
Formal semantics and analysis of object queries

G.M. Bierman
University of Cambridge Computer Laboratory

J.J. Thomson Avenue
Cambridge, CB3 0DF. UK.

gmb@cl.cam.ac.uk

ABSTRACT
Modern database systems provide not only powerful data
models but also complex query languages supporting pow-
erful features such as the ability to create new database ob-
jects and invocation of arbitrary methods (possibly written
in a third-party programming language).

In this sense query languages have evolved into power-
ful programming languages. Surprisingly little work exists
utilizing techniques from programming language research
to specify and analyse these query languages. This pa-
per provides a formal, high-level operational semantics for
a complex-value OQL-like query language that can create
fresh database objects, and invoke external methods. We
define a type system for our query language and prove an
important soundness property.

We define a simple effect typing discipline to delimit the
computational effects within our queries. We prove that
this effect system is correct and show how it can be used to
detect cases of non-determinism and to define correct query
optimizations.

1. INTRODUCTION

“Database languages (‘query languages’) are noth-
ing but special-purpose programming languages.” [6]

Since Codd’s pioneering work, database systems have moved
beyond the simple relational data model and basic query lan-
guage. Modern data models typically support complex data
types, objects which are collected into classes, and notions
of subtyping. Likewise query languages have been extended
to include various features including object identity, object
creation, and method invocation. To this extent, we can see
that Date’s quote above is even more true now than when
he made it nearly twenty years ago.

Given that query languages are now essentially complex
programming languages, it is perhaps surprising to find that
the techniques and methodologies of the programming lan-
guages community do not find widespread use in the spec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

ification and analysis of query languages. This paper ap-
plies two dominant themes in current programming language
research—type systems and operational semantics—to the
study of an object query language and the problems of query
optimization.

We believe that a formal, mathematical approach is es-
sential to set a firm foundation for researchers, users and
implementors of complex query languages. Without such
mathematical precision it is very difficult, for example, to
assert correctness. For example, the ODMG [8, p.100] de-
fine a notion of least upper bound of two types in their object
model, and give an informal definition. However a few mo-
ment’s formality soon reveals that a least upper bound of
two types need not necessarily exist (because we have both
classes and interfaces)! We shall also see in a number of
places that another advantage for our formal approach is
that it allows us to consider the design space of various fea-
tures.

In this paper we pay particular attention to object-oriented
data models although our techniques apply equally well to
both relational and object-relational data models. We de-
fine a simple object data model that is essentially a fragment
of the ODMG object model. This model provides primi-
tive types and arbitrarily nested collection types, along with
classes, and supports single inheritance between classes.

We define a complex query language, broadly based on
ODMG OQL. This query language supports path expres-
sions, object creation, and (read-only) method invocation
amongst the more familiar features. Our language is similar
in spirit with IQL of Abiteboul and Kanellakis [1], although
it is different in detail. Moreover the primary concern in
their work is in the expressive power of IQL (in particu-
lar the implications of its ability to create new objects, see
also [7]).

We specify formally the type system for queries, and also
provide an operational semantics. This semantics defines
precisely the process of evaluation of a query, and is defined
recursively over the structure of the query. Given this op-
erational semantics we are able to prove the correctness of
our type system. As far as we are aware, no result of this
form exists for object query languages (in fact, the opposite
negative result has been asserted for ODMG OQL [2]).

We then turn our attention to reasoning about queries. In
particular we are concerned with formalizing when the two
queries should be considered equivalent, which is at the heart
of the optimization problem. Even given our relatively small
query language, we see that matters are subtle and compli-
cated. The chief complication is that iteration over sets is

non-deterministic—we can have no idea as to the order in
which elements are taken from a set. In the pure relational
world, this is not a problem as queries are purely declarative
and so the order of evaluation is irrelevant. However once we
add features familiar from object programming languages to
our query language things are much more complicated. For
example, consider the following query (written in a version
of OQL).

SELECT (if size(Fs)<1

then (new F(name:"Peter",pal:p)).name

else p.name)

FROM p in Ps;

This query assumes a simple class P of objects with just a
name attribute, whose extent is called Ps. We also have a
class F with attributes name and pal, whose extent is called
Fs. We shall assume initially there are no F objects and just
two P objects, one with name “Jack”, and the other “Jill”.

Unfortunately this query is observably non-deterministic!
The result of the query (and its side-effect on the extent of
class F) is different depending on the order in which the P

objects are considered.1 If we visit the “Jack” object first,
the result is the set {"Peter","Jill"}, otherwise the result
is the set {"Peter","Jack"}.

Another problem, and one often ignored, e.g. [5, 19], is
that method invocation may not terminate. For example,
consider the following query which is a variant of the one
above, where P objects now have a method loop that, as
the name suggests, does not terminate.

SELECT (if size(Fs)<1 and p.name="Jack"

then p.loop()

else new F(name:"Peter",pal:p)

FROM p in Ps;

We now have quite different non-deterministic behaviour:
the query terminates if we visit the “Jill” object first, but
fails to terminate if we visit the “Jack” object first.

To address these problems (and also to formulate correct
optimizations) we define an effect typing discipline for our
query language. Such typing disciplines, originally proposed
by Gifford and Lucassen [11], are used to delimit computa-
tional effects and have been used in a variety of program-
ming languages. For example, Java contains a simple effects
system where each method is labelled with the exceptions
it might raise. We define a simple effects system that an-
notates types with details of the extents that may be used
in the evaluation of the query. For example, the source of
the non-determinism in the examples above is that the inner
query both reads and updates the extent of the class F.

An advantage of our formal approach is that we can prove
that our effects system is correct with respect to our oper-
ational semantics. (In fact the proof is a rather straightfor-
ward structural induction.) Given this result we are able to
use our effects system to provably detect all cases of non-
determinism.

We conclude this paper by briefly considering database
support for method invocation. Using the formalism of op-
erational semantics, we are able to explore and delineate the
design space for method invocation support.

1This is clearly related to the update problem in SQL. How-
ever our solution is quite different. See §7 for further com-
parisons.

Contributions. In summary, the significant contributions
of this paper include: (1) The definition of an OQL-like
query language, IOQL, that incorporates comprehensions,
object identifiers, path expressions, object creation, and sim-
ple method invocation; (2) The formal definition of a type
system and operational semantics for IOQL; (3) A proof of
type soundness for IOQL; (4) The development of a type-
based effect system to infer database access and update be-
haviour of queries; (5) A proof of correctness for this anal-
ysis; and (6) The use of effects to detect non-determinism
and define correct optimizations.

2. DATA MODEL
In this section we define our data model which is strongly

influenced by ODMG ODL, although the techniques we em-
ploy could easily be applied to other complex-value data
models, including object-relational data models.

Our data model is a class-based object model. As in
ODL, we allow single-inheritance between classes, although
for simplicity we have not included interfaces. All objects
have a unique object identity (oid), and consist of internal
state comprising attributes, and a collection of methods. For
simplicity, we shall consider only read-only methods, simi-
lar to that provided by e.g. PREDATOR [22] or considered
in [15]. The impact of more sophisticated method support
is considered briefly in §5.

For example, here is a simple class definition of Employee
objects.

class Employee extends Person

(extent Employees)

{ attribute int EmpID;

attribute int GrossSalary;

attribute Manager UniqueManager;

int NetSalary (int TaxRate); }

This defines the Employee class as a subclass of Person.
Its extent is called Employees. It has three attributes and
one method. For simplicity we insist that all class defini-
tions explicitly state a superclass (we also assume a class
Object, which is the superclass of all classes). Two of the
attributes, EmpID and GrossSalary are integer values. The
third, UniqueManager, is an object-valued attribute. The
method NetSalary takes an integer argument and returns
an integer.

More formally we define the grammar for class definitions
as follows, where φ denotes valid types in our data model,
which are just class names and primitive types int and bool.

Class definition
cd ::= classC1 extends C2

(extent e)
{ad1 . . . adk
md1 . . .mdn}

Attribute definition
ad ::= attribute φ a;

Method definition
md ::= φ m (φ0 x0, . . . , φm xm);

An object schema is then a collection of class defini-
tions. Of course, not all collections of class definitions form
a valid object schema (e.g. we shouldn’t define the same
class twice). It is quite straightforward to define formally

the well-formedness conditions for a collection of class def-
initions, but we elide them from this short paper (they are
similar, for example, to those for Java [16]).

Note 1. The types allowed in class definitions have been
chosen so that they can represented precisely in our pre-
ferred method language, Java. As generic classes are not
available in Java yet, we can not represent the generic col-
lection type set(σ) precisely. Permitting types in the object
model that can not be represented precisely in the method
language leads to potential type insecurity [2].

3. IDEALIZED OBJECT QUERY LANGUAGE
In this section we define our query language. We first

define the syntax for the language, and then define its type
system, and finally define an operational semantics, which
provides a high-level specification of the dynamics of query
evaluation. We are then able to prove some properties of
our typed query language.

3.1 Syntax
Our Idealized Object Query Language, IOQL, is essen-

tially a core fragment of ODMG OQL. The main difference
is that we use a comprehension syntax for bulk process-
ing, rather than a select-from-where construct. (This is just
for ease of presentation, our techniques can be applied to
the whole of OQL without significant problems.) An IOQL
program consists of a sequence of definitions, followed by
a query. An IOQL definition is defined by the following
grammar:

Query definition
def ::= define d(x0 : σ0, . . . , xn : σn) as q;

Such a definition associates a name with a parameterized
query (thus definitions are non-recursive). We require that
the types of the parameters are given (we do not provide
type inference for definitions; this has been considered else-
where for ODMG OQL [23]).

IOQL queries are defined by the following grammar:

Query expression
q ::= i integer

| true | false booleans
| x identifier
| {q0, . . . , qk} set
| q1 sop q2 set ops
| q1 iop q2 int ops
| q1=q2 int equality
| q1==q2 object equality
| 〈l1 : q1, . . . , lk : qk〉 record
| q.l record access
| d(q0, . . . , qk) definition access
| size(q) set size
| (C)q cast
| q.a attribute access
| q.m(q0, . . . , qk) method invocation
| new C(a0 : q0, . . . , ak : qk) object creation
| if q1 then q2 else q3 conditional
| {q | cq0, . . . , cqk} comprehension

Comprehension qualifier
cq ::= q predicate

| x← q generator

We assume a countable set of identifiers, and assume for
convenience a number of designated subsets: record labels,
l, object attributes, a, definition identifiers, d, and extent
identifiers, e, and by convention these are never mixed up,
nor used as variables in generators, nor as parameters in
definitions.

To simplify our presentation we have only provided one
collection type, set, although we could have easily added
others (bags, lists, etc.), or even moved to a monoid set-
ting as proposed in [10] (although, as is noted, the monoid
setting can not model the whole of ODMG OQL, which is
one of our longer-term aims). However IOQL provides a
reasonably rich collection of types, including booleans, in-
tegers, classes, records as well as sets. (The type system is
presented formally in the next section.) We assume a collec-
tion, sop, of set operators, and a collection, iop, of integer
operations, although to save space in what follows we shall
consider only one candidate from each set, namely set union
(∪) and integer addition (+).

IOQL queries have a number of object-oriented features.
We can create new objects using the new expression. This
takes a number of arguments which are pairs of attribute
name and value—we insist (unlike the ODMG) that all at-
tributes are defined, and our type system will ensure that
they are correct. The expression returns a fresh oid, and
we assume that this object is included immediately in its
class extent. The size of a set can be checked using the size

expression. Given a query that denotes an object, we can
access an attribute, or invoke a method, using the familiar
‘dot’ notation. As we permit object-valued attributes, we
can thus form so-called path expressions, e.g. x.foo.bar.
Again our type system ensures correctness. We can cast a
query that denotes an object to its superclass. This is writ-
ten (C)q, and the type system will ensure that the query
q denotes an object of type C′ where C′ is a subclass of C.
Incorrect casting is detected by the type system.

Note 2. The ODMG [8, §4.8.2] suggest that OQL, like
Java, also permits downcasting, i.e. casting to a subclass.
However this is an inherently unsafe operation, and leads to
an insecure type system where, e.g. we can invoke methods
that are not supported by an object. This is handled in Java
by the exception mechanism. It is unclear that exceptions
are desirable in a general query language.

3.2 Type system
IOQL supports a complex type system, where types are

given by the following grammar:

IOQL type
σ ::= φ | set(σ) | 〈l1 : σ1, . . . , lk : σk〉

IOQL supports the types of the underlying data model
(bool, int and class types) as well as a single collection type,
set, and record types (which is the same as OQL’s struct
type except that we do not specify a name for the type).
Thus a conventional table can be represented as a set of
records.

The class definitions in an object schema specify a sub-
class hierarchy. When typing IOQL programs we assume
this subclass information in the form of a relation, which is
written extends. (For example, given the class definition
in §1 we would have Employee extends Person.)

Given this subclass relation, we can define a subtyping
relation on IOQL types, written σ ≤ σ′. This is given by
the following rules:

C extends C′

C ≤ C
′ σ ≤ σ

σ ≤ σ′ σ′ ≤ σ′′

σ ≤ σ′′

σ1 ≤ σ′1 . . . σk ≤ σ′k
〈l1 : σ1, . . . lk : σk〉 ≤ 〈l1 : σ′1, . . . lk : σ′k〉

Note 3. We have given a moderately straightforward defi-
nition of subtyping, matching that suggested by the ODMG.
It could easily be extended with other interesting features,
for example to allow width subtyping between records. Again
our formal specification makes it easy to investigate such al-
ternatives.

In the rest of this subsection we provide typing judge-
ments for IOQL programs. Typing judgements are logical
statements that are written Γ ` X : Y , which is intended
to mean that given assumptions Γ, X has type Y . We will
present rules for forming valid judgements about IOQL pro-
grams, definitions and queries, and to aid readability we
annotate the turnstile accordingly. The form of the typing
environment Γ varies depending on the type system being
defined. One part of the typing environment is defined by
the object schema: we write E to denote a partial function
from extent names to their class (thus given the example in
§1, E will be the function {Employees 7→ Employee}).

First let us consider IOQL definitions. Definitions are
clearly functions, and we write function types thus: ~σ → σ′,
where ~σ is a sequence of types. A definition typing judge-
ment is written E;D `def def : ~σ → σ′, where D is a partial
function that maps the previously defined definition iden-
tifiers to their types. The rule for forming valid definition
typing judgements is as follows:

E;D;x0 : σ0, . . . , xk : σk `ioql q : σ′

E;D `def define f(x0 : σ0, . . . , xk : σk) as q : σ0, . . . , σk → σ′

A query typing judgement is written E;D;Q `ioql q : σ,
where E and D are as before, and Q is a partial function
that maps the free identifiers of the query q to their types.

The rules for forming valid query typing judgements are
given in Figure 1. For some of the rules we make use of
auxiliary functions, atype, atypes and mtype. These func-
tions are generated by the object schema. The first takes
a class name and an attribute and returns that attribute’s
type, the second takes a class name and returns a list of all
its attributes with their type, and the third takes a class
name and a method, and returns the type of that method
(which is also a function type).2

Given these two systems, we can finally define the rule for
forming a valid program typing judgement, which is written
E `prog def 0 ...def k q : σ. (We have used a little shorthand
here, where the function types are abbreviated as τi and
def i has been expanded to define fi(~xi) as qi.)

2The mtype function is actually slightly more complicated
in that it has to handle method inheritance and overriding.
We elide the details in this short paper.

E; ∅ `def define f0(~x0) as q0 : τ0
E; f0 : τ0 `def define f1(~x1) as q1 : τ1
...
E; f0 : τ0, ..., fk−1 : τk−1 `def define fk(~xk) as qk : τk
E; f0 : τ0, ..., fk : τk; ∅ `ioql q : σ

E `prog def 0...def k q : σ

Note 4. Our type system attempts to reflect the informal
intentions of the ODMG OQL type system. Others, e.g. [21],
have suggested quite different type systems. Whilst inter-
esting these type systems are radically different from those
existing in programming languages, and it is unclear how
they will interact with arbitrary method calls. For example,
our type system combines well with the type system of Java
and other object-oriented programming languages.

3.3 Operational Semantics
In this section we give a precise, mathematical specifica-

tion of the dynamic behaviour of IOQL queries.
There are a number of ways of presenting the dynam-

ics of queries. We shall use structural operational seman-
tics, or just operational semantics. This is a popular tech-
niques in the programming language community, and has
been successfully used to specify, for example, the entirety
of SML [18] and significant portions of MSIL, Microsoft’s
bytecode language for .NET [13].

One presentation of an operational semantics is based
on normalization (“big-step”), but we shall follow the ap-
proach of [25] and use an operational semantics based on
reduction (“single-step”). This has the advantage of both
making proofs simpler, and as we shall see makes the non-
deterministic nature of query evaluation explicit.

First we define a subset of queries that are values, i.e.
expressions for which no further reduction is possible. If a
query terminates, then it will return a value. Values are
defined by the following grammar. (Note this requires the
addition of oids to the grammar of queries. For simplicity
we’ll assume that the set of oids is a designated subset of
the program identifiers. Thus their types will be contained
in the typing environment Q.)

Query value
v ::= i integer

| true | false booleans
| {v0, ..., vk} set
| 〈l1 : v1, ..., lk : vk〉 record
| o oid

Queries are evaluated given a Definition Environment (DE),
Extent Environment (EE) and an Object Environment (OE)
(this is essentially the heart of the database!). DE is a func-
tion that maps definition identifiers to the definitions them-
selves. We use λ-notation to represent definitions; thus a
definition define f(x : σ) as q is represented as λx : σ.q (we
will often drop the types of the bound variables to aid pre-
sentation). The extent environment maps an extent iden-
tifier to a pair containing the class name and a set of oids
which are the current objects in that extent. The object
environment, OE , is a function that maps an oid to the
runtime representation of that object. This representation
contains the class of the object and the values of its at-
tributes, and is written e.g. �C, a1 : v1, . . . , ak : vk�.

(Int)
E;D;Q `ioql i : int

(Bool)
E;D;Q `ioql true : bool

(Bool)
E;D;Q `ioql false : bool

(Id)
E;D;Q, x : σ `ioql x : σ

(Extent)
E, e : C;D;Q `ioql e : set(C)

E;D;Q `ioql e : set(σ)
(Size)

E;D;Q `ioql size(e) : int

E;D, d : σ′0, . . . , σ
′
k → σ;Q `ioql q0 : σ0 · · · E;D, d : σ′0, . . . , σ

′
k → σ;Q `ioql qk : σk ∀i ∈ 0..k.σi ≤ σ′i

(Def)
E;D, d : σ′0, . . . , σ

′
k → σ;Q `ioql d(q0, . . . , qk) : σ

E;D;Q `ioql q0 : σ0 · · · E;D;Q `ioql qk : σk ∀i ∈ 0..k.σi ≤ σ
(Set)

E;D;Q `ioql {q0, . . . , qk} : set(σ)

E;D;Q `ioql q1 : set(σ) E;D;Q `ioql q2 : set(σ)
(Union)

E;D;Q `ioql q1 ∪ q2 : set(σ)

E;D;Q `ioql q1 : int E;D;Q `ioql q2 : int
(Add)

E;D;Q `ioql q1 + q2 : int

E;D;Q `ioql q1 : int E;D;Q `ioql q2 : int
(Int eq)

E;D;Q `ioql q1=q2 : bool

E;D;Q `ioql q1 : C E;D;Q `ioql q2 : C′

(Obj eq)
E;D;Q `ioql q1==q2 : bool

E;D;Q `ioql q1 : σ1 · · · E;D;Q `ioql qk : σk
(Rec)

E;D;Q `ioql 〈l1 : q1, . . . , lk : qk〉 : 〈l1 : σ1, . . . , lk : σk〉
E;D;Q `ioql q : 〈l1 : σ1, . . . , lk : σk〉 i ∈ 1..k

(Rec access)
E;D;Q `ioql q.li : σi

E;D;Q `ioql q1 : bool E;D;Q `ioql q2 : σ2 E;D;Q `ioql q3 : σ3 σ2 ≤ σ and σ3 ≤ σ
(Cond)

E;D;Q `ioql if q1 then q2 else q3 : σ

E;D;Q `ioql q : C atype(C, a) = φ
(Attribute)

E;D;Q `ioql q.a : φ

E;D;Q `ioql q : C C ≤ C
′

(Upcast)
E;D;Q `ioql (C′)q : C′

E;D;Q `ioql q0 : φ0 · · · E;D;Q `ioql qk : φk atypes(C) = [a0 : φ′0, . . . , ak : φ′k] ∀i ∈ 0..k.φi ≤ φ′i
(New)

E;D;Q `ioql new C(a0 : q0, . . . , ak : qk) : C

E;D;Q `ioql q : C
E;D;Q `ioql q0 : φ0 · · · E;D;Q `ioql qk : φk mtype(C,m) = φ′0, . . . , φ

′
k → φ ∀i ∈ 0..k.φi ≤ φ′i

(Method)
E;D;Q `ioql q.m(q0, . . . , qk) : φ

E;D;Q `ioql q : σ
(Comp1)

E;D;Q `ioql {q | } : set(σ)

E;D;Q `ioql q2 : set(σ) E;D;Q, x : σ `ioql {q1 | −→cq} : σ′

(Comp2)
E;D;Q `ioql {q1 | x← q2,

−→cq} : σ′

E;D;Q `ioql q2 : bool E;D;Q `ioql {q1 | −→cq} : σ′

(Comp3)
E;D;Q `ioql {q1 | q2,−→cq} : σ′

Figure 1: Type system for IOQL queries

A single reduction step is written DE ` EE ,OE , q →
EE ′,OE ′, q′, where EE , OE and q are the extent environ-
ment, object environment and query before the step, and
EE ′, OE ′ and q′ their values after. (For convenience we ab-
breviate a number of the steps DE ` EE ,OE , q → q′, which
is shorthand for DE ` EE ,OE , q → EE ,OE , q′.)

The operational semantics of IOQL are defined in Fig-
ure 2. An evaluation context, E , is a query with a single hole,
written •, in place of the next subexpression to be evaluated.
The result of placing a query q in that hole is written E [q].
Evaluation contexts are defined so that they specify the or-
der of evaluation, e.g. unions are evaluated left-to-right, and
arguments to definitions/methods are evaluated left-to-right
and are call-by-value. The fundamental property of evalu-
ation contexts is that any given query is either a value, or
can be uniquely decomposed into a evaluation context and
a subexpression that will match a reduction step. We write
q[x := v] for the substitution of value v for all free instances
of identifier x in query q.

Along with the single reduction steps, there is a rule,
(Context), which forms the contextual closure of reduction
with respect to evaluation contexts. We define � to be the
reflexive, transitive closure of the → relation.

Let us look at a couple of the reduction steps in detail.
The (New) rule generates a fresh oid, which is the result
of the reduction, along with appropriately updated extent
and object environments. The (Method) rule makes use of
an mbody function which returns the code for the method—
as with definitions, we represent methods using λ-notation.
We have assumed an auxiliary relation ⇓ which is used to
denote the (deterministic) evaluation of the method body:
it relates method code along with the object environment
to a final value (e.g. [20] gives a similar such relation for
Java). The exact definition of this relation is not important
for now; what is important is that the method body does
not update the object environment—methods are read-only.

The other rule of interest is (ND comp): this explicitly
embodies the non-deterministic nature of query evaluation.
An element is picked at random from the generator set. As
evaluation of a union expression is explicitly left-to-right (by
the definition of evaluation contexts), this means that this
element really is used first.

Note 5. We have explicitly made IOQL a call-by-value
language. The ODMG is vague on this issue. Fegaras and
Maier [10] assume a call-by-name semantics (their optimiza-
tions are invalid for a call-by-value semantics) but note that
this is inefficient and suggest a call-by-need implementation,
although no analysis is made of the runtime implications of
this suggestion. Moreover as most programming languages
are call-by-value, it is not clear how this suggestion would
interact with method invocation.

3.4 Properties
In this section we consider some properties of our type

system and operational semantics of IOQL. In particular
we prove the type system correct—as we have noted be-
fore, it has been claimed that this property fails for ODMG
OQL [2].

Our principal result is a type soundness property or, more
informally, that well-typed queries “do not go wrong”. As
demonstrated by Wright and Felleisen [25], the essence of
this property is contained in two important theorems: the
subject reduction theorem and the progress theorem.

We shall only consider closed queries, that is queries whose
only free variables are definition or extent identifiers, or
oids. We need to relate the runtime environments, DE ,EE
and OE with the typing environments E, D and Q. We
shall elide the details here, as they are straightforward but
rather lengthy to state formally. We shall write E,D,Q `
EE ,DE ,OE , q : σ to mean that the query, runtime and typ-
ing environments correspond correctly.

We can now prove the subject reduction theorem, i.e. re-
ductions preserve types (up to subtyping).

Theorem 1 (Subject reduction).
If E,D,Q ` EE ,DE ,OE , q : σ and DE ` EE ,OE , q →
EE ′,OE ′, q′ then ∃Q′ ⊇ Q.E,D,Q′ ` EE ′,DE ,OE ′, q′ : σ′

where σ′ ≤ σ.

The proof is by case analysis on the reduction step, where we
make frequent use of the following lemma (which is proved
by induction on the first typing derivation).

Lemma 1 (Substitution). If E;D;Q, x : σ `ioql q : τ
and E;D;Q `ioql v : σ′ for some σ′ ≤ σ then ∃τ ′ such that
E;D;Q `ioql q[x := v] : τ ′ and τ ′ ≤ τ .

Next we show that well-typed expressions that are not
values can always make a reduction step.

Theorem 2 (Progress).
If E,D,Q ` EE ,DE ,OE , q : σ then either q is a value or
∃EE ′,OE ′, q′ such that DE ` EE ,OE , q → EE ′,OE ′, q′.

The proof is by induction on the typing derivation of the
query. From these two theorems, it is quite easy to deduce a
type soundness theorem for IOQL, which essentially states
that well-typed queries “do not go wrong”, i.e. a query can
never get into a state where it is not a value and can not
reduce further.

Theorem 3 (Type soundness of IOQL).
If E,D,Q ` EE ,DE ,OE , q : σ then it is never the case that
DE ` EE ,OE , q −� EE ′,OE ′, q′ such that q′ is not a value
and ¬∃q′′,EE ′′,OE ′′.DE ` EE ′,OE ′, q → EE ′′,OE ′′, q′′.

Let us call an IOQL query functional if it contains no
instance of the new expression (and all of the definitions it
invokes are functional). It should be clear from the oper-
ational semantics that any potentiality for observable non-
determinism has been removed.

Theorem 4 (Functional queries).
If E,D,Q ` DE ,EE ,OE , q : σ and q is functional, then
∀EE ′,EE ′′,OE ′,OE ′′, v′, v′′ such that DE ` EE ,OE , q −�
EE ′,OE ′, v′ and DE ` EE ,OE , q −� EE ′′,OE ′′, v′′ it is
the case that EE ′ = EE ′′,OE ′ = OE ′′ and v = v′.

4. EFFECT ANALYSIS
IOQL queries are permitted to side-effect the database:

they can create fresh objects, which are then stored in the
extent. In §1 we saw that this can introduce non-determinism
in query evaluation. However side-effects also impact on
query optimization. Assume a database with just one Person
object (with say name “Jack” and address “Utah”) and one
Employee object (with say name “Jill” and address “NYC”),
where Employee is a subclass of Person. Consider the fol-
lowing query.

Evaluation context

E ::= • | {~v, E , ~q} | E + q | v + E | E ∪ q | v ∪ E | E=q | v=E | E==q | v==E | 〈 ~l : v, E , ~l : q〉 | E .l | d(~v, E , ~q) | size(E)
| (C)E | E .a | E .m(~q) | v.m(~v, E , ~q) | new C(~a : v, E , ~a : q) | if E then q1 else q2 | {q | E , ~cq} | {q | x← E , ~cq} | {E | }

Reduction steps

(Definition) DE ` EE ,OE , d(~v)→ q[~x := ~v] where DE(d) = λ~x.q

(Extent) DE ` EE ,OE , e→ v where EE(e) = (C, v)

(Size) DE ` EE ,OE , size({v0, . . . , vk})→ k

(Union) DE ` EE ,OE , v1 ∪ v2 → v3 where v3 = v1 ∪ v2

(Addition) DE ` EE ,OE , i1 + i2 → i3 where i3 = i1 + i2

(Int eq) DE ` EE ,OE , i1=i2 → b where b
def
=

{
true if i1 = i2
false otherwise

(Object eq) DE ` EE ,OE , o1==o2 → b where b
def
=

{
true if o1 = o2

false otherwise

(Cond1) DE ` EE ,OE , if true then q1 else q2 → q1

(Cond 2) DE ` EE ,OE , if false then q1 else q2 → q2

(Record) DE ` EE ,OE , 〈l1 : v1, . . . , lk : vk〉.li → vi 1 ≤ i ≤ k

(Attribute) DE ` EE ,OE , o.ai → vi where OE(o) =�C, a1 : v1, . . . , ak : vk�
and 1 ≤ i ≤ k

(Upcast) DE ` EE ,OE , (C′)o→ o where OE(o) =�C, . . .� and C ≤ C′

(New) DE ` EE ,OE , new C(a0 : v0, . . . , ak : vk)→ EE ′,OE ′, o where fresh o /∈ dom(OE)

and OE ′
def
= OE [o 7→�C, a0 : v0, . . . , ak : vk�]

and EE(e) = (C, v)

and EE ′
def
= EE [e 7→ (C, v ∪ {o})]

(Method) DE ` EE ,OE , o.m(~v)→ v where OE(o) =�C, . . .�
and mbody(C,m) = λ~x.body
and OE , body [~x := ~v, this := o] ⇓ v

(Empty comp) DE ` EE ,OE , {v | } → {v}

(True comp) DE ` EE ,OE , {q | true,−→cq} → {q | −→cq}

(False comp) DE ` EE ,OE , {q | false,−→cq} → { }

(Triv comp) DE ` EE ,OE , {q | x← { },−→cq} → { }

(ND comp) DE ` EE ,OE , {q | x← {v1, . . . , vk},−→cq} →
({q | −→cq}[x := vi]) ∪ {q | x← vrest,

−→cq} for some i ∈ 1..k and vrest
def
= {v1, . . . , vk} − vi

DE ` EE ,OE , q → EE ′,OE ′, q′

(Context)
DE ` EE ,OE , E [q]→ EE ′,OE ′, E [q′]

Figure 2: Operational semantics for IOQL

select new Person(name:e.name,address:"Utah")

from e in Employees

intersect

select p from p in Persons

where p.address="Jill" and p.name="Utah";

There is no non-determinism in this query: the only result
possible is the singleton set containing the “Jill”, “Utah” ob-
ject. However a common query optimization is to commute
the order of set intersections. Unfortunately this “optimiza-
tion” would result in a query that returns a different result:
the empty set!

Again the problem is the side-effecting behaviour of the
query. To address these problems we shall define an effects
system, which is an adjunct to the type system and essen-
tially delimits the computational effects of a query. Effects
systems have been used in a variety of programming lan-
guages, e.g. [14].

We define a new typing relation E;D;Q `ioql q : σ ! ε to
mean that not only does q yield a value of type σ (or some
subtype thereof), but that it has effects delimited by ε. In
our system we shall be interested in delimiting two compu-
tational effects: R(C) is the effect that the extent of class C

has been read, and A(C) is the effect that the extent of class
C has been added to (by the creation of a new C object).

Formally an effect is either the empty effect, written ∅,
the union of two effects, or the R(C) or A(C) effect. Equal-
ity of effects is modulo the assumption that ∪ is associa-
tive, commutative, idempotent, and has ∅ as a unit. As a
shorthand we sometimes treat effects as sets and write e.g.
R(C) ∈ ε. A subeffecting relation, ⊆, is naturally induced:

ε ⊆ ε′ def
= ∃ε′′.ε′ = ε ∪ ε′′.

Types are as before except that the function types used to
represent definitions now come labelled with the effect that

occurs when that definition is used. For example, int
R(C)−→ int

denotes a definition which takes an integer argument, and
returns an integer value and has the side effect that should
it terminate it may read the extent of class C.

The effects system for IOQL is given in Figure 3. Let
us consider a couple of these rules in detail. The (Extent)
rule generates the Read effect, and the (New) generates the
Add effect. In the (Method) rule we assume that meth-
ods have also been typed using an effects systems, and that
the method’s effect, ε′′, is included in the overall effect of the
method. Of course, we have assumed that methods both can
not read the extents and can not side-effect the database,
so the value of ε′′ will always be ∅. (If we allow more so-
phisticated methods, then this may not necessarily be true,
see §5.)

Finally we have included an extra rule, (Does). This pro-
vides a notion of subeffect, that is given a derivation that
a query has an effect ε we can safely conclude that it has
a less precise effect ε′. Two properties of the effects system
are immediate:

Lemma 2. 1. For all values v, E;D;Q `ioql v : σ ! ∅.
2. If E;D;Q, x : σ `ioql q : τ ! ε and E;D;Q `ioql v : σ′ ! ∅

where σ′ ≤ σ then ∃τ ′, ε′ such that E;D;Q `ioql q[x :=
v] : τ ′ ! ε and τ ′ ≤ τ , ε′ ⊆ ε.

We can instrument the IOQL operational semantics so
that it traces the effects of query evaluation. A reduction
step is now written DE ` EE ,OE , q

ε−→ EE ′,OE ′, q′ where

ε is the effect. The instrumented semantics for IOQL is given
in Figure 4. (The evaluation contexts are as in Figure 2.)

Again we define � to be the reflexive, transitive closure
of the instrumented reduction relation. For example, tran-
sitivity is given by the following rule.

DE ` EE ,OE , q
ε1−� EE ′,OE ′, q′

DE ` EE ′,OE ′, q′
ε2−� EE ′′,OE ′′, q′′

(Transitivity)

DE ` EE ,OE , q
ε1∪ε2−� EE ′′,OE ′′, q′′

The main result in this section is correctness of our effects
system. As before we need to relate the typing and runtime
environments, which we write E,D,Q ` EE ,DE ,OE , q : σ!ε.
As in §3.4, correctness is given by two theorems. First that
our instrumented semantics both preserves types and also is
consistent with the effects.

Theorem 5 (Subject reduction).

If E,D,Q ` EE ,DE ,OE , q : σ ! ε and DE ` EE ,OE , q
ε′−→

EE ′,OE ′, q′ then ∃Q′ ⊇ Q.E,D,Q′ ` EE ′,DE ,OE ′, q′ : σ′!ε
where σ′ ≤ σ and ε′ ⊆ ε.

(Note that the inferred effect may be less precise than
actual runtime effect.)

Theorem 6 (Progress).
If E,D,Q ` EE ,DE ,OE , q : σ ! ε then either q is a value or

∃EE ′,OE ′, q′, ε′ such that DE ` EE ,OE , q
ε′−→ EE ′,OE ′, q′.

We can now consider how to use the effects information.
We saw in §1 that object creation can result in non-determinism.
Let us consider this in detail, with the following example

{q | x← {v1, . . . , vk}, q′}
In essence this query reduces to an arbitrarily ordered union
of the k subqueries: {q|q′}[x := v1], ..., {q|q′}[x := vk]. Non-
determinism will occur if there is interference between these
subqueries. Interference occurs if there is both a read and
an add to a common extent. If there is no interference, then
the ordering of the subqueries clearly does not matter, and
the query will be deterministic (up to a possible bijection
on the oids).

We can formalise this idea by considering a new type sys-
tem, written `′, which is identical to that given in Figure 3
except that the (Comp2) rule is replaced by the following

E;D;Q `′ioql q2 : set(σ) ! ε2
E;D;Q, x : σ `′ioql {q1 | −→cq} : σ′ ! ε1 nonint(ε1)

(Comp2)
E;D;Q `′ioql {q1 | x← q2,

−→cq} : σ′ ! ε1 ∪ ε2
where the non-interference predicate is defined as follows.

nonint(ε)
def
= ∀R(C) ∈ ε.¬∃A(C) ∈ ε

Theorem 7 (Determinism).
If E,D,Q `′ EE ,DE ,OE , q : σ ! ε then ∀v, v′′ such that
DE ` EE ,OE , q −� EE ′,OE ′, v and DE ` EE ,OE , q −�
EE ′′,OE ′′, v′ ∃ a bijection ∼ such that EE ′ ∼ EE ′′,OE ′ ∼
OE ′′ and v ∼ v′.

This is proved by a careful analysis of the possible reduc-
tion paths. The key observation is that if a query does not
read an extent then its evaluation is invariant under remov-
ing those objects from the object environment, or adding

(Int)
E;D;Q `ioql i : int ! ∅

(Bool)
E;D;Q `ioql true : bool ! ∅

(Bool)
E;D;Q `ioql false : bool ! ∅

(Id)
E;D;Q, x : σ `ioql x : σ ! ∅

(Extent)
E, e : C;D;Q `ioql e : set(C) ! R(C)

E;D;Q `ioql q : set(σ) ! ε
(Size)

E;D;Q `ioql size(q) : int ! ε

E;D;Q `ioql q0 : σ0 ! ε0 · · · E;D;Q `ioql qk : σk ! εk d : σ′0, . . . , σ
′
k

ε→ σ ∈ D ∀i ∈ 0..k.σi ≤ σ′i
(Def)

E;D;Q `ioql d(q0, . . . , qk) : σ ! ε0 ∪ · · · ∪ εk ∪ ε

E;D;Q `ioql q0 : σ0 ! ε0 · · · E;D;Q `ioql qk : σk ! εk ∀i ∈ 0..k.σi ≤ σ
(Set)

E;D;Q `ioql {q0, . . . , qk} : set(σ) ! ε0 ∪ · · · ∪ εk

E;D;Q `ioql q1 : set(σ) ! ε1 E;D;Q `ioql q2 : set(σ) ! ε2
(Union)

E;D;Q `ioql q1 ∪ q2 : set(σ) ! ε1 ∪ ε2

E;D;Q `ioql q1 : int ! ε1 E;D;Q `ioql q2 : int ! ε2
(Add)

E;D;Q `ioql q1 + q2 : int ! ε1 ∪ ε2

E;D;Q `ioql q1 : int ! ε1 E;D;Q `ioql q2 : int ! ε2
(Int eq)

E;D;Q `ioql q1=q2 : bool ! ε1 ∪ ε2
E;D;Q `ioql q1 : C ! ε1 E;D;Q `ioql q2 : C′ ! ε2

(Obj eq)
E;D;Q `ioql q1==q2 : bool ! ε1 ∪ ε2

E;D;Q `ioql q1 : σ1 ! ε1 · · · E;D;Q `ioql qk : σk ! εk
(Rec)

E;D;Q `ioql 〈l1 : q1, . . . , lk : qk〉 : 〈l1 : σ1, . . . , lk : σk〉 ! ε1 ∪ · · · ∪ εk

E;D;Q `ioql q : 〈l1 : σ1, . . . , lk : σk〉 ! ε i ∈ 1..k
(Rec access)

E;D;Q `ioql q.li : σi ! ε

E;D;Q `ioql q1 : bool ! ε1 E;D;Q `ioql q2 : σ2 ! ε2 E;D;Q `ioql q3 : σ3 ! ε3 σ2 ≤ σ and σ3 ≤ σ
(Cond)

E;D;Q `ioql if q1 then q2 else q3 : σ ! ε1 ∪ ε2 ∪ ε3

E;D;Q `ioql q : C ! ε atype(C, a) = φ
(Attribute)

E;D;Q `ioql q.a : φ ! ε

E;D;Q `ioql q : C ! ε C ≤ C
′

(Upcast)
E;D;Q `ioql (C′)q : C′ ! ε

E;D;Q `ioql q0 : φ0 ! ε0 · · · E;D;Q `ioql qk : φk ! εk atypes(C) = [a0 : φ′0, . . . , ak : φ′k] ∀i ∈ 0..k.φi ≤ φ′i
(New)

E;D;Q `ioql new C(a0 : q0, . . . , ak : qk) : C ! ε0 ∪ · · · ∪ εk ∪ A(C)

E;D;Q `ioql q : C ! ε′

E;D;Q `ioql q0 : φ0 ! ε0 · · · E;D;Q `ioql qk : φk ! εk mtype(C,m) = φ′0, . . . , φ
′
k
ε′′→ φ ∀i ∈ 0..k.φi ≤ φ′i

(Method)
E;D;Q `ioql q.m(q0, . . . , qk) : φ ! ε0 ∪ · · · ∪ εk ∪ ε′ ∪ ε′′

E;D;Q `ioql q : σ ! ε
(Comp1)

E;D;Q `ioql {q | } : set(σ) ! ε

E;D;Q `ioql q2 : set(σ) ! ε2 E;D;Q, x : σ `ioql {q1 | −→cq} : σ′ ! ε1
(Comp2)

E;D;Q `ioql {q1 | x← q2,
−→cq} : σ′ ! ε1 ∪ ε2

E;D;Q `ioql q2 : bool ! ε2 E;D;Q `ioql {q1 | −→cq} : σ′ ! ε1
(Comp3)

E;D;Q `ioql {q1 | q2,−→cq} : σ′ ! ε1 ∪ ε2
E;D;Q `ioql q : σ ! ε ε ⊆ ε′

(Does)
E;D;Q `ioql q : σ ! ε′

Figure 3: Effect type system for IOQL

(Definition) DE ` EE ,OE , d(~v)
∅−→ q[~x := ~v] where DE(d) = λ~x.q

(Extent) DE ` EE ,OE , e
R(C)−→ v where EE(e) = (C, v)

(Size) DE ` EE ,OE , size({v0, . . . , vk}) ∅−→ k

(Union) DE ` EE ,OE , v1 ∪ v2
∅−→ v3 where v3 = v1 ∪ v2

(Addition) DE ` EE ,OE , i1 + i2
∅−→ i3 where i3 = i1 + i2

(Int eq) DE ` EE ,OE , i1=i2
∅−→ b where b

def
=

{
true if i1 = i2
false otherwise

(Object eq) DE ` EE ,OE , o1==o2
∅−→ b where b

def
=

{
true if o1 = o2

false otherwise
and OE(o1) =�C1, . . .�
and OE(o2) =�C2, . . .�

(Cond1) DE ` EE ,OE , if true then q1 else q2
∅−→ q1

(Cond 2) DE ` EE ,OE , if false then q1 else q2
∅−→ q2

(Record) DE ` EE ,OE , 〈l1 : v1, . . . , lk : vk〉.li ∅−→ vi 1 ≤ i ≤ k

(Attribute) DE ` EE ,OE , o.ai
∅−→ vi where OE(o) =�C, a1 : v1, . . . , ak : vk�

and 1 ≤ i ≤ k

(Upcast) DE ` EE ,OE , (C′)o
∅−→ o where OE(o) =�C, . . .� and C ≤ C′

(New) DE ` EE ,OE , new C(a0 : v0, . . . , ak : vk)
A(C)−→ EE ′,OE ′, o where fresh o /∈ dom(OE)

and OE ′
def
= OE [o 7→�C, a0 : v0, . . . , ak : vk�]

and EE(e) = (C, v)

and EE ′
def
= EE [e 7→ (C, v ∪ {o})]

(Method) DE ` EE ,OE , o.m(~v)
∅−→ v where OE(o) =�C, . . .�

and mbody(C,m) = λ~x.body
and OE , body [~x := ~v, this := o] ⇓ v ! ε

(Empty comp) DE ` EE ,OE , {v | } ∅−→ {v}

(True comp) DE ` EE ,OE , {q | true,−→cq} ∅−→ {q | −→cq}

(False comp) DE ` EE ,OE , {q | false,−→cq} ∅−→ { }

(Triv comp) DE ` EE ,OE , {q | x← { },−→cq} ∅−→ { }

(ND comp) DE ` EE ,OE , {q | x← {v1, . . . , vk},−→cq} ∅−→
({q | −→cq}[x := vi]) ∪ {q | x← vrest,

−→cq} for some i ∈ 1..k and vrest
def
= {v1, . . . , vk} − vi

DE ` EE ,OE , q
ε−→ EE ′,OE ′, q′

(Context)
DE ` EE ,OE , E [q]

ε−→ EE ′,OE ′, E [q′]

Figure 4: Instrumented operational semantics for IOQL

more objects to that extent. (The bijection is necessary to
handle the fresh oid generation.)

We can also use the effect information to enable query
optimizations. As we saw at the start of this section, com-
mon optimizations such as commutativity of set intersection
or union are no longer straightforwardly applicable. How-
ever we can see that if the two components of the com-
mutative binary set operators do not interfere, then it is
safe to commute their order. Again consider a new type
system `′′ where e.g. the (Union) rule ensures a check of
non-interference.

Theorem 8 (Safe commutativity).
If E,D,Q `′′ EE ,DE ,OE , q ∪ q′ : σ ! ε then ∀v such that
DE ` EE ,OE , q ∪ q′ −� EE ′,OE ′, v, then ∃v′ and a bijec-
tion ∼ such that DE ` EE ,OE , q′∪q −� EE ′′,OE ′′, v′ and
EE ′ ∼ EE ′′,OE ′ ∼ OE ′′ and v ∼ v′.

5. EXTENDING IOQL WITH METHODS
Thus far IOQL can only invoke read-only methods. Clearly

there is a design-space where we can vary to what degree the
method language can access and side-effect the database.
One advantage of the techniques employed in this paper is
that it is quite easy to formally specify the various options
in this design space.

For example, consider an extreme point in this design
space where we allow methods to read, add to and update
the database. We should then specify an operational seman-
tics for the method language, which would take the form
EE ,OE , code ⇓ EE ′,OE ′, result , where EE and OE are the
extent and object environments, code is the method body,
and result is the result of executing the method body.

All that is then needed is a small change to the IOQL
semantics that models method invocation.

(Method) DE ` EE ,OE , o.m(~v)→ EE ′,OE ′, v
where OE(o) =�C, . . .�
and mbody(C,m) = λ~x.body
and EE ,OE , body [~x := ~v, this := o]

⇓ EE ′,OE ′, v
The point here is that the method body can update both

the extent and object environments.

Note 6. This semantics models ODMG OQL where queries
can invoke arbitrary side-effecting methods, which are writ-
ten in any one of the languages for which there is a binding.
(It is therefore perhaps a little misleading to suggest that
OQL is a functional language, c.f. [8, p.89]!)

In an extended version of this paper we detail a method
language that is a valid fragment of Java. We allow the
methods to read, add to and update the database. We prove
a type soundness property for the version of IOQL that can
invoke these Java methods.

6. RELATED WORK
In this section we briefly review other related work. We

divide this work into the three areas covered by this work:
type systems, semantics and update analysis.

6.1 Type systems
Alagić [2] considered aspects of the ODMG OQL type

system. He showed, by providing a counter-example, that

if collections are typed using a non-generic class type, e.g.
Set, then type soundness does not hold. (It is not clear to
us however that this is what the ODMG intended.) In this
paper, we prove that using generic literal types (e.g. set(σ))
for collections—perhaps what the ODMG intended—yields
a sound type system.

Riedell and Scholl [21] give type rules for a fragment of
ODMG OQL. Whilst interesting, their type system is quite
different from that proposed by the ODMG, and moreover,
is radically different from those used in conventional pro-
gramming languages. The resulting problematic issue of
inter-language working, and type checking method calls is
not addressed.

6.2 Formal semantics
When defining the “semantics” of a query language, other

authors typically provide a simple set-theoretic interpreta-
tion, e.g. [5]. Unfortunately, this approach does not work
if queries might not terminate: what denotation is given to
a non-terminating query? As most query languages provide
access to methods written in third-party programming lan-
guages, and checking for termination of code is undecidable,
this is a serious shortcoming. To handle non-termination,
one has to move from a set-theoretic setting to a domain-
theoretic setting [24]. Operational semantics requires much
less mathematical overheads than domain theory.

Fegaras [9] considered a query language that can update
database objects. However his objects are really SML-like
references; object features such as classes, subtyping and so
on are not supported. He defined a set-theoretic semantics
(again, avoiding the issue of non-termination) that simply
maps a query to the set of all possible answers. No consid-
eration was given to the dynamics of query evaluation.

The only use of operational semantics to define the dy-
namics of query evaluation that we are aware of is in the
draft definition of XQuery [26]. However this considers a
quite different data model, and defines a deterministic query
language (the iteration is over sequences).

6.3 Update analysis
A number of papers have considered the problem of non-

determinism resulting from combining queries and updates.
Andries et al. [3] consider the case of conflicts between a
set of queries that could update the database, and define
three classes of update independence. (Unfortunately, as
the authors observe, all three notions are undecidable in
general.) The main positive result in their paper is to show
that these notions are decidable for updates written in a
weak fragment of relational algebra. It is unclear how this
work can be applied to the object setting considered here,
and how it applies to potential non-termination. Moreover
we are interested in update languages that are more powerful
than weak fragments of the relational algebra.

Liefke and Davidson [17] present a detailed analysis of
queries written in an object-oriented language called CPL+,
that contains specific update primitives. It would be inter-
esting to see if their system could be proved correct with
respect to an operational semantics.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have applied some dominant themes in

programming language research: type systems and opera-
tional semantics, to a prototypical object query language.

We have proved a type soundness property for our language;
a property that has been claimed to fail for ODMG OQL.

Unlike other object query languages, we have included a
number of realistic features, including object identity, object
creation and invocation of methods that need not terminate.
In this rich setting we have seen that the dynamics of query
execution is subtle, and that our operational semantics can
aid reasoning.

To address issues such as non-determinism and query op-
timization we have defined an effects system. This is an
adjunct to the type system, that is trivial to implement,
and provides information about the computational effects
of a query. It is important to recall that this is a static,
compile-time analysis. This effect information can be used
to remove non-determinism and to help in formulating query
optimizations. It is perhaps worth pointing out that other
analyses could be used instead to infer similar information.
However, one advantage of the effects approach is that we
are able to establish correctness relatively easily.

Clearly this is preliminary work, and much more remains
to make this a viable technique to assist in building real-work
query compilers and optimizers. In future work we plan to
address query optimization more thoroughly, verifying the
optimizations suggested e.g. by Cluet and Moerkette [5] and
Fegaras and Maier [10]. We also plan to develop notions
of query equivalence based upon “contextual equivalence”,
which is a common notion for programming languages [12].

We conclude by pointing out that whilst this paper has
considered only object database systems, these techniques
readily apply to other paradigms, including object-relational.
In their compelling analysis, Carey and deWitt [4] iden-
tify client integration as an important research challenge for
future-generation database systems. In our opinion, tighter
integration between programming languages and query lan-
guages, along with full object querying and navigation, re-
quires precise, formal specification to enable the exploration
of the design space and identification of options to be imple-
mented. We have shown in this paper that some of the tech-
niques common in the analysis of programming languages
can be applied successfully to query languages. In future
work we plan to analyse and formally specify the object
model of SQL:1999.

Acknowledgements. I am grateful to Matthew Parkin-
son for many discussions about objects, and the referees for
suggesting significant improvements to the paper.

8. REFERENCES
[1] S. Abiteboul and P. Kanellakis. Object identity as a

query language primitive. Journal of the ACM,
45(5):798–842, 1999.

[2] S. Alagić. Type-checking OQL queries in the ODMG
type systems. ACM TODS, 24(3):319–360, 1999.

[3] M. Andries, L. Cabibbo, J. Paredaens, and J. Van den
Bussche. Applying an update method to a set of
receivers. ACM TODS, 26(1):1–40, 2001.

[4] M. Carey and D. DeWitt. Of objects and databases:
A decade of turmoil. In Proceedings of VLDB, 1996.

[5] S. Cluet and G. Moerkotte. Nested queries in object
bases. In Proceedings of Workshop on Database
Programming Languages, pages 226–242, 1993.

[6] C.J. Date. Some principles of good language design.
ACM SIGMOD Record, 14(3):1–7, 1984.

[7] J. Van den Bussche and D. Van Gucht. A
semideterministic approach to object creation and
nondeterminism in database queries. Journal of
Computer and System Sciences, 54(1):34–47, 1997.

[8] R.G.G. Cattell et al. The Object Data Standard:
ODMG 3.0. Morgan Kaufmann, 2000.

[9] L. Fegaras. Optimizing queries with object updates.
Journal of Intelligent Information Systems,
12(2–3):219–242, 1999.

[10] L. Fegaras and D. Maier. Optimizing object queries
using an effective calculus. ACM TODS,
25(4):457–516, 2000.

[11] D. Gifford and J. Lucassen. Integrating functional and
imperative programming. In ACM Conference on Lisp
and Functional Programming, 1986.

[12] A. Gordon, P. Hankin, and S. Lassen. Compilation
and equivalence of imperative objects. Journal of
Functional Programming, 9(4):373–426, 1999.

[13] A. Gordon and D. Syme. Typing a multilanguage
intermediate code. In Proceedings of POPL, 2001.

[14] A. Greenhouse and J. Boyland. An object-oriented
effects system. In Proceedings of ECOOP, 1999.

[15] J. Hellerstein. Optimization techniques for queries
with expensive methods. ACM TODS, 23(2):113–157,
1998.

[16] A. Igarashi, B.C. Pierce, and P. Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001.

[17] H. Liefke and S. Davidson. Updates and
nondeterminism in object-oriented databases.
Technical Report MS-CIS-99-11, University of
Pennsylvania, 1999.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML. MIT Press, 1997.

[19] G. Mitchell, S. Zdonik, and U. Dayal. Object-oriented
query optimization: what’s the problem? Technical
Report CS-91-41, Brown University, 1991.

[20] T. Nipkow and D. von Oheimb. Java`ight is
type-safe—definitely. In Proceedings of POPL, 1998.

[21] H. Riedell and M.H. Scholl. The CROQUE model:
Formalization of the data model and the query
language. Technical Report 23, University of
Konstänz, 1996.

[22] P. Seshadri and M. Paskin. PREDATOR: An
OR-DBMS with enhanced data types. In Proceedings
of ACM SIGMOD, pages 568–571, 1997.

[23] A. Trigoni and G.M. Bierman. Inferring the principal
type and schema requirements of an OQL query. In
Proceedings of BNCOD, 2001.

[24] G. Winskel. The Formal Semantics of Programming
Languages: An Introduction. MIT Press, 1993.

[25] A. Wright and M. Felleisen. A syntactic approach to
type soundness. Information and Computation,
115(1):38–94, 1994.

[26] XQuery 1.0 formal semantics. Working draft June
2001.

	page1: 407
	page2: 408
	page3: 409
	page4: 410
	page5: 411
	page6: 412
	page7: 413
	page8: 414
	page9: 415
	page10: 416
	page11: 417
	page12: 418

