting. Details are omitted.

6. SCHEMA REWRITING
So far, we considered the rewriting of a single document. At

a higher level, to check compatibility between applications, the
sender may wish to verify that all the documents generated by
her application can indeed be sent to the target receiver. Given a
schema s0 for the sender documents, and some distinguished root
label r, we want to verify that all the instances of s0 with root
r can be safely rewritten to the schema s. Interestingly, it turns
out that safe rewriting for schemas is not more difficult than that
of documents. In fact, rather than testing all the schema instances
(an infinite number) it suffices to look at a small number of repre-
sentative documents. The key idea is that testing whether all the
elements of a given type have a safe rewriting is analogous to test-
ing whether a single function element, with an output of that type,
can be safely rewritten into the target schema. Thus, to check s0,
we need to look at one such function per element type in s0, and



test whether a document containing it as its single element can be
safely rewritten. We omit the details for space reasons.

7. IMPLEMENTATION
The ideas and algorithms presented in the previous sections have

been implemented and used in the Schema Enforcement module of
the ActiveXML system [3, 1]. We next present how the intensional
data model and schema language of the previous sections map to
XML, XML Schema, SOAP and WSDL. Then we briefly describe
the ActiveXML system and the Schema Enforcement module.

Using the standards. In the implementation, an intensional
XML document is a syntactically well-formed XML document.
This is because we also use an XML-based syntax to express the
intensional parts in it. To distinguish these parts from the rest of
the document, we exploit the XML namespace [29] mechanism.
More precisely, the namespace http://www.activexml.com/ns/int is
defined for function (service) calls. These calls can appear at any
place where XML elements are allowed. The following example
corresponds to the document of Figure 2.a:
<?xml version="1.0"?>
<newspaper
xmlns:int="http://www.activexml.com/ns/int">
<title> The Sun </title>
<date> 04/10/2002 </date>
<int:fun

endpointURL="http://www.forecast.com/soap"
methodName="Get_Temp"
namespaceURI="urn:xmethods-weather">

<int:params>
<int:param>

<city>Paris</city>
</int:param>

</int:params>
</int:fun>
<int:fun

endpointURL="http://www.timeout.com/paris"
methodName="TimeOut">
namespaceURI="urn:timeout-program">

<int:params>
<int:param> exhibits </param>

</int:params>
</int:fun>

</newspaper>

Three attributes of the function nodes provide the necessary in-
formation to call the SOAP service: the URL of the server, the
method name, and the associated namespace.

In order to define schemas for intensional documents, we use
XML Schemaint, which is an extension of XML Schema. To de-
scribe intensional data, XML Schemaint introduces functions and
function patterns. These are declared and used like elements and
types in the standard XML Schema language. In particular, it is
possible to declare functions and function patterns globally, and
reference these declarations inside complex type definitions (e.g.
sequence, choice, all). We give next the XML representation of
function patterns that are described by a combination of some op-
tional attributes and two optional sub-elements, params and return:
<functionPattern

id = NCName methodName = token
endpointURL = anyURI namespaceURI = anyURI
WSDLSignature = anyURI ref = NCName>

Contents: (params?, return?)
</functionPattern>

The id attribute identifies the function pattern, which can then be
referenced by another function pattern using the ref attribute. At-
tributes methodName, endpointURL and namespaceURI designate

the SOAP function that implements the boolean predicate used for
the function pattern. It takes as input parameter the function to vali-
date. As a convention, when these parameters are omitted, the pred-
icate returns true for all functions. The Contents detail the function
signature, i.e. the expected types for the input parameters and the
result of function calls. These types are also defined using XML
Schemaint, and may contain intensional parts.

To illustrate this syntax, consider the function pattern Forecast,
that captures any function with one input parameter of element type
city, returning an element of type temp. It is simply described by:

<functionPattern id="Forecast">
<params>

<param> <element ref="city"/> </param>
</params>
<result> <element ref="temp"/> </result>

</functionPattern>

Functions are declared in a similar way as function patterns, by
using elements of type function. The main difference is that the
three attributes methodName, endpointURL and namespaceURI
directly identify the function that can be used.

As mentioned already, function and function pattern declarations
may be used at any place where regular element and type declara-
tions are allowed. For example, a newspaper element with struc-
ture title.date.(Forecast | temp).(T imeOut | exhibit∗) may
be defined in XML Schemaint as:

<element name="newspaper">
<complexType>

<sequence>
<element ref="title"/>
<element ref="date"/>
<choice>

<functionPattern ref="Forecast"/>
<element ref="temp"/>

</choice>
<choice>

<functionPattern ref="TimeOut"/>
<element ref="exhibit" minOccurs="0"

maxOccurs="unbounded"/>
</choice>

</complexType>
</element>

Similarly to XML Schema, we require the definitions to be un-
ambiguous [29]. Namely, when parsing a document, for each ele-
ment and each function node, the sub-elements can be sequentially
assigned a corresponding type/function pattern in a deterministic
way by looking only at the element/function name.

One of the major features of the WSDL language is to describe
the input and output types of Web services functions using XML
Schema. We extend WSDL in the obvious way, by simply allowing
these types to describe intensional data, using XML Schemaint. Fi-
nally, XML Schemaint allows WSDL or WSDLint descriptions to
be referenced in the definition of a function or function pattern, in-
stead of defining the signature explicitly (using the WSDLSignature
attribute).

The ActiveXML system. ActiveXML is a peer-to-peer system
that is centered around intensional XML documents. Each peer
contains a repository of intensional documents, and provides some
active features to enrich them by automatically triggering the func-
tion calls they contain. It also provides some Web services, de-
fined declaratively as queries/updates on top of the repository doc-
uments. All the exchanges between the ActiveXML peers, and with
other Web service providers/consumers use the SOAP protocol.

The important point here is that both the services that an Ac-
tiveXML peer invokes and those that it provides potentially accept



intensional input parameters and return intensional results. Calls
to “regular” Web services should comply with the input and output
types defined in their WSDL description. Similarly, when calling
an ActiveXML peer, the parameters of the call should comply with
its interface. The role of the Schema Enforcement module is (i) to
verify whether the call parameters conform to the WSDLint de-
scription of the service, (ii) if not, to try to rewrite them into the
required structure and (iii) if this fails, to report an error. Simi-
larly, before an ActiveXML service returns its answer, the module
performs the same three steps on the returned data.

To implement this module, we needed a parser of XML Schemaint.
We had the choice between extending an existing XML Schema
parser based on DOM level 3 or developing an implementation
from scratch [22]. Whereas the first solution seems preferable, we
opted for the second one because, at the time we started the imple-
mentation, the available (free) software we tried (Apache Xerces [28]
and Oracle Schema Processor [23]) showed to be extensible only in
a limited way. Our parser uses a standard SAX parser [28]. It does
not cover all the features of XML Schema, but implements the im-
portant ones such as complex types, element/type references and
schema import. It does not check all simple types, inheritance and
keys. These could be added rather easily to our code.

The schema enforcement algorithm we implemented in the mod-
ule follows the main lines of the algorithm in Section 4, and in
particular the three same stages: (1) checking function parameters
recursively, starting from the most inner ones and going out, (2)
traversing, in each iteration, the tree top down, and (3) rewriting
the children of every node encountered in this traversal. Steps (1)
and (2) are done as described in Section 4. For Step (2), recall
from above that XML Schemaint are deterministic. This is pre-
cisely what enables the top down traversal since the possible type
of elements/functions can be determined locally. For Step (3), our
implementation uses a very efficient variant of the algorithm de-
picted in Figure 3. The latter starts by constructing all the required
automaton and only then analyzes the resulting graph. By contrast,
our implementation builds the automaton in a lazy mode, starting
from the initial state, and constructing only the needed parts. The
construction is pruned whenever a node can be marked directly,
without looking at the remaining, unexplored, branches. The two
main ideas that guide this process are the following:

Sink nodes Some accepting states in A are “sink” nodes: once
you get there, you cannot get out (e.g. p6 in Figures 5 and 7).
When such a node is reached in the construction of the Cartesian
product automaton A×, we can immediately mark the node and
prune the outgoing branches. E.g., in Figure 12, the top left shaded
area illustrates which parts of the Cartesian product automaton of
Figure 6 can be pruned. Nodes [q3, p6] and [q7, p6] contain the sink
node p6. They can be immediately declared as marked, and the rest
of the construction (the left shaded area) need not be constructed.
Marked nodes Once a node is known to be marked, there is no
point in exploring its outgoing branches any further. To continue
with the above example, once node [q7, p6] gets marked, so does
[q7, p3] that points to it. Hence, there is no need to explore the
other outgoing branches of [q7, p3] (the shaded area on the right).

While this dynamic variant of the algorithm has the same worst-
case complexity as the algorithm of Figure 3, it saves a lot of un-
necessary computation in practice. Details are available at [22].

8. CONCLUSION AND RELATED WORK
As mentioned in the Introduction, XML documents with embed-

ded calls to Web services are already present in several existing

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

exhibit
performance

performance

performance

exhibit

title date

temp

TimeOut

Get_Temp

q0,p0 q1,p1 q2,p2

q5,p2 q6,p3

q3,p3 q4,p4

q4,p6

q7,p6 q3,p6 q7,p6 q7,p3

TimeOut exhibit

q4,p3

q7,p5 q4,p5

Figure 12: The pruned automaton.

products. The idea of including function calls in data is certainly
not a new one. Functions embedded in data were already present
in relational systems [21] as stored procedures. Also, method calls
form a key component of object-oriented databases [5]. In the Web
context, scripting languages such as php [24] or JSP [15] have made
popular the integration of processing inside HTML or XML docu-
ments. Combined with standard database interfaces such as JDBC
and ODBC, functions are used to integrate results of queries (e.g.,
SQL queries) into documents. A representative example for this
is Oracle XSQL [23]. Embedding Web service calls in XML doc-
uments is also done in popular products such as Microsoft Office
(Smart Tags) and Macromedia MX.

While the static structure of such documents can be described
by some DTD or XML Schema, our extension of XML Schema
with function types is a first step towards a more precise descrip-
tion of XML documents embedding computation. Further work in
that direction is clearly needed to better understand this powerful
paradigm. There are a number of other proposals for typing XML
documents, e.g., [17, 12, 6]. We selected XML Schema [29] for
several reasons. First, it is the standard recommended by the W3C
for describing the structure of XML documents. Furthermore, it is
the typing language used in WSDL to define the signatures of Web
services [27]. By extending XML Schema, we naturally introduce
function types/patterns in WSDL service signatures. Finally, one
aspect of XML Schema simplifies the problem we study, namely
the unambiguity of XML Schema grammars.

In many applications, it is necessary to screen queries and/or re-
sults according to specific user groups [4]. More specifically for us,
embedded Web service calls in documents that are exchanged may
be a serious cause of security violation. Indeed, this was one of the
original motivations for the work presented here. Controlling these
calls by enforcing schemas for exchanged documents appeared to
us as useful for building secure applications, and can be combined
with other security and access models that were proposed for XML
and Web services, e.g. in [7, 18]. However, further work is needed
to investigate this aspect.

The work presented here is part of the ActiveXML [3, 1, 2]
project based on XML and Web services. We presented in this pa-
per what forms the core of the module that, in a peer, supports and
controls the dialogue (via Web services) with the rest of the world.
This particular module may be extended in several ways. First, one
may introduce “automatic converters” capable of restructuring the
data that is received to the format that was expected, and similarly
for the data that is sent. Also, this module may be extended to act
as a “negotiator” who could speak to other peers to agree with them
on the intensional XML Schemas that should be used to exchange
data. Finally, the module may be extended to include search capa-
bilities, e.g., UDDI style search [26], to try to find services on the



Web that provide some particular information.
In the global ActiveXML project, research is going on to extend

the framework in various directions. In particular, we are working
on distribution and replication of XML data and Web services [2].
Note that when some data may be found in different places and a
service may be performed at different sites, the choice of which
data to use and where to perform the service becomes an optimiza-
tion issue. This is related to work on distributed database systems
[25] and to distributed computing at large. The novel aspect is the
ability to exchange intensional information. This is in spirit of [14],
that considers also the exchange of intensional information in a dis-
tributed query processing setting.

Intensional XML documents nicely fit in the context of data inte-
gration, since an intensional part of an XML document may be seen
as a view on some data source. Calls to Web services in XML data
may be used to wrap Web sources [9] or to propagate changes for
warehouse maintenance [31]. Note that the control of whether to
materialize data or not (studied here) provides some flexible form
of integration, that is a hybrid of the warehouse model (all is ma-
terialized) and the mediator model (nothing is). On the other hand,
this is orthogonal to the issue of selecting the views to materialize
in a warehouse, studied in, e.g., [10, 30].

To conclude, we mention some fundamental aspects of the prob-
lem we studied. Although the k-depth/left-to-right restriction is
not limiting in practice and the algorithm we implemented is fast
enough, it would be interesting to understand the complexity and
decidability barriers of (variants of) the problem. First, one could
try to find, for the safe rewriting problem with our restriction, algo-
rithms with a better worst-case complexity, and derive a tight lower
bound for the problem. Also, the main open problem is whether
safe rewriting remains decidable when the k-depth restriction is re-
moved. One could try also to improve the results for schema vali-
dation, possible or mixed rewriting.

We already mentioned the connection to type theory and the nov-
elty of our work in that setting, coming from the regular expres-
sions in XML Schemas. Typing issues in XML Schema have re-
cently motivated a number of interesting works such as [19], that
are based on tree automata. We are also considering the use of tree
automata to attack the main open problem.

9. REFERENCES
[1] Serge Abiteboul, Omar Benjelloun, Ioana Manolescu, Tova

Milo, and Roger Weber. Active XML: Peer-to-Peer Data and
Web Services Integration (demo). VLDB, 2002.

[2] Serge Abiteboul, Angela Bonifati, Gregory Cobena, Ioana
Manolescu, and Tova Milo. Dynamic XML documents with
distribution and replication. SIGMOD, 2003.

[3] The Active XML homepage.
http://www-rocq.inria.fr/verso/Gemo/Projects/axml/.

[4] K. Selcuk Candan, Sushil Jajodia, and V. S. Subrahmanian.
Secure Mediated Databases. In Proc. of ICDE, pages 28–37,
1996.

[5] R.G. Cattell, editor. The Object Database Standard:
ODMG-93. Morgan Kaufman, 1996.

[6] Sophie Cluet, Claude Delobel, Jérôme Siméon, and
Katarzyna Smaga. Your mediators need data conversion! In
Proc. of ACM SIGMOD, pages 177–188, 1998.

[7] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. Securing XML Documents. In Proc. of EDBT,
2001.

[8] AnHai Doan, Pedro Domingos, and Alon Y. Halevy.
Reconciling schemas of disparate data sources: a

machine-learning approach. In Proc. of ACM SIGMOD,
pages 509–520. ACM Press, 2001.

[9] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. The
TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Information Systems,
8:117–132, 1997.

[10] Himanshu Gupta. Selection of Views to Materialize in a Data
Warehouse. In Proc. of ICDT, pages 98–112, 1997.

[11] John E. Hopcroft and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages and Computation. Addison
Wesley, 1979.

[12] H. Hosoya and B. C. Pierce. “XDuce: A Typed XML
Processing Language”. In Proc. of WebDB, Dallas, TX, 2000.

[13] Jelly: Executable xml.
http://jakarta.apache.org/commons/sandbox/ jelly.

[14] Trevor Jim and Dan Suciu. Dynamically Distributed Query
Evaluation. In Proc. of ACM PODS, pages 413–424, 2001.

[15] SUN’s Java Server Pages. http://java.sun.com/products/jsp/.
[16] Macromedia Coldfusion MX. http://www.macromedia.com/.
[17] M. Makoto. RELAX (Regular Language description for

XML). ISO/IEC Technical Report, may 2001.
[18] Microsoft and IBM. The WS-Security specification.

http://www.ibm.com/webservices/library/ ws-secure/.
[19] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for

XML Transformers. In Proc. of ACM PODS, pages 11–22,
2000.

[20] J. C. Mitchell. Type Systems for Programming Languages.
In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science: Volume B: Formal Models and
Semantics, pages 365–458. Elsevier, Amsterdam, 1990.

[21] H.G. Molina, J.D. Ullman, and J. Widom. Database Systems:
The Complete Book. Prentice Hall, 2002.

[22] F. Dang Ngoc. Validation de documents XML contenant des
appels de services. Master’s thesis, CNAM, 2002. DEA SIR
(in French).

[23] Oracle XML Developer’s Kit for Java.
http://otn.oracle.com/tech/xml/.

[24] The PHP Hypertext Preprocessor. http://www.php.net.
[25] T. Ozsu and P. Valduriez. Principles of Distributed Database

Systems, 2nd Edition. Prentice-Hall, 1999.
[26] Universal Description, Discovery, and Integration of

Business for the Web (UDDI). http://www.uddi.org.
[27] The W3C Web Services Activity.

http://www.w3.org/2002/ws.
[28] The Xerces Java Parser. http://xml.apache.org/xerces-j/.
[29] The W3C XML Activity. http://www.w3.org/XML.
[30] Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms

for Materialized View Design in Data Warehousing
Environment. In The VLDB Journal, pages 136–145, 1997.

[31] Yue Zhuge, Héctor Garcı́a-Molina, Joachim Hammer, and
Jennifer Widom. View maintenance in a warehousing
environment. In Proc. of ACM SIGMOD, pages 316–327,
1995.


	page1: 289
	page2: 290
	page3: 291
	page4: 292
	page5: 293
	page6: 294
	page7: 295
	page8: 296
	page9: 297
	page10: 298
	page11: 299
	page12: 300


