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ABSTRACT
Literature on information integration across databases tacitly as-
sumes that the data in each database can be revealed to the other
databases. However, there is an increasing need for sharing infor-
mation across autonomous entities in such a way that no informa-
tion apart from the answer to the query is revealed. We formalize
the notion of minimal information sharing across private databases,
and develop protocols for intersection, equijoin, intersection size,
and equijoin size. We also show how new applications can be built
using the proposed protocols.

1. INTRODUCTION
Information integration has long been an area of active database

research [12, 16, 21, 27, 48]. So far, this literature has tacitly as-
sumed that the information in each database can be freely shared.
However, there is now an increasing need for computing queries
across databases belonging to autonomous entities in such a way
that no more information than necessary is revealed from each
database to the other databases. This need is driven by several
trends:

� End-to-end Integration: E-business on demand requires
end-to-end integration of information systems, from the sup-
ply chain to the customer-facing systems. This integration
occurs across autonomous enterprises, so full disclosure of
information in each database is undesirable.

� Outsourcing: Enterprises are outsourcing tasks that are not
part of their core competency. They need to integrate their
database systems for purposes such as inventory control.

� Simultaneously compete and cooperate: It is becoming
common for enterprises to cooperate in certain areas and
compete in others, which requires selective information shar-
ing.

� Security: Government agencies need to share information
for devising effective security measures, both within the
same government and across governments. However, an
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agency cannot indiscriminately open up its database to all
other agencies.

� Privacy: Privacy legislation and stated privacy policies place
limits on information sharing. However, it is still desirable
to mine across databases while respecting privacy limits.

We propose a new paradigm ofminimal necessary informa-
tion sharing across private databases. Intuitively, given a database
query spanning multiple private databases, we wish to compute the
answer to the query without revealing any additional information
apart from the query result. We will sometimes relax this constraint
to allow some minimal additional information to be revealed.

1.1 Motivating Applications
We give two prototypical applications to make the above

paradigm concrete.

Application 1: Selective Document Sharing EnterpriseR is
shopping for technology and wishes to find out if enterpriseS
has some intellectual property it might want to license. However,
R would not like to reveal its complete technology shopping list,
nor wouldS like to reveal all its unpublished intellectual property.
Rather, they would like to first find the specific technologies for
which there is a match, and then reveal information only about
those technologies. This problem can be abstracted as follows.

We have two databasesDR andDS, where each database con-
tains a set of documents. The documents have been preprocessed to
only include the most significant words, using some measure such
as term frequency times inverse document frequency [41]. We wish
to find all pairs of similar documentsdR 2 DR anddS 2 DS,
without revealing the other documents. In database terminology,
we want to compute the join ofDR andDS using the join predi-
catef(jdR \ dS j; jdRj; jdSj) > � , for some similarity functionf
and threshold� . The functionf could bejdR\dSj=(jdRj+ jdSj),
for instance.

Many applications map to this abstraction. For example, two
government agencies may want to share documents, but only on
a need-to-know basis. They would like to find similar documents
contained in their repositories in order to initiate their exchange.

Application 2: Medical Research Imagine a future where many
people have their DNA sequenced. A medical researcher wants to
validate a hypothesis connecting a DNA sequenceD with a reac-
tion to drugG. People who have taken the drug are partitioned
into four groups, based on whether or not they had an adverse
reaction and whether or not their DNA contained the specific se-
quence; the researcher needs the number of people in each group.
DNA sequences and medical histories are stored in databases in
autonomous enterprises. Due to privacy concerns, the enterprises
do not wish to provide any information about an individual’s DNA
sequence or medical history, but still wish to help with the research.



Assume that the tableTR(personid, pattern) stores whether a
person’s DNA contains patternD andTS (personid, drug, reaction)
captures whether a person took drugG and whether the person had
an adverse reaction.TR andTS belong to two different enterprises.
The researcher wants to get the answer to the following query.

select pattern, reaction, count(*)
from TR, TS
where TR.personid = TS .personid and TS .drug = “true”
group by TR.pattern,TS .reaction

We want the property that the researcher should get to know the
counts and nothing else, and the enterprises should not learn any
new information about any individual.

1.2 Current Techniques
We discuss next some existing techniques that one might use for

building the above applications, and why they are inadequate.

� Trusted Third Party : The main parties give the data to a
“trusted” third party and have the third party do the compu-
tation [7, 30]. However, the third party has to becompletely
trusted, both with respect to intent and competence against
security breaches. The level of trust required is too high for
this solution to be acceptable.

� Secure Multi-Party Computation: Given two parties with
inputsx andy respectively, the goal of secure multi-party
computation is to compute a functionf(x;y) such that the
two parties learn onlyf(x; y), and nothing else. See [26, 34]
for a discussion of various approaches to this problem.

Yao [49] showed that any multi-party computation can be
solved by building a combinatorial circuit, and simulating
that circuit. A variant of Yao’s protocol is presented in [37]
where the number of oblivious transfers is proportional to
the number of inputs and not the size of the circuit. We show
in Appendix A that our specialized algorithms are substan-
tially faster than using a circuit, and in particular, the com-
munication costs for circuits make them impractical for our
problems.

1.3 Paper Outline
The rest of the paper is organized as follows. We formally state

the problem and the scope of this paper in Section 2. We develop
the protocol for computing the intersection of two sets in Section 3,
and extend this protocol for equijoins in Section 4. We describe
the protocols for intersection size and equijoin size in Section 5. In
Section 6, we give a cost analysis of these protocols, and use this
analysis to estimate the execution times of the application examples
above. We conclude with a summary and directions for future work
in Section 7.

2. MINIMAL INFORMATION SHARING

2.1 Security Model
We develop our solutions in a setting in which there is no third

party [26]. The main parties directly execute a protocol, which is
designed to guarantee that they do not learn any more than they
would have learnt had they given the data to a trusted third party
and got back the answer.

We assumehonest-but-curiousbehavior [26]. The parties fol-
low the protocol properly with the exception that they may keep a
record of all the intermediate computations and received messages,
and analyze the messages to try to learn additional information.
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Figure 1: System Components

This behavior is also referred to assemi-honestor passivebehav-
ior.

Figure 1 shows the different components required for building a
system for information integration with minimal sharing. Our fo-
cus will be on the cryptographic protocol. We assume the use of
standard libraries or packages for secure communication and en-
cryption primitives.

2.2 Problem Statement
We now formally state the problem we study in this paper.

Problem Statement (Ideal) Let there be two partiesR (receiver)
andS (sender) with databasesDR andDS respectively. Given a
database queryQ spanning the tables inDR andDS, compute the
answer toQ and return it toR without revealing any additional
information to either party. 2

Problem Statement (Minimal Sharing) Let there be two parties
R andS with databasesDR andDS respectively. Given a database
queryQ spanning the tables inDR andDS, and some categories
of informationI, compute the answer toQ and return it toR with-
out revealing any additional information to either party except for
information contained inI. 2

For example, if the queryQ is a join TR 1 TS over two ta-
blesTR andTS , the additional informationI might be the number
of records in each table:jTRj and jTS j. Note that whateverR
can infer from knowing the answer to the queryQ and the addi-
tional informationI is fair game. For instance, if the queryQ is
an intersectionVS \ VR between two setsVS andVR, then for all
v 2 (VR� (VS \VR)),R knows that these values were not inVS .

We assume that the queryQ is revealed to both parties. One
can think of other applications where the format ofQ is revealed,
but not the parameters ofQ (e.g., in private information retrieval,
discussed in Section 2.4).

2.2.1 Operations
In this paper, we focus on four operations: intersection, equijoin,

intersection size, and equijoin size.
LetS have a database tableTS , andR have a tableTR, with both

tables having a specific attributeA in their schemas. The attribute
A takes its values from a given setV . Let VS be the set of values
(without duplicates) that occur inTS:A, and letVR be the set of
values occurring inTR:A. For eachv 2 VS , let ext(v) be all
records inTS whereTS:A = v, i.e.,ext(v) is theextra information
in TS pertaining tov. We show how to compute three kinds of
queries overTS andTR:

� Intersection:PartyR learns the setVS \ VR, the valuejVSj,
and nothing else; partyS learnsjVRj and nothing else (Sec-
tion 3).



� Equijoin: PartyR learnsVS\VR, ext(v) for all v 2 VS \ VR,
jVSj, and nothing else; partyS learnsjVRj and nothing else
(Section 4).

� Intersection Size:PartyR learns the values ofjVS \ VRj,
jVSj, and nothing else; partyS learnsjVRj and nothing else
(Section 5).

Thus in the terminology of our problem statement above, the query
Q for the three problems corresponds toVS \ VR, TS 1 TR (with
ext(v) used to compute the join), andjVS \VRj respectively. In all
three cases, the additional informationI consists ofjVRj andjVSj.

We also extend the intersection size protocol to obtain anequi-
join sizeprotocol that computesjTS 1 TRj (Section 5.2). How-
ever,R learnsjVSj, the distribution of duplicates inTS :A, and
based on the distribution of duplicates, some subset of informa-
tion in VS \ VR. S learnsjVRj and the distribution of duplicates in
TR:A.

2.3 Limitations
Multiple Queries While we provide guarantees on how much the
parties learn from a single query, our techniques do not address the
question of what the parties might learn by combining the results
of multiple queries. The first line of defence against this problem is
the scrutiny of the queries by the parties. In addition, query restric-
tion techniques from the statistical database literature [1, 44] can
also help. These techniques include restricting the size of query
results [17, 23], controlling the overlap among successive queries
[19], and keeping audit trails of all answered queries to detect pos-
sible compromises [13].

Schema Discovery and Heterogeneity We do not address the
question of how to find which database contains which tables and
what the attribute names are; we assume that the database schemas
are known. We also do not address issues of schema heterogeneity.
See [21, 29] and references therein for some approaches to these
problems.

2.4 Related Work
In [35], the authors consider the problem of finding the intersec-

tion of two lists while revealing only the intersection. They present
two solutions: the first involves oblivious evaluations ofn poly-
nomials of degreen each, wheren is the number of elements in
the list; the second solution requires oblivious evaluation ofn2 lin-
ear polynomials. In the context of databases,n will be quite large.
In [28], the authors consider the problem of finding people with
common preferences, without revealing the preferences. They give
intersection protocols that are similar to ours, but do not provide
proofs of security.

In the problem of private information retrieval [11, 14, 15, 32,
45], the receiverR obtains theith record from set ofn records
held by the senderS without revealingi to S. With the additional
restriction thatR should only learn the value of one record, the
problem becomes that of symmetric private information retrieval
[25]. This literature will be useful for developing protocols for the
selection operation in our setting.

The problem of privacy-preserving data mining is also related.
The randomization approach [6, 22, 40] focuses on individual pri-
vacy rather than on database privacy, and reveals randomized in-
formation about each record in exchange for not having to reveal
the original records to anyone. More closely related is the work in
[33] on building a decision-tree classifier across multiple databases,
without revealing the individual records in each database to the
other databases. Algorithms for mining associations rules across
multiple databases have been described in [31] and [47] for hori-

zontally and vertically partitioned data respectively.
The context for the work presented in this paper is our effort to

design information systems that protect the privacy and ownership
of individual information while not impeding the flow of informa-
tion. Our other related papers include [2, 3, 4, 5].

3. INTERSECTION

3.1 A Simple, but Incorrect, Protocol
A straightforward idea for computing the intersectionVS \ VR

would be to use one-way hash functions [38]. Here is a simple
protocol thatappearsto work:

1. BothS andR apply hash functionh to their sets, yielding
XS = h(VS) = fh(v) j v 2 VSg and
XR = h(VR) = fh(v) j v 2 VRg:

2. S sends its hashed setXS toR.

3. R sets aside allv 2 VR for whichh(v) 2 XS; these values
form the setVS \ VR.

Unfortunately,R can learn a lot more aboutVS (with honest-
but-curious behavior). For any arbitrary valuev 2 V � (VS \VR),
R can simply computeh(v) and check whetherh(v) 2 XS to
determine whether or notv 2 VS . In fact, if the domainV is small,
R can exhaustively go over all possible values and completely learn
VS .

The intersection protocol we propose next fixes the deficiencies
of this protocol.

3.2 Building Blocks
We first describe two building blocks used in the proposed pro-

tocols.

3.2.1 Commutative Encryption
Our definition of commutative encryption below is similar to the

constructions used in [9, 18, 20, 42] and others. Informally, a com-
mutative encryption is a pair of encryption functionsf andg such
thatf(g(v)) = g(f(v)). Thus by using the combinationf(g(v))
to encryptv, we can ensure thatR cannot compute the encryption
of a value without the help ofS. In addition, even though the en-
cryption is a combination of two functions, each party can apply
their function first and still get the same result.

DEFINITION 1 (INDISTINGUISHABILITY ). Let
k � f0; 1gk

be a finite domain ofk-bit numbers. LetD1 = D1(
k) and
D2 = D2(
k) be distributions over
k. Let Ak(x) be an al-
gorithm that, givenx 2 
k, returns either true or false. We de-
fine distributionD1 of random variablex 2 
k to becomputa-
tionally indistinguishablefrom distributionD2 if for any family of
polynomial-step (w.r.t.k) algorithmsAk(x), any polynomialp(k),
and all sufficiently largek

Pr[Ak(x) j x � D1] � Pr[Ak(x) j x � D2] <
1

p(k)

wherex � D denotes thatx is distributed according toD, and
Pr[Ak(x)] is the probability that Ak(x) returns true.

Throughout this paper, we will use “indistinguishable” as short-
hand for “computationally indistinguishable”.

DEFINITION 2 (COMMUTATIVE ENCRYPTION). Acommuta-
tive encryptionF is a computable (in polynomial time) function
f : KeyF �DomF ! DomF , defined on finite computable do-
mains, that satisfies all properties listed below. We denotefe(x) �
f(e; x), and use “2r” to mean “is chosen uniformly at random
from”.



1. Commutativity: For alle; e0 2 KeyF we have

fe � fe0 = fe0 � fe :

2. Eachfe : DomF ! DomF is a bijection.

3. The inversef�1e is also computable in polynomial time
givene.

4. The distribution ofhx; fe(x); y; fe(y)i is indistinguishable
from the distribution ofhx; fe(x); y; zi, wherex; y; z 2r
DomF ande 2r KeyF .

Informally, Property 1 says that when we compositely encrypt
with two different keys, the result is the same irrespective of the
order of encryption. Property 2 says that two different values will
never have the same encrypted value. Property 3 says that given
an encrypted valuefe(x) and the encryption keye, we can findx
in polynomial time.1 Property 4 says that given a valuex and its
encryptionfe(x) (but not the keye), for a new valuey, we can-
not distinguish betweenfe(y) and a random valuez in polynomial
time. Thus we can neither encrypty nor decryptfe(y) in polyno-
mial time. Note that this property holds only ifx is a random value
from DomF , i.e., the adversary does not control the choice ofx.

Example 1 LetDomF be all quadratic residues modulop, where
p is a “safe” prime number, i.e., bothp andq = (p � 1)=2 are
primes. LetKeyF bef1; 2; : : : ; q � 1g. Then, assuming the De-
cisional Diffie-Hellman hypothesis (DDH) [10], the power function

fe(x) � xe mod p

is a commutative encryption:

� The powers commute:
(xd mod p)e mod p = xde mod p = (xe mod p)d mod p.

� Each of the powersfe is a bijection with its inverse being
f�1e = fe�1modq.

� DDH claims that for any generating (6=1) elementg 2 DomF
the distribution ofhga; gb; gabi is indistinguishable from the
distribution ofhga; gb; gci, wherea; b; c 2r KeyF . A 3-
tuple hga; gb; zi from the DDH can be reduced to our 4-
tuple hx;xe; y; zi by takingd 2r KeyF and making tuple
hgd; (ga)d; gb; zi. Nowa plays the role ofe, gd of x, andgb

of y; we test whetherz = (gb)a or is random. Thus, given
DDH, hx; xe; y; yei andhx; xe; y; zi are also indistinguish-
able.

3.2.2 Hash Function
Besides a commutative encryptionF , we need a hash function

to encode the valuesv 2 V into x 2 DomF . The hashes of values
should not collide and should “look random,” i.e., there should be
no dependency between them that could help encrypt or decrypt
one hashed value given the encryption of another. Since we apply
commutative encryption to the hashed valuesh(v) instead ofv, the
input for the encryption function will appear random, and we will
be able to use Property 4 of commutative encryption to prove that
our protocols are secure.

In the proofs of our security statements we shall rely on the stan-
dard random oracle model[8, 24, 46]. We assume that our hash
functionh : V ! DomF is ideal, which means thath(v) can be
considered computed by a random oracle: every timeh(v) is eval-
uated for a newv 2 V , an independent randomx 2r DomF is
chosen forx = h(v).
1We only need this property for the join protocol, not for the inter-
section protocol.

We assume also thatjDomFj is so large compared tojVS [ VRj
that the probability of a collision is exponentially small. LetN =
jDomFj; in the random oracle model, the probability that n hash
values have at least one collision equals [46]:

Pr[collision] = 1�
n�1Y
i=1

N � i

N
� 1� exp

�
�n (n� 1)

2N

�

With 1024-bit hash values, half of which are quadratic residues, we
haveN � 21024=2 � 10307, and forn = 1 million

Pr[collision] � 1� exp

�
�

1012

10307

�
�

1012

10307
= 10�295 :

For real-life hash functions, a collision withinVS or VR can be
detected by the server at the start of each protocol by sorting the
hashes. If there is a collision betweenv 2 VS andv0 2 VR, it will
cause inclusion ofv0 into the join (or intersection) byR and the
disclosure toR of S’s records containingv.2

3.3 Intersection Protocol
Our proposed intersection protocol is as follows.

1. BothS andR apply hash functionh to their sets:
XS = h(VS) andXR = h(VR):
Each party randomly chooses a secret key:
eS 2r KeyF for S andeR 2r KeyF for R.

2. Both parties encrypt their hashed sets:
YS = feS(XS) = feS (h(VS)) and
YR = feR(XR) = feR(h(VR)):

3. R sends toS its encrypted setYR = feR(h(VR)), reordered
lexicographically.3

4. (a)S ships toR its setYS = feS (h(VS)), reordered lexico-
graphically.
(b) S encrypts eachy 2 YR with S’s keyeS and sends back
toR pairshy; feS(y)i = hfeR(h(v)); feS(feR(h(v)))i:

5. R encrypts eachy 2 YS with eR, obtaining
ZS = feR(feS(h(VS))).
Also, from pairshfeR(h(v)); feS(feR(h(v)))i obtained in
Step 4(b) forv 2 VR, it creates pairshv; feS(feR(h(v)))i
by replacingfeR(h(v)) with the correspondingv.

6. R selects allv 2 VR for which (feS(feR(h(v))) 2 ZS;
these values form the setVS \ VR.

3.4 Proofs of Correctness and Security

STATEMENT 1. Assuming there are no hash collisions,S learns
the sizejVRj andR learns the sizejVSj and the setVS \ VR.

PROOF. By definition,feS andfeR commute and are bijective.
Assuming that hash functionh has no collisions onVS [ VR,

v 2 VS \ VR iff v 2 VR and (feS � feR)(h(v)) 2 ZS;

which means thatR does recover the correct setVS \ VR. Both
parties also learn the sizesjVRj andjVSj, sincejVRj = jYRj and
jVSj = jYSj.
2For the join protocol (Section 4),R can check whether there was
a collision betweenv 2 VS andv0 2 VR by havingS include the
valuev in ext(v).
3If we did not reorder and instead sent the values in the same or-
der as the values inVR, significant additional information could be
revealed.



Next we prove that, assuming the parties follow the protocol cor-
rectly, they learn nothing else about the other’s sets. We first show
that even given�

x1 : : : xm
fe(x1) : : : fe(xm)

�
and xm+1;

there is no polynomial-time algorithm that can determine whether
or not a valueu is in factfe(xm+1).

LEMMA 1. For polynomialm, the distribution of the2�m-tuple�
x1 : : : xm�1 xm

fe(x1) : : : fe(xm�1) fe(xm)

�
is indistinguishable from the distribution of the tuple�

x1 : : : xm�1 xm
fe(x1) : : : fe(xm�1) zm

�
;

where8i : xi 2r DomF , zm 2r DomF , ande 2r KeyF .

PROOF. Let us denote the distribution of the upper tuple by
Dm, and the distribution of the lower tuple byDm�1. If Dm and
Dm�1 are distinguishable by some polynomial algorithmA, then
hx; fe(x); y; fe(y)i andhx; fe(x); y; zi from Property 4 of com-
mutative encryption are also distinguishable by the following algo-
rithm that takeshx;fe(x); y; ui as argument:

1. Fori = 1 : : :m�1, let xi = fei(x) andzi = fei(fe(x)),
whereei 2r KeyF ;

2. Letxm = y andzm = u;

3. Submit tuple �
x1 : : : xm
z1 : : : zm

�
to algorithmA and output whatever it outputs.

For i = 1 : : :m�1, we have

zi = fei(fe(x)) = fe(fei(x)) = fe(xi);

and all xi are indistinguishable from uniformly random(from
Property 4 of commutative encryption). Therefore the distribu-
tion of the tuple given toA is indistinguishable fromDm when
hx; fe(x); y; ui is distributed ashx; fe(x); y; fe(y)i, and from
Dm�1 whenhx; fe(x); y; ui is distributed ashx;fe(x); y; zi. So
the assumption thatDm andDm�1 are distinguishable leads to the
contradiction that Property 4 does not hold.

LEMMA 2. For polynomialm and n, the distribution of the
2�n-tuple�

x1 : : : xm xm+1 : : : xn
fe(x1) : : : fe(xm) fe(xm+1) : : : fe(xn)

�
is indistinguishable from the distribution of the tuple�

x1 : : : xm xm+1 : : : xn
fe(x1) : : : fe(xm) zm+1 : : : zn

�
;

where0 6 m 6 n, 8i : xi; zi 2r DomF , ande 2r KeyF .

PROOF. Let us denote byDn
m the distribution of the lower tuple;

the upper tuple’s distribution is thusDn
n.

From Lemma 1, for allj =m+1 : : : n, the distributionsDn
j and

Dn
j�1 are indistinguishable. (The firstj columns ofDn

j are identi-
cal toDj of Lemma 1, the firstj columns ofDn

j�1 are identical to
Dj�1 of Lemma 1, and the lastn� j columns ofDn

j�1 andDn
j are

just uniformly random numbers.)

SinceDn
j�1 andDn

j are indistinguishable for8j = m+1 : : : n,
and becausen is bounded by a polynomial,Dn

n is also indistin-
guishable from anyDn

m (where0 6 m 6 n). LetAk be an algo-
rithm that pretends to distinguishDn

n fromDn
m, and returns true or

false. Now

Pr[Ak(T ) j T � Dn
n] � Pr[Ak(T ) j T � Dn

m] (1)

=
nX

j=m+1

�
Pr[Ak(T ) j T � Dn

j ] � Pr[Ak(T ) j T � Dn
j�1]

�
Herek is the number of bits in the tuple values. Consider any
polynomialp(k); we want to prove that9k0 8k > k0 the differ-
ence (1) is bounded by1=p(k). Let p0(k) = n p(k), which is also
a polynomial. We have8j = m+1 : : : n 9kj 8k > kj the j-th
difference in the telescoping sum is bounded by1=p0(k). Now set
k0 = maxj kj, and we are done:

nX
j=m+1

�
Pr[Ak(T ) j T � Dn

j ] � Pr[Ak(T ) j T � Dn
j�1]

�

<
nX

j=m+1

1

p0(k)
<

n

n p(k)
=

1

p(k)
:

ThereforeDn
n andDn

m are computationally indistinguishable.

STATEMENT 2. The intersection protocol is secure if both par-
ties are semi-honest. In the end,S learns only the sizejVRj, andR
learns only the sizejVSj and the intersectionVS \ VR.

PROOF. We use a standard proof methodology from multi-party
secure computation [26]. If, for anyVS andVR, the distribution of
theS’s view of the protocol (the informationS gets fromR) cannot
be distinguished from a simulation of this view that uses onlyVS
andjVRj, then clearlyS cannot learn anything from the inputs it
gets fromR except forjVRj. Note that the simulation only uses the
knowledgeS is supposed to have at the end of the protocol, while
the distinguisher also uses the inputs ofR (i.e., VR), but notR’s
secret keys (i.e.,eR). It is important that the distinguisher be unable
to distinguish between the simulation and the real view even given
R’s inputs: this precludes the kind of attack that broke the protocol
given in Section 3.1.

The simulator forS (that simulates whatS receives fromR) is
easy to construct. At Step 3 of the protocol, the only step where
S receives anything, the simulator generatesjVRj random values
zi 2r DomF and orders them lexicographically. In the real proto-
col, these values equalfeR(h(v)) for v 2 VR. Assuming that, for
all v 2 VR, the hashesh(v) are distributed uniformly at random
(random oracle model), by Lemma 2 the distributions�

x1 : : : xm
feR(x1) : : : feR(xm)| {z }

xi=h(vi); vi2VR

�
and

�
x1 : : : xm
z1 : : : zm| {z }
xi=h(vi); vi2VR

�
;

where8i : zi 2r DomF , are indistinguishable. Therefore the
real and simulated views forS are also indistinguishable.

The simulator forR (that simulates whatR gets fromS) will
useVR, VS \ VR and jVSj; it also knows the hash functionh.
However, it does not haveVS � VR. The simulator chooses a key
~eS 2r KeyF. In Step 4(a), the simulation createsYS as follows:

� First, for valuesvi 2 VS\VR, the simulation addsf~eS(h(vi))
to YS.

� Next, the simulation addsjVS � VRj random valueszi 2r
DomF to YS .



In Step 4(b), the simulation uses the key~eS to encrypt eachy 2 YR.
SinceeS (real view) and~eS (simulation) are both chosen at ran-

dom, their distributions are identical. According to Lemma 2, one
cannot distinguish between the distribution of 

x1 : : : xm
f~eS(x1) : : : f~eS(xm)| {z }

xi=h(vi); vi2VR

xm+1 : : : xn
f~eS(xm+1) : : : f~eS(xn)| {z }

xi=h(vi); vi2VS�VR

!

and the distribution of 
x1 : : : xm

f~eS (x1) : : : f~eS (xm)| {z }
xi=h(vi); vi2VR

xm+1 : : : xn
zm+1 : : : zn| {z }

xi=h(vi); vi2VS�VR

!
:

The real view corresponds to the upper matrix, and the simulated
view to the lower matrix. The only difference is that some vari-
ables appear in the view encrypted byfeR , which makes the view a
efficiently-computable function of the matrix. Therefore the real
view and the simulated view are also indistinguishable, and the
statement is proven.

4. EQUIJOIN
We now extend the intersection protocol so that, in addition to

VS\VR,R learns some extra informationext(v) fromS for values
v 2 VS \ VR, but does not learnext(v) for for v 2 VS � VR. To
compute the joinTS 1 TR on attributeA, we haveext(v) contain
all the records ofS’s table whereTS :A = v, i.e., ext(v) contains
the information about the other attributes inTS needed for the join.

4.1 Idea Behind Protocol
A simple, but incorrect, solution would be to encrypt the extra

informationext(v) usingh(v) as the encryption key. Since, in our
intersection protocol,h(v) could not be discovered byR except
for v 2 VR (and similarly forS), one might think that this protocol
would be secure. While it is true thath(v) cannot be discovered
from YR or YS , h(v) can be discovered from the encryption of
ext(v). For any arbitrary valuev, R can computeh(v) and try de-
crypting all theext(v) usingh(v) to learn whether or notv 2 VS .
In fact, if the domain is small,R can exhaustively go over all pos-
sible values and completely learn bothVS andext(v) for v 2 VS .

Rather then encrypt the extra information withh(v), we will en-
crypt it with a key�(v) = fe0

S
(h(v)), wheree0S is a second se-

cret key ofS. The problem now is to allowR to learn�(v) for
v 2 VR without revealingVR to S. We do this as follows:R sends
feR(h(v)) to S, andS sends backfe0

S
(feR(h(v))) to R. R can

now applyf�1eR
to the latter to get

f�1eR
(fe0

S
(feR(h(v)))) = f�1eR

(feR(fe0
S
(h(v)))) = fe0

S
(h(v)):

Note thatR only getsfe0
S
(h(v)) for v 2 VR, not forv 2 VS � VR.

4.2 Encryption Function K

We now formally define the encryption functionK(�;ext(v))
that encryptsext(v) using the key�(v). K is defined to be a func-
tion

K : DomF � Vext ! Cext

with two properties:
1. Each functionK�(x) � K(�;x) can be efficiently inverted

(decrypted) given�;

2. “Perfect Secrecy” [43]: For anyext(v), the value of
K�(ext(v)) is indistinguishable from a fixed (independent
of ext(v)) distributionDext overCext when� 2r DomF .

Example 2 LetF be the power function over quadratic residues
modulo a safe prime, as in Example 1. If the extra information
ext(v) can also be encoded as a quadratic residue (i.e.,Vext =
DomF ), the encryptionK�(ext(v)) can be just a multiplication
operation:

K�(ext(v)) = � � ext(v):

The multiplication can be easily reversed given�, and if� is uni-
formly random then� � ext(v) is also uniformly random (indepen-
dently ofext(v)).

4.3 Equijoin Protocol
Let VS be the set of values (without duplicates) that occur in

TS :A, and letVR be the set of values that occur inTR:A. For each
v 2 VS , let ext(v) be all records inTS whereTS :A = v.

1. BothS andR apply hash functionh to their sets:
XS = h(VS) andXR = h(VR):
R chooses its secret keyeR 2r KeyF , andS chooses two
secret keys:eS ; e0S 2r KeyF .

2. R encrypts its hashed set:YR = feR(XR) = feR(h(VR)).

3. R sends toS its encrypted setYR, reordered lexicographi-
cally.

4. S encrypts eachy 2 YR with both keyeS and keye0S, and
sends back toR 3-tupleshy; feS(y); fe0

S
(y)i

= hfeR(h(v)); feS(feR(h(v))); fe0
S
(feR(h(v)))i.

5. For eachv 2 VS, S does the following:

(a) Encrypts the hashh(v) with eS, obtainingfeS(h(v)).

(b) Generates the key for extra information usinge0S:
�(v) = fe0

S
(h(v)).

(c) Encrypts the extra information:
c(v) = K(�(v);ext(v)).

(d) Forms a pairhfeS(h(v)); c(v)i
= hfeS(h(v)); K(fe0

S
(h(v)); ext(v))i:

The pairs are then shipped toR in lexicographical order.

6. R appliesf�1eR
to all entries in the 3-tuples received at Step 4,

obtaininghh(v); feS(h(v)); fe0
S
(h(v))i for all v 2 VR.

7. R sets aside all pairshfeS(h(v));K(fe0
S
(h(v));ext(v))i re-

ceived at Step 5 whose first entry occurs as a second entry in
a 3-tuplehh(v); feS(h(v)); fe0

S
(h(v))i from Step 6. Using

the third entryfe0
S
(h(v)) = �(v) as the key,R decrypts

K(fe0
S
(h(v)); ext(v)) and getsext(v). The corresponding

v’s form the intersectionVS \ VR.

8. R usesext(v) for v 2 VS \ VR to computeTS 1 TR.

4.4 Proofs of Correctness and Security

STATEMENT 3. Assuming there are no hash collisions,S learns
jVRj, andR learnsjVS j,VS \VR, andext(v) for all v 2 VS \VR.

PROOF. This protocol is an extension of the intersection proto-
col, so it allowsR to determineVS \ VR correctly. SinceR learns
the keys�(v) for values in the intersection,R also getsext(v) for
v 2 VS \ VR.

Next we prove thatR andS do not learn anything besides the
above. We first extend Lemma 2 as follows.



LEMMA 3. For polynomialn, the distributions of the following
two3�n-tuples0

@ x1 : : : xn
fe(x1) : : : fe(xn)
fe0(x1) : : : fe0(xn)

1
A and

0
@x1 : : : xn
y1 : : : yn
z1 : : : zn

1
A ;

are computationally indistinguishable, where8i : xi; yi; zi 2r
DomF , ande; e0 2r KeyF .

PROOF. Let us denote the left distribution byD1, the right dis-
tribution byD2, and the following “intermediate” distribution byD3:0

@ x1 : : : xn
fe(x1) : : : fe(xn)
z1 : : : zn

1
A

The first and third line in the tuples forD1 andD3 are distributed
like Dn

n andDn
0 (from Lemma 2) respectively. The second line in

bothD1 andD3 can be obtained from the first line by applyingfe
with random keye. Therefore, sinceDn

n andDn
0 are indistinguish-

able by Lemma 2, distributionsD1 andD3 are also indistinguish-
able.

Analogously, the first and second lines inD3 andD2 are dis-
tributed likeDn

0 andDn
n respectively. The third line in bothD3

andD2 can be obtained by using random numbers for thezi’s.
Therefore, by Lemma 2,D3 andD2 are also indistinguishable.

Finally, since bothD1 andD2 are indistinguishable fromD3,
they themselves are indistinguishable.

The following lemma will be used in the proof for the security
of the join protocol to show that the real and simulated views for
R are indistinguishable.D0

1 corresponds to the real view (forR),
while D0

2 corresponds to the simulated view. The firstt columns
correspond toVS�(VS\VR), the nextm�t columns toVS \VR,
and the lastn�m columns toVR � (VS \ VR).

LEMMA 4. For polynomialm, t, andn, and anyci 2 Vext, the
two distributionsD0

1 andD0
2 of the4�n-tuple0

BB@
x1 : : : xt xt+1 : : : xm xm+1 : : : xn
y1 : : : yt yt+1 : : : ym ym+1 : : : yn

zt+1 : : : zm zm+1 : : : zn
�1 : : : �t �t+1 : : : �m

1
CCA

such that

� ForD0
1, 8i : xi 2r DomF , yi = fe(xi), zi = fe0(xi), and

�i = K(fe0(xi); ci) wheree; e0 2r KeyF ;

� ForD0

2, 8i : xi; yi; zi 2r DomF , and

– i = 1 : : : t : �i is independent random with distribu-
tionDext,

– i = t+1 : : :m : �i = K(zi; ci)

are computationally indistinguishable. (In bothD0

1 andD0

2, the
positions corresponding toz1 : : : zt and�m+1 : : : �n are blank.)

PROOF. Denote byD0

3 the following “intermediate” distribu-
tion:

8i : xi; yi; zi 2r DomF and�i = K(zi; ci):

Note that thezi for i = 1 : : : t are not included in the tuple, even
though they are used to generateK(zi; ci).

The only difference between the two distributionsD0

2 andD0

3

is that, for i = 1 : : : t, we replace�i distributed asDext with
K(zi; ci) wherezi 2r DomF ; the rest of the matrix is indepen-
dent and stays the same. Sincezi is not a part of the matrix for

i = 1 : : : t, by Property 2 of encryptionK(�;c), distributionsD0
2

andD0

3 are indistinguishable.
Next we use Lemma 3 to show that distributionsD0

1 andD0
3 are

also indistinguishable. We define functionQ(M) that takes a3�n
matrix M (from Lemma 3) and generates a4�n matrix M 0 as
follows:

1. The first 3 rows ofM 0 are the same as the first 3 rows ofM ,
except that the values corresponding toz1; : : : ; zt in M 0 are
left blank.

2. The fourth row ofM 0 is generated by taking�i = K(zi; ci)
wherezi is the corresponding value of the third row ofM .

If M is distributed likeD1 of Lemma 3,Q(M) corresponds toD0

1.
If M is distributed likeD2, Q(M) corresponds toD0

3. Since by
Lemma 3,D1 andD2 are indistinguishable, andQ(M) is com-
putable in polynomial time,D0

1 andD0

3 are also indistinguishable.
Finally, since bothD0

1 andD0
2 are indistinguishable fromD0

3,
they themselves are indistinguishable.

STATEMENT 4. The join protocol is secure if both parties are
semi-honest. At the end of the protocol,S learns onlyjVRj; R
learns onlyjVS j, VS \ VR, andext(v) for all v 2 VS \ VR.

PROOF. As in the proof of Statement 2, we will construct simu-
lators of each party’s view of the protocol, such that each simulator
is given only what the party is supposed to learn, and such that the
distribution of the real view is indistinguishable from the distribu-
tion of the simulated view.

The simulator forS is identical to that in Statement 2, sinceS
gets exactly the same input fromR as in the intersection protocol.
Hence the proof from Statement 2 directly applies.

The simulator forR (that simulates whatR receives fromS) can
useh, eR, VR, VS \ VR, ext(v) for v 2 VS \ VR, andjVS j. Let

VS = fv1; : : : ; vt; vt+1; : : : ; vmg and

VR = fvt+1; : : : ; vm; vm+1; : : : ; vng:

Sot = jVS � VRj, m = jVSj, andn = jVS [ VRj. Note that the
simulator does not know the values inVS � VR.

In Step 4, the simulator generatesn random numbersyi 2r
DomF , i = 1 : : : n as the simulated values forfeS(h(vi)), and
an additionaln random numberszi 2r DomF as the simulated
values forfe0

S
(h(vi)). The simulation then uses keyeR to create

hfeR(h(vi)); feR(yi); feR(zi)i

for i = t+1 : : :m. These triplets are ordered lexicographically and
comprise the simulated view for Step 4.

In Step 5, the simulator creates the pairs as follows:

� For valuesvt+1; : : : ; vm from VS \ VR, the simulator en-
cryptsext(vi) as�i = K(zi; ext(vi)); then it forms pairs
hyi; �ii;

� For i = 1 : : : t, the simulator createsjVS � VRj additional
pairshyi; �ii where�i have distributionDext overCext, i.e.,
yi and�i are random values from their respective domains.

These pairs are sorted lexicographically and comprise the simulated
view for Step 5.

Settingxi = h(vi), the real view corresponds to distributionD0
1

of the matrix in Lemma 4, while the simulation corresponds to dis-
tribution D0

2 of the matrix. The only difference is that some vari-
ables appear in the view encrypted byfeR , which makes the view a
efficiently-computable function of the matrix. Since theseD0

1 and
D0
2 are indistinguishable, the simulation is also indistinguishable

from the real view.



5. INTERSECTION AND JOIN SIZES

5.1 Intersection Size
We now show how the intersection protocol can be modified,

such thatR only learns the intersection size, but not which values in
VR were present inVS. (Simply applying the intersection protocol
would reveal the setVR \ VS, in addition to the intersection size.)
Recall that in Step 4 of the intersection protocol,S sends back to
R the values ofy 2 YR together with their encryptions made byS.
These encryptions are paired with the unencryptedy’s so thatR can
match the encryptions withR’s values. If insteadS sends back to
R only the lexicographically reordered encryptions of they’s and
not they’s themselves,R can no longer do the matching.

5.1.1 Intersection Size Protocol
We now present the protocol for intersection size. (Steps 1 through

3 are the same as in the intersection protocol.)

1. BothS andR apply hash functionh to their sets:
XS = h(VS) andXR = h(VR):
Each party randomly chooses a secret key:
eS 2r KeyF for S andeR 2r KeyF for R.

2. Both parties encrypt their hashed sets:
YS = feS (XS) = feS(h(VS)) and
YR = feR(XR) = feR(h(VR)):

3. R sends toS its encrypted setYR = feR(h(VR)), reordered
lexicographically.

4. (a)S ships toR its setYS = feS (h(VS)), reordered lexico-
graphically.
(b) S encrypts eachy 2 YR with S’s keyeS and sends back
toR the setZR = feS(YR) = feS(feR(h(VR))), reordered
lexicographically.

5. R encrypts eachy 2 YS with eR, obtaining
ZS = feR(feS(h(VS))).

6. Finally,R computes intersection sizejZS\ZRj, which equals
jVS \ VRj.

5.1.2 Proofs of Correctness and Security

STATEMENT 5. Assuming there are no hash collisions,S learns
the sizejVRj andR learns the sizejVSj and the sizejVS \ VRj.

PROOF. The proof is very similar to that for Statement 1. Since
feS andfeR commute and are bijective, assuming that hash func-
tion h has no collisions onVS [ VR,

jVS \ VRj = feR(feS(h(VS))) \ feS(feR(h(VR))):

ThereforeR recovers the correct sizejVS \ VRj.

STATEMENT 6. The intersection size protocol is secure if both
parties are semi-honest. At the end of the protocol,S learns only
the sizejVRj, andR learns only the sizesjVS j andjVS \ VRj.

PROOF. We use the same methodology as in the proofs of State-
ment 2 and 4.

The simulator forS’s view of the intersection size protocol is
identical to that in Statement 2, sinceS gets exactly the same in-
put fromR as in the intersection protocol. Hence the proof from
Statement 2 directly applies.

The simulator forR’s view of the protocol is allowed to useVR,
the hash functionh, eR, and the numbersjVS \ VRj and jVSj;
however, it has neitherVS � VR norVS \ VR. Let

VS = fv1; : : : ; vt; vt+1; : : : ; vmg and

VR = fvt+1; : : : ; vm; vm+1; : : : ; vng:

Sot = jVS � VRj,m = jVSj, andn = jVS [ VRj.
The simulator generatesn random numbersy1; : : : ; yn 2r

DomF which play the role offeS(h(v)) for all v 2 VS [ VR.
The keyeS is not simulated, and no decision is made about which
yi stands for whichfeS(h(v)). In Step 4(a), the simulation creates
YS as

YS = fy1; : : : ; ymg:

In Step 4(b), the simulation generatesZR by taking set
fyt+1; : : : ; yng and encoding it withfeR:

ZR = ffeR(yt+1); : : : ; feR(yn)g:

We now show that the distribution ofR’s real view in the pro-
tocol is computationally indistinguishable from the distribution of
R’s simulated view.

According to Lemma 2, the distributionsDn
0 andDn

n of the fol-
lowing matrixM : �

x1 : : : xn
y1 : : : yn

�
where

� Dn
0 : 8i : xi; yi 2r DomF ;

� Dn
n : 8i : xi 2r DomF , yi = feS(xi), eS 2r KeyF ;

are indistinguishable. Givenxi = h(vi), consider the following
functionQ(M):

Q(M) = hh; eR; YS; ZRi;

where

h := a function onVS [ VR s. t.8i : h(vi) = xi;

eR := a random key;

YS := fy1; : : : ; ymg;

ZR := ffeR(yt+1); : : : ; feR(yn)g:

If M is distributed according toDn
0 , thenQ(M) corresponds to

the simulated view of serverR. If M ’s distribution isDn
n, then

yi = feS(xi) = feS(h(vi));

feR(yi) = feR(feS (xi)) = feS ( feR(h(vi)) );

andQ(M) is distributed like the real view ofR. Since from
Lemma 2,Dn

0 andDn
n are indistinguishable, andQ is computable

in polynomial time, the simulated viewQ(Dn
0 ) and the real view

Q(Dn
n) are also indistinguishable.

5.2 Equijoin Size
To evaluate equijoin size, we follow the intersection size proto-

col, except that we allowVR andVS to be multi-sets, i.e., contain
duplicates, and then compute the join size instead of the intersec-
tion size in Step 6. However,R can now use the number of dupli-
cates of a given value to partially match values inYR with their cor-
responding encryptions inZR. We now characterize exactly what
R andS learn in this protocol (besidesjVRj, jVSj andjVR 1 VS j).

To start with,R learns the distribution of duplicates inVS, and
S learns the distribution of duplicates inVR. To characterize what
elseR learns, let us partition the values inVR based on the num-
ber of duplicates, i.e., in a partitionVR(d), eachv 2 VR(d) has



d duplicates. Then, for each partition, R learnsjVR(d) \ VS(d
0)j

for each partition VS(d
0) of VS . Thus if all values have the same

number of duplicates (e.g., no duplicates as in our intersection pro-
tocol),R only learnsjVR \ VS j. At the other extreme, if no two
values have the same number of duplicates,R will learn VR \ VS .

6. COST ANALYSIS

6.1 Protocols
Let

� each encrypted codeword (inDomF ) bek bits long,

� Ch denote the cost of evaluating the hash function,

� Ce denote the cost of encryption/decryption byF (e.g., ex-
ponentiation “xy mod p” over k-bit integers),

� CK denote the cost of encryption/decryption byK (e.g., en-
coding/decoding as a quadratic residue and multiplication),
and

� n log n �Cs be the cost of sorting a set ofn encryptions.

We assume the obvious optimizations when computing the com-
putation and communication costs. For example, in the join pro-
tocol, we assume that the protocol does not decrypty to h(v) in
Step 6, but uses order preservation for matching. Also, in all the
protocols,S does not retransmit they’s back but just preserves the
original order.

Computation The computation costs are:

� Intersection:(Ch + 2Ce)(jVS j+ jVRj) + 2CsjVSj log jVS j
+ 3CsjVRj log jVRj

� Join: Ch(jVSj+ jVRj) + 2CejVS j+ 5CejVRj
+CK(jVSj+ jVS \ VRj) + 2CsjVSj log jVS j
+ 3CsjVRj log jVRj

We can assumeCe � Ch, Ce � CK , andnCe � n log n �Cs,
so these formulae can be approximated by

� Intersection:2Ce(jVSj+ jVRj)

� Join: 2CejVS j+ 5CejVRj

Communication The communication cost is:

� Intersection:(jVSj+ 2jVRj) � k bits

� Join: (jVSj+ 3jVRj) � k+ jVSj � k
0 bits, wherek0 is the size

of the encryptedext(v).

Both the intersection size and join size protocols have the same
computation and communication complexity as the intersection pro-
tocol.

6.2 Applications
We now estimate the execution times for the applications in Sec-

tion 1.1.
For the cost ofCe (i.e., cost ofxy mod p), we use the times

from [36]: 0.02s for 1024-bit numbers on a Pentium III (in 2001).
This corresponds to around2�105 exponentiations per hour. We
assume that communication is via a T1 line, with bandwidth of
1.544 Mbits/second (� 5 Gbits/hour).

Encrypting the set of values is trivially parallelizable in all three
protocols. We assume that we haveP processors that we can utilize
in parallel: we will use a default value ofP = 10.

VR := ids inTR.
V 0

R := subset ofVR that match the DNA sequence.
VS := ids inTS that took the drug.
V 0

S := subset ofVS with adverse reaction.
T gets IntersectionSize(V 0

R; V
0

S).
T gets IntersectionSize(V 0

R; (VS � V 0

S)).
T gets IntersectionSize((VR � V 0

R); V
0

S).
T gets IntersectionSize((VR � V 0

R); (VS � V 0

S)).

Figure 2: Algorithm for Medical Research Application

6.2.1 Selective Document Sharing
Recall that we have two databasesDR andDS, where each

database contains a set of documents, and a document consists of
a set of significant words. We wish to find all pairs of documents
dR 2 DR anddS 2 DS such that, for some similarity function
f and threshold� , f(jdR \ dSj; jdRj; jdSj) > � . For example,f
could bejdR \ dS j=(jdRj+ jdSj).

Implementation R andS execute the intersection size protocol
for each pair of documentsdR 2 DR anddS 2 DS to getjdR \
dSj, jdRj andjdSj; they then compute the similarity functionf .

For S, in addition to the number of documentsjDSj, this pro-
tocol also reveals toR for each documentdR 2 DR, which doc-
uments inDS matcheddR, and the size ofjdR \ dSj for each
documentdS 2 DS.

Cost Analysis For a given pair of documentsdR anddS , the
computation time is(jdRj+ jdSj) � 2Ce, and the data transferred is
(jdRj+ 2jdSj) � k bits. Thus the total cost is:

� Computation:jDRj � jDSj � (jdRj+ jdSj) � 2Ce.

� Communication:jDRj � jDSj � (jdRj+ 2jdSj) � k.

If jDRj = 10 documents,DS = 100 documents, andjdRj =
jdSj = 1000 words, the computation time will be4�106 Ce=P �
2 hour. The data transferred will be3� 106 k � 3 Gbits� 35
minutes.

6.2.2 Medical Research
Recall that we wish to get the answer to the query

select pattern, reaction, count(*)
from TR, TS
where TR.id = TS.id andTS .drug = true
group by TR.pattern,TS .reaction

whereTR andTS are tables in two different enterprises.

Implementation Figure 2 shows the implementation algorithm.
We use a slightly modified version of the intersection size protocol
whereZR andZS are sent toT , the researcher, instead of toS and
R. Note that whenever we have, say,(VR � V 0

R) inside Intersec-
tionSize, the set difference is computed locally, and the result is the
input to the protocol.

Cost Analysis The combined cost of the four intersections is
2(jVRj+ jVS j) �2Ce, and the data transferred is2(jVRj+ jVS j) �2k
bits. If jVRj = jVSj = 1 million, the total computation time will be
8�106Ce=P � 4 hours. The total communication time will be
8�106 k � 8 Gbits� 1.5 hours.

7. CONCLUSIONS
We identified information integration with minimal sharing as a

new area for future database research. We developed novel pro-
tocols for three key operations: intersection, intersection size, and



equijoin and proved that these protocols disclose minimal infor-
mation apart from the query result. We also gave a protocol for
computing equijoin size, but this protocol leaks some information
about which tuples joined, based on the distribution of duplicates.
We also showed how new applications can be built using the pro-
posed protocols.

Some interesting directions for future research include:
� What is the tradeoff between the additional information be-

ing disclosed and efficiency? Will we be able to obtain much
faster protocols if we are willing to disclose additional infor-
mation?

� Can we formalize models of minimal disclosure and discover
corresponding protocols for other database operations such
as aggregations?
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APPENDIX

A. CIRCUIT-BASED PROTOCOLS
For comparison, we estimate the computation and communica-

tion cost of intersection and join protocols obtained using the semi-
honest variant of Yao’s protocol described in [33, 37]. LetVS and
VR containw-bit values. Consider a functionf(~x; ~y) that takes
vectors~x and~y (of sizew � jVSj andw � jVRj respectively) as inputs
and returns a vector~z (of sizejVRj) that shows which ofR’s values
also belong toVS . This function can be represented by a circuit of
boolean gates.S hardwires its input~x into the circuit and supple-
ments each possible encrypted bit value at each circuit wire with its
own random key (used for decrypting the next gate’s output and its
key). The protocol has two major steps:

Coding R’s input: For each bit of~y, R engages withS in a
1-out-of-2 oblivious transfer protocol [36, 39] and gets the
corresponding supplemental keys.

Computing the circuit: For each gate,R receives a table from
S and, using the keys for the gate’s inputs, computes the out-
put and its key. In the process,R applies a pseudorandom
function twice per each output wire.

To getf(~x; ~y), R gets the tables that allow it to decrypt the wires
with the output of the circuit.

A.1 Cost Analysis
Let the keys (for the circuit gates) bek0 bits long, andCr be the

cost of pseudorandomfunction evaluation. We assume thatw = 32
(recall thatw is the size in bits of the input values),k0 = 64, and
jVRj = jVSj = n.

A.1.1 Coding the Input
Let Cot be the computation cost of each oblivious transfer, and

C 0
ot its communication cost. An efficient protocol for oblivious

transfers is given in [36]. For any integerl > 0, this paper gives a
protocol with amortized cost

Cot =
1

l
� Ce +

2l

l
� C�; C 0

ot >
2l

l
� k1

whereC� is the cost of multiplication, andk1 is the size of the
keys used in oblivious transfer. We assumek1 = 100 [36]. As-
sume thatCe = 1000C�; then the best choice with respect to the
computation time isl = 8, and the costs become

Cot = 0:157Ce; C 0

ot > 32 k1 :

Cost The computation cost of coding the input is

w � jVRj � Cot = 32� n� 0:157Ce � 5 nCe

and the communication cost is

w � jVRj � C
0

ot > 32� n� 32 k1 � 105 n

A.1.2 Evaluating the Circuit
Let C(w; jVSj; jVRj) be the total number of gates required for

the circuit. We estimate lower bounds on the number of gates re-
quired for a brute force algorithm, and a more efficient partitioning
algorithm.

Let Ge be the number of gates required to compare twow-bit
numbers in the circuit to determine whether they are equal. LetGl

be the number of gates required to determine which number is less
than (or equal to) the other.

Brute Force Circuit Consider a circuit that compares every num-
ber inVR with every number inVS , and then merges the results to



output just the numbers inVR that were equal to at least one num-
ber inVS. The number of gatesC(w; jVSj; jVRj) in this circuit is
greater than

jVRj � jVSj �Ge:

Partitioning Circuit We assume that each setVR and VS is
given to the circuit in the form of an ordered array, with all du-
plicates removed. Instead of comparing all pairs of numbers, we
can split these arrays intom intervals (non-interleaving subarrays)
of size jVRj=m andjVS j=m. For ease of exposition, we assume
thatjVRj = jVSj = n, and thatn is a power ofm.

Out of all possiblem2 pairs of subarrays, with one subarray from
VS and the other fromVR, only at most2m � 1 pairs may have
a nonempty intersection; the others are pairs of non-interleaving
subarrays. To see this, note that in a pair of interleaving subarrays
the beginning of one subarray must be within the interval spanned
by the other. There is at most one pair per one such “internal be-
ginning.” There are2m subarrays in bothVS andVR, each having
only one beginning; and the smallest beginning is always “wasted,”
thus limiting the number of interleaving pairs to2m� 1 .

The circuit has to choose the2m � 1 interleaving pairs of sub-
arrays and then use recursion to compute set intersections within
these pairs. To check whether a pair of subarrays interleaves, we
need to compare the smallest and largest numbers of these subar-
rays, thus making 2 comparisons. There arem2 pairs, so we need
2m2 comparisons, and hence2m2Gl gates. Additional gates are
needed to reroute the subarrays and combine the recursive outputs,
but we shall ignore them in our estimation, since we are interested
primarily in a lower bound for the cost of the circuit (using this
algorithm).

Let f(n) be the cost of the circuit. Then

f(n) > 2m2Gl + (2m� 1) � f(n=m)

f(1) = Ge

Let c = 2m2Gl; then

f(n) > c + (2m� 1) � f(n=m)

> c + (2m� 1) � (c+ (2m� 1)f(n=m2))

> c �

logm n�1X
i=0

(2m� 1)i + (2m� 1)logm n f(1)

= c �
(2m� 1)logm n � 1

(2m� 1)� 1
+ (2m� 1)logm nGe

= c �
nlogm(2m�1) � 1

2m� 2
+ nlogm(2m�1) Ge

>

�
c

2m� 2
+Ge

�
� (nlogm(2m�1) � 1)

Substituting back the value forc, we get

f(n) >

�
m2

m� 1
Gl +Ge

�
� (nlogm(2m�1) � 1)

Twow-bit numbers can be checked for equality using2w�1 binary
gates and compared using5w� 3 gates. SettingGl = 5w� 3 and
Ge = 2w� 1 gives

f(n) >

�
m2

m� 1
(5w� 3) + (2w � 1)

�
� (nlogm(2m�1) � 1)

Brute Force vs. Partitioning Let jVRj = jVS j = n. (As before
w = 32 andk0 = 64.) Then, for the partitioning circuit, we get
the following values forC(w; jVRj; jVSj) = f(n) for the optimal
value ofm:

n m f(n)
10,000 11 2:3�108

1 million 19 7:3�1010

100 million 32 1:9�1013

The brute force circuit does much worse, withC(w; jVRj; jVS j)
equal to6:3�109, 6:3�1013, and6:3�1017 respectively.

Cost For each gate in the circuit,R gets a table fromS whose
size is4k0, and evaluates 2 pseudorandom functions. Therefore
the computation cost of circuit evaluation is

2Cr �C(w; jVS j; jVRj) = 2Crf(n)

and the communication cost is

4k0 �C(w; jVSj; jVRj) = 256 � f(n):

A.2 Comparison with Our Protocol
Computation We get the following computation costs:

n Circuit Our Protocol
Input (OT) Evaluation

104 5�104Ce 4:7�108Cr 4�104Ce

106 5�106Ce 1:5�1011Cr 4�106Ce

108 5�108Ce 3:8�1013Cr 4�108Ce

The cost of coding the input for the circuit is slightly higher than
the cost of our protocol. The total cost of the circuit (relative to
our protocol) depends on the ratio ofCe to Cr . While Ce � Cr ,
there are104 to 105 as many calls toCr as there are toCe. Thus
our protocol will be substantially faster ifCr > Ce=10000, and
slightly faster otherwise.

Communication The communication costs (in bits) are:

n Circuit Our Protocol
Input (OT) Circuit (Tables)

104 109 6:0�1010 3�107

106 1011 1:8�1013 3�109

108 1013 4:9�1015 3�1011

The circuit-based protocol requires1000 to 10; 000 times as much
communication as our protocol. Forn = 1 million, the communi-
cation time for the circuit-based protocol is 144 days (using a T1
line), versus 0.5 hours for our protocol. The communication cost
makes the circuit-based protocol impractical for database-size ap-
plications.
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