
An Adaptive Peer-to-Peer Network for Distributed Caching of
OLAP Results

Panos Kalnis† Wee Siong Ng§ Beng Chin Ooi§ Dimitris Papadias† Kian-Lee Tan§

†Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{kalnis,dimitris}@cs.ust.hk

§Department of Computer Science
National University of Singapore

{ngws,ooibc,tankl}@comp.nus.edu.sg

Abstract
Peer-to-Peer (P2P) systems are becoming increasingly pop-
ular as they enable users to exchange digital information
by participating in complex networks. Such systems are in-
expensive, easy to use, highly scalable and do not require
central administration. Despite their advantages, however,
limited work has been done on employing database systems
on top of P2P networks.
Here we propose the PeerOLAP architecture for support-

ing On-Line Analytical Processing queries. A large number
of low-end clients, each containing a cache with the most
useful results, are connected through an arbitrary P2P net-
work. If a query cannot be answered locally (i.e. by using
the cache contents of the computer where it is issued), it is
propagated through the network until a peer that has cached
the answer is found. An answer may also be constructed by
partial results from many peers. Thus PeerOLAP acts as a
large distributed cache, which amplifies the benefits of tra-
ditional client-side caching. The system is fully distributed
and can reconfigure itself on-the-fly in order to decrease the
query cost for the observed workload. This paper describes
the core components of PeerOLAP and presents our results
both from simulation and a prototype installation running
on geographically remote peers.

1. Introduction
Effective decision-making is vital in a global competitive

environment where business intelligence systems are becom-
ing an essential part of virtually every organization. The
core of such systems is a data warehouse, which stores histor-
ical and consolidated data from the transactional databases,
supporting complicated ad-hoc queries that reveal interest-
ing information. The so-called On-Line Analytical Process-
ing (OLAP) queries typically involve large amounts of data
and their processing should be efficient enough to allow in-
teractive usage of the system.
Distributed database technology is extensively used in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ACM SIGMOD ’2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

data warehouses to access the operational databases, ex-
tract, clean and integrate the data. [6] discuss the particu-
lar issues of the data warehouse environment for distributed
and parallel computation. The warehouse itself can also be
implemented as a distributed database. If a central ware-
house exists, standard replication methods can be used to
transfer data to departmental data marts [20]. For decen-
tralized implementations, where each department builds and
independent data mart, [10] employ a global schema in a
middleware to allow transparent access to all data. [1] have
also proposed an architecture for executing OLAP queries
over a decentralized schema. Their middleware component
follows an economical approach, similar to theMariposa sys-
tem [25].
These systems assume that the users belong to the orga-

nization that owns the data warehouse and have access to
the proprietary infrastructure. The query requirements are
well defined and the problems are related to data placement,
materialized view selection and query optimization, given a
static network of servers.
Here we investigate a different problem: a large number

of ad-hoc and geographically spanned users, access sporadi-
cally a number of separate warehouses and possibly correlate
information from all of them. Imagine for instance many
individual investors from all around the world, who trade
stocks in the New York Stock Exchange. In contrast to pro-
fessional stockbrokers, these users are unlikely to have any
proprietary tool to access the stock market’s warehouse, and
most probably connect with a simple applet through their
web browser. The primary problem in this case is not the
processing of the queries in the warehouses, but rather the
efficient usage of the available bandwidth, since the size of
results from OLAP queries may greatly vary from a few tu-
ples to many megabytes of data. This can be especially
true if the user is not satisfied with highly aggregated in-
formation, but needs access to detailed data in order, for
example, to correlate the NY prices with the ones from the
major European markets.
Intuitively, the problem is similar to accessing web pages

from remote web servers. Caching in web proxy-servers has
been used extensively in practice to deal with the latency
caused by slow network connections and accelerate the re-
trieval of the same URL from users at the same geographic
area. [16] employs active caching techniques [2], to cache
OLAP data together with web pages in web proxy-servers
using a three-tier architecture. [12] employs similar ideas to
implement a multi-tier caching system for OLAP queries on

a dedicated infrastructure.
In this work we follow a different approach focusing on the

client side. Continuing the previous example, assume that
users from Hong Kong pose queries to the NYSE warehouse
and some results are cached at their local computer [4, 5,
15, 21] hoping that subsequent queries can reuse this data.
However, the size of each client’s cache is relatively small
compared to the size of the warehouse, while the network
cost of transferring large amounts of data from overseas is
high. On the other hand, it is possible that some other user
in Hong Kong, who has fetched part of the required data
recently, can be accessed through a much faster network
connection. By sharing their cache contents all clients can
benefit, because the available space for caching is larger and
the amortized network cost is lower.
In the following sections we will describe PeerOLAP which

is a distributed caching system for OLAP queries based on
a Peer-to-Peer1 (P2P) network. The contributions of this
work include: (i) the proposal of the PeerOLAP architec-
ture, (ii) the employment of three cache control policies that
impose different levels of cooperation among the peers, and
(iii) the development of adaptive techniques that dynami-
cally reconfigure the network structure in order to minimize
the query cost.
PeerOLAP is complementary to distributed data ware-

houses, which deal with the efficient execution of OLAP
queries, since we focus on the effective utilization of client
resources. The same relationship exists with middleware ap-
proaches like [16] and [12]. Also the traditional client-side
caching in client-server systems is a special case of our sys-
tem, where the client caches do not cooperate.
We focus on OLAP for several reasons: (i) OLAP data

have a regular structure which allows easy decomposition
and reuse of previous results, (ii) the size of the results is
typically large and justifies the overhead of searching neigh-
bor peers, (iii) updates in data warehouses are infrequent
compared to transactional databases, therefore the cached
data are valid for a long time and (iv) queries exhibit tempo-
ral and geographical locality; for instance many Hong Kong
users are likely to request from NYSE similar data (e.g.,
related to the Hang Seng index).
The rest of the paper is organized as follows: in Sec-

tion 2 we include some essential background and review
the related work. Section 3 presents an overview of the
PeerOLAP architecture. Section 4 describes the modules
of an autonomous peer, the query optimization algorithm,
the caching policy and the adaptive behavior of the system,
while in Section 5 we present the results from the experi-
mental study. Finally, Section 6 concludes the paper with a
discussion about our future work.

2. Background
Conceptually, data warehouses deal with multidimensional

views of data. Under this model, there is a set of measures
that are the objects of analysis, such as sales. The measures
depend on a set of dimensions (i.e. business perspectives); as

1The term ‘P2P’ has been used in the database literature to
identify systems where each node may act both as a server
and a client assuming static configuration [14]. Such systems
are generalizations of the traditional client-server model and
standard distributed techniques can be applied. Here, ‘P2P’
refers to dynamic systems with ad-hoc participation, such
as Napster and Gnutella

 psc 6M

pc 6M ps 0.8M sc 6M

p 0.2M c 0.1M s 0.01M

�
 1

Figure 1: A data cube lattice. The dimensions are
Product, Supplier and Customer

an example consider product, customer and supplier. Thus,
a measure is a value in the multidimensional space which is
defined by the dimensions. Each dimension is described by
a domain of attributes (e.g., product ids). The set of at-
tributes may be related via a hierarchy of relationships, a
common example of which is the temporal hierarchy (day,
month, year).
There are O(2d) possible group-by queries for a data ware-

house with d dimensional attributes, which compose the
data cube. A detailed group-by query can be used to answer
more abstract aggregations. [9] introduce the search lattice
L, which is a directed graph whose nodes represent group-
by queries and edges express the interdependencies among
group-bys. There is a path from node ui to node uj if ui

can be used to answer uj (Figure 1).
A common technique to accelerate OLAP is to pre-calculate

some aggregations and store them as materialized views,
provided that some statistical properties of the expected
workload are known in advance. [9, 24, 23] describe greedy
algorithms for the view selection problem. These methods
follow a static approach, where the views are selected once
when the warehouse is set up. A dynamic approach is in-
spired by semantic data caching [3, 13]: instead of caching a
list of physical pages or tuple identifiers, the results of pre-
vious queries together with their semantic description are
stored.
For the special case of OLAP, [21] developed a semantic

cache manager called Watchman. The system stores in the
cache the results of the query together with the query string.
Subsequent queries can be answered by the cached data if
there is an exact match on their query strings. The authors
present admission and replacement algorithms that consider
the cost of re-evaluating a result and its size.
Dynamat [15] is another OLAP cache manager, which

stores fragments instead of arbitrarily shaped query results.
Fragments are aggregate query results in a finer granular-
ity than views since they may include equality selections on
some dimensions. They may be further aggregated to an-
swer more general queries, but the data from multiple frag-
ments cannot be combined. The caching policy is similar to
Watchman.
[5] performs a regular decomposition of the multidimen-

sional space into chunks [28], which constitute the smallest
piece of cached information (Figure 2). When a query is
asked, the system computes the set of chunks required to
answer it, and splits it into two subsets based on whether
they are cached or not. To answer the query, the system
will request the missing chunks from the warehouse. Only
chunks at the same aggregation level as the query are consid-
ered, i.e., no aggregation is performed on the cached results;
this option, however, is exploited in an extension of their
work [4]. The admission and replacement algorithms are
similar to Watchman.

12 13 14 15 3
8 9 10 11 2
4 5 6 7 1
0 1 2 3 Su

pp
lie

r

0
Product

0 1 2 3 Chunk
number

Figure 2: The ps, p and s views decomposed regu-
larly into chunks. Chunk p1 can be computed from
ps{1,5,9,13}

In PeerOLAP results are also cached in the form of chunks.
Except from the positive effect due to the finer granularity of
data, caching chunks has two more advantages: (i) the uni-
formity of the semantic regions, which allows chunks from
different results to be easily combined in order to construct
answers for new queries and (ii) good space utilization, since
there is no overlapping of cached results.
All the systems above, adopt traditional client-server ar-

chitectures with client-side or server-side caching. There
is no cooperation among caches and the network factor is
not considered. Alternatively, [16] proposes a middleware
approach where caching of OLAP results is performed in
web proxy-servers together with web pages. Since a web
proxy-server cannot cache dynamic data, they employ ac-
tive caching techniques [2] and cache an applet together with
the data, which is responsible for deciding whether subse-
quent queries may use the cached results. However, the
caching policy of the web proxy-server must be altered and
the OLAP data must be a substantial part of the total traffic
in order to achieve any practical results.
[12] extends the previous idea by employing a dedicated

infrastructure called OLAP Cache-Servers (OCS). OCSs are
similar to web proxy-servers but are optimized for caching
OLAP data and have computational capabilities allowing
local computation of summarized results from detailed data
that were previously cached. OCSs may form an arbitrary
network and can cooperate. The granularity of caching how-
ever is very coarse, since they store entire views. PeerOLAP
is different in several aspects: (i) there is no special mid-tier
infrastructure for caching OLAP results, but rather, each
client chooses to participate in a network with other clients
in order to implement a large distributed cache, (ii) PeerO-
LAP network is dynamic, compared to the static connections
among OCSs, (iii) the granularity of caching is finer, allow-
ing a query to be answered by partial results from many
peers, where in OCS a node either can answer the entire re-
sult or cannot answer it at all and (iv) PeerOLAP can cache
data from many warehouses simultaneously.
The requirements of our system match perfectly with the

characteristics of the P2P technology. Most of the existing
P2P systems, like Napster [17] and Gnutella [7] provide con-
tent sharing. Others, like ICQ [11] allow users to exchange
personal messages, while systems like Seti-at-home [22] en-
able the sharing of computational power. An evaluation of
P2P systems can be found in [26]. These systems, however,
lack database characteristics mostly in the areas of seman-
tics, data transformation and data relationships. Therefore,
they are limited to transferring content at the object level
and cannot support the execution of complex queries across
multiple sources or use intermediate results in order to an-
swer consecutive queries.

Piazza [8] is the first system to deal with database man-
agement issues in P2P systems. Each peer can have any
of the following four roles: data origin which provides the
original content, storage provider which stores materialized
views, query evaluator which uses its CPU resources to eval-
uate a query and query initiator which poses new queries to
the system. Piazza deals primarily with the data placement
problem, i.e. the selection of strategic places to store data
in order to improve query performance. Although this is
also an issue in distributed databases, there are fundamen-
tal differences since P2P systems do not have a centralized
schema. In addition, the membership of a peer in the system
is ad-hoc and dynamic, therefore it is very difficult to pre-
dict or reason about the location and quality of the system’s
resources. In Piazza, the data placement problem is solved
by separating logically the system into smaller spheres of

cooperation and advertising the set of materialized views to
all the nodes of a sphere.
In our case, there are similar issues, like the mechanism

that should be used in order to inform others about the
contents of a peer’s cache. However there are also many dif-
ferences: First, the finer granularity of data poses a heavy
overhead to advertising protocols. Consequently, there is
no public catalogue and the optimizer of PeerOLAP needs
to propagate each query to the network, while Piazza can
use the advertised information. Also, since Piazza is a data
placement system, it can pre-fetch beneficial data to the
proper nodes, while PeerOLAP is a caching system so it can
only reuse data that has been previously requested. An-
other major difference is that in Piazza there are prede-
fined spheres of cooperation, while PeerOLAP adapts dy-
namically its behavior and the network structure in order
to adjust to the current workload. Finally, since PeerOLAP
focuses on OLAP queries, we can employ several optimiza-
tions, which are not applicable for multi-purpose DBMSs.
In the following section we will describe in detail the ar-

chitecture of the PeerOLAP network. PeerOLAP builds on
and extends BestPeer [18] for OLAP applications. Briefly,
BestPeer is a generic P2P system designed to serve as a plat-
form to develop P2P applications easily and efficently. It has
the following features: (1) It employs mobile agents; (2) It
shares data at a finer granularity as well as computational
power; (3) It can dynamically reconfigure the BestPeer net-
work so that a node is always directly connected to peers
that provide the best service; (4) It employs a set of location
independent global name lookup (LIGLO) servers to uniquely
recognize nodes whose IP addresses may change as a result
of frequent disconnection and reconnection.

3. The PeerOLAP Network
The PeerOLAP network is a set of peers that access data

warehouses and pose OLAP queries. Each peer Pi has a
local cache and implements a mechanism for publishing its
cache contents and its computational capabilities. Other
peers can connect to Pi and request a result. Pi may either
answer the query (or part of it) locally, if it has the required
data, or propagate the query to its neighbors. In either case,
all results return directly to the peer that initiated the query.
The goal of PeerOLAP is to act as a combined virtual cache,
where all the components offer resources aiming at achieving
lower query cost.
Figure 3 depicts a typical PeerOLAP network consisting

of 7 peers and two data warehouses. There is an arbitrary set

P1

P2

P3

P4

P5
P6

P7

DW2

{c1}

{c2} DW1

LIGLOA

LIGLOB

Figure 3: A typical PeerOLAP network

of connections among peers denoted by solid lines, and each
peer also connects directly to one or multiple warehouses
simultaneously. Assume that P2 issues a query q referring
to chunks c1, c2 and c3. If c1 is already at the local cache,
P2 will send a request for c2 and c3 to its neighbors P1 and
P3. P1 contains c2, therefore it computes an estimation for
the cost of retrieving and transferring this result back to P2,
and at the same time it forwards the request to P6. Note
that both c2 and c3 are requested2 since P6 may be able to
provide c2 with lower cost than P1.
In order to avoid flooding the network with messages, a

maximum number of hops is assigned to each message. As-
suming that this number is 2, the query will not be propa-
gated to the neighbors of P6. On the other hand, P3 will not
forward the message although there is still one hop allowed,
since a peer can direct to the warehouse only its local queries
in order to avoid overloading the server with the same query.
There is also a mechanism for breaking message loops: each
peer keeps a queue of the recent messages and rejects the
ones that had been processed before.
P2 does not have any knowledge about the number of

the peers that will respond. Therefore, it waits until all
the requested chunks are found or a timer expires. Missing
chunks are requested from the data warehouse. Note that
although the warehouse can provide any chunk, it is the last
option due to the high network cost.
After searching has terminated, P2 decides which chunks

to keep in the local cache. Each chunk is assigned a benefit
value. If an incoming chunk c has a higher benefit than
some cached results, these results are evicted and c is stored,
else c is rejected. For chunks that were sent directly from
the warehouse (meaning that they were not found in the
neighborhood of P2), we explore the option of caching them
in some neighbor of P2 (i.e. P1 or P3).
Since peers can enter and leave the network dynamically,

a mechanism is necessary to provide the newcomer with an
initial set of neighbors. Here we employ LIGLO servers to
maintain a list of the online peers, together with details
about the warehouses that they access, their physical loca-
tion, speed of network connection, etc. A newcomer peer P
contacts a LIGLO server and gets a set of potential neigh-
bors. Then P decides independently the set of peers that
it will try to connect to. Except from LIGLO servers, the
PeerOLAP network is fully distributed without any central-
ized administration point. Furthermore, LIGLO servers are
not involved in the query processing and can be completely
eliminated if the set of initial neighbors can be otherwise
determined; for instance, peers on the same segment of a
LAN may connect to each other.

2A variation, where only the not-yet-found chunks are re-
quested, is discussed in the next section.

The set of initial neighbors is by no means optimal, since
their cached results may be irrelevant to P . Furthermore,
connections may be dropped as some peers leave the net-
work. Therefore, each peer implements a mechanism which
constantly evaluates the current neighbors and drops or adds
peers to the neighbor list, in order to achieve lower query
cost. Intuitively, peers with similar query patterns should
be neighbors. In such case, if a result is not found in the
initial peer, there is a high probability that one of the di-
rect neighbors will contain it. Due to the limited availability
of resources, each peer cannot have more than k neighbors,
where k is a parameter of the system. Even if there were
unlimited resources on a peer, it is not appropriate to have
too many neighbors, since the network will be overloaded
with messages, most of them being negative responses.
Here we make an effort to optimize the set of neighbors of

each peer, by formulating the problem as a second level of
caching. The size of the second level “cache” is the number
of available network resources, while the “cached” objects
are the connections to neighbors. Each neighbor is assigned
a benefit and may be dropped if a more beneficial neighbor
is found. Continuing our previous example, assume that
during the last 10 queries from P2, 5 chunks where found in
P1, 8 in P6 and none in P3. It is obviously beneficial for P2 to
have P6 as a direct neighbor, in order to avoid the overhead
of reaching it through P1. Therefore, the connection to P3

is dropped and is substituted with a (virtual) connection to
P6.
In the next section we describe in detail the components

of our architecture, and present the query processing and
caching algorithms. We also discuss the algorithm for net-
work reconfiguration.

4. Peer Architecture
The PeerOLAP network consists of numerous low-end work-

stations which connect to data warehouses, pose OLAP queries
and process the results. Every peer maintains a local cache
and implements a P2P protocol for connecting with other
caches. The application layer is separated from the cache
control unit; therefore the cache is not aware about the se-
mantics of the data. Both the creation of the execution plan
and the caching policy are fully decentralized.
Figure 4 depicts the architecture of an autonomous peer.

There are two basic layers: application and cache layer. The
application layer implements the user interface, the query
optimizer and the query execution engine. It has knowledge
about the schema of the warehouse and the semantics of the
data. In our implementation, the application layer is built
as a Java agent. When the user connects to a data ware-
house (e.g., by accessing its web site), the warehouse server
sends to the peer a mobile agent which implements all the
logic of the application layer. The agent then connects to
the cache layer, which is already running on the peer, and
all the data requests are directed through the cache layer.
More than one agents are allowed to run simultaneously at
the same peer if the user wants to connect to multiple ware-
houses. In our implementation, the logic of all agents is the
same although every warehouse supplies its own schema.
PeerOLAP provides an environment where different mobile
agents can reside and perform their tasks. The versatility to
adapt to different requirements for query optimization and
execution renders the system highly extensible and power-
ful. Note that the application layer does not have to be

P2P
Platform

Cache
Control

Cache

Query Optimizer
& Query

Execution Engine

To remote
peers

Application
layer

To data
warehouse

Cache layer

User
Interface

Figure 4: Architecture of a peer

implemented as an agent. Assuming that the user routinely
connects to some data warehouses, the client software can
be permanently installed on the local peer.
The cache layer consists of three modules:

1. The local cache, which is organized as a chunk file [5].

2. The cache control module, which implements the ad-
mission and replacement policy of the cache.

3. The P2P platform, which implements the low level
communication (among the peers, and between the
peer and the warehouse), the data transfer and the
remote agent support. Also, in collaboration with the
cache control module, it is responsible for the network
reconfiguration.

Apart from simplifying the development process, there is
another advantage from separating the peer in two layers:
by distinguishing the cache from the semantics of the data,
the cache can store simultaneously data from multiple ware-
houses. From the cache’s point of view, each piece of data is
a chunk, which is identified by a unique ID. It is the applica-
tion layer’s responsibility to ask for the correct set of chunks
and advise the cache about the benefit of storing a specific
chunk. Therefore, each peer can support simultaneous ac-
cess to multiple warehouses by allowing many agents to run
together. Also, a peer can store chunks that do not belong
to its local warehouses, but are beneficial to some neigh-
bors. In an extreme case, a peer may have only its cache
layer running without executing any local application.

4.1 Cost Model
Let c be a chunk and size(c) its size in tuples. S(c, P)

denotes the cost of computing c in node P . If P is a peer
of the cache network and we do not allow any aggregation
on cached results, then S(c, P) = a · size(c), where a is
constant. On the other hand, if cached results can be further
aggregated, S(c, P) is the total cost of reading the required
set of more detailed chunks and performing the necessary
computations. The network cost N for transferring c from
node Q to node P is:

N(c,Q→ P) =
Cn(P → Q)

k
+

size(c)

Tr(Q→ P)
(1)

where Cn(P → Q) is the cost of establishing a connection
between the two nodes, k is the number of chunks that will
be transferred together in a batch operation, and Tr(Q →
P) is the transfer rate between Q and P . If there is already
an established connection between the two nodes, Cn() is
zero.
When c is asked at peer P , the peer decides the location

Q from where it will request the data. Therefore, the total

cost T of answering c at P by using data from Q is:

T (c,Q→ P) = S(c,Q) +N(c,Q→ P) (2)

Obviously, if the chunk exists locally (i.e. P ≡ Q), N() is
zero.

4.2 Query Processing
A query q has the form:

SELECT <grouping predicates> AGR(measure)

FROM data

WHERE <selection predicates>

GROUP BY <grouping predicates>

Let σ and γ be the set of selection and grouping predi-
cates, respectively. View v is the representative view of q,
if the set of dimensions of v is σ ∪ γ. For example, a query
that asks for the sum of sales of a set of products for each
customer, corresponds to the pc view of Figure 1. A node
in the PeerOLAP network can compute the result of such
queries by first accessing the set C of required chunks at
the same level of granularity as the representative view and
then performing the necessary selections and aggregations
on them. Here we focus on the problem of locating, ac-
cessing and caching the chunks of C, therefore we consider
queries involving selections on the grouping predicates only
(i.e. σ ⊆ γ). Furthermore, the predicates of σ are such
that the results match with the boundaries of entire chunks.
More general queries can be computed by post-processing
the chunks of C.
We assume that the warehouses are read-only meaning

that the clients cannot issue update statements. If the con-
tents of the warehouse change, it must broadcast the rel-
evant invalidation messages. Alternatively, it can set the
expiration time in each chunks it computes.
Bellow, we will discuss two query processing policies, an

eager and a lazy one, which differ on the amount of effort
they put on constructing the execution plan.

4.2.1 Eager Query Processing (EQP)
Assume that a user issues a query q at peer P . The EQP

policy answers q by performing the following steps:
1. The query is decomposed into chunks at the same gran-

ularity as the representative view. Let Call be the set of
required chunks.
2. P first checks its own cache. Let Clocal be the set of

chunks that are present and Cmiss be the remaining chunks.
3. P sends a message to its neighbors Q1, . . . , Qk asking

for the Cmiss set. If Qi has a subset of Cmiss, then it es-
timates the cost T (ci, Q → P) for each of the chunks and
sends these estimations to P . If a peer does not have any
of the required chunks, it does not respond. In any case, Qi

propagates the request for the entire Cmiss set to its own
neighbors recursively, until the maximum allowed number
of hops is reached.
4. P keeps receiving responses for a period t, after which

it assumes that no more results are expected.
5. Let Cpeer be the subset of Cmiss that was found in the

PeerOLAP network. P constructs the execution plan for
Cpeer in a greedy manner: A chunk ci is randomly selected
from Cpeer and is assigned to Qi, where Qi is the peer that
can provide ci with the lowest cost. Next, a chunk cj is
selected from the remaining chunks in Cpeer. Let Qj be
the peer that provides cj with the minimum cost. If Qi

also contains this chunk, the algorithm checks whether the
total cost T ({ci, cj}, Qi) of acquiring both chunks from Qi

is smaller than T (ci, Qi)+T (cj , Qj) in which case it assigns
cj also to Qi. The process continues for the rest of the
chunks in Cpeer. Observe that acquiring multiple chunks
simultaneously from the same peer may be cheaper, because
the cost of sending messages and initializing the network
connections is shared.
6. P initializes direct connections to the peers defined by

the execution plan and requests the corresponding chunks.
The peers send back the chunks that have not been evicted
in the meantime. Let Cevicted be the set of evicted chunks.
7. The set CDW of chunks still missing is: CDW = Cmiss−

(Cpeer − Cevicted). P gets these chunks directly from the
warehouse.
8. P composes the answer and returns it to the user. The

new chunks are sent to the cache control module and any
necessary reconfiguration of the network is performed.
Only chunks at the same aggregation level as the query

are considered. By exploiting the possibility of computing
missing chunks by further aggregating the cached results, a
more efficient execution plan may be constructed. However,
in such case the number of ways to compute a chunk grows
exponentially to the number of dimensional attributes and
the construction of the execution plan becomes a difficult
optimization problem which is outside the scope of this pa-
per. Nevertheless, the cost model is general enough to deal
with aggregations if they are performed within the scope of
a single peer.

4.2.2 Lazy Query Processing (LQP)
The previous policy attempts to expand the search space

as much as possible in order to locate the maximum number
of chunks. The drawback, however, is that the system is
overloaded with messages, many of which are redundant, ei-
ther because some of the accessed peers are irrelevant to the
query, or because multiple peers contain the same chunk, but
their cost difference does not justify the high message over-
head. Here we present a second policy, called Lazy Query

Processing which tries to reduce the number of visited peers.
LQP is similar to EQP except from step 3; P sends the

request to all of its neighbors Q1, . . . , Qk, but each neighbor
will propagate the request only to its most beneficial neigh-
bor. In addition, if Qi can answer some of the chunks, it
removes them from the propagated message. As a result,
if the entire query can be answered by Qi, the message is
not propagated. The process is repeated until the maximum
allowed number of hops hmax is reached. If each peer has k
neighbors the number of messages are O(k · hmax) while for
EQP this number becomes O(khmax).
We already mentioned that the new chunks are forwarded

to the cache control module, which decides whether it is
beneficial to store some of them locally. The next paragraph
explains this issue; the notion of a peer’s benefit will be clar-
ified in Section 4.4, where we discuss the adaptive behavior
of the system. The LQP policy fits well in this concept since
intuitively we wish to form small sub-networks with similar
query patterns.

4.3 Caching Policy
In order to define the cache control policy, a benefit met-

ric B() is assigned to every chunk c at a peer P . Näıve LRU
or LFU schemes are inapplicable for OLAP queries because

the cost of computing chunks varies greatly at different lev-
els of aggregation. [21] defines a metric, which is a function
of the cost to compute a result normalized by its size and
frequency. The same metric is used in [15]. [5] proposes a
caching algorithm, called ClockBenefit, which is a general-
ization of LRU. The benefit of a chunk is measured by the
fraction of the base table that it represents. Therefore, if
there are n chunks in a view v, the benefit of each chunk is
|D|
n
, where |D| is the size of the base table. Since the number

of chunks at higher levels of aggregation is small, they have
a higher benefit. The benefit is thus proportional to the cost
of computing a chunk. The exact cost is not important in
their case, since the back-end always computes each chunk
from the base tables and also the cache does not perform
any aggregation.
Here we define the benefit B() of a chunk c in a peer P

as:

B(c, P) =
T (c,Q→ P) + a ·H(P → Q)

size(c)
(3)

where H(P → Q) is the number of hops from peer P to Q

and a is a constant representing the overhead of sending one
message. Intuitively, a high value of H() denotes that it is
difficult to locate a result, therefore it is more beneficial to
keep it locally. Notice that the cost of locating a result is
proportional to the number of hops rather than the number
of peers visited, since a peer sends each request to all its
neighbors in parallel. The benefit value is normalized by
dividing the total cost of obtaining a chunk by its size.
Recall that T () is the total cost of computing and transfer-

ring a result; its inclusion in the benefit denotes that results
which are expensive to obtain, should be stored locally. Al-
though our caching algorithm is similar to ClockBenefit, the
|D|
n

metric is not suitable, since we allow pre-aggregation at
the data warehouse. Therefore, the computation cost of a
chunk depends on the set of materialized views.
PeerOLAP allows replication of a chunk in many peers.

Replication should be performed only if it is absolutely nec-
essary, because it consumes space that could be used for
other chunks. The above mentioned benefit function facili-
tates the replication of objects in a controlled manner. Let c
be a highly aggregated chunk that is asked for the first time
and is computed from the warehouse. Since both the com-
putation and network cost are expected to be high but its
size small, the benefit will be high. Assume that P caches
c and Q requests c from P . Since the cost of retrieving and
transferring c is now lower, the probability that Q caches
the same result also decreases. If Q needs c in the future it
can find it in P and its available cache space can be used
for more beneficial chunks.

4.3.1 Admission and Replacement Algorithm
It should be obvious from the previous example that an

incoming chunk is not cached by default, but only if it is ben-
eficial enough for the peer. The admission and replacement
algorithm, called Least Benefit First (LBF) is presented be-
low. LBF is an LRU-like algorithm, which considers the
benefits of the objects. It assigns a weight W () to every
cached chunk, which initially is equal to the chunk’s benefit.
W () is decreased each time a new chunk is considered for
admission, and is restored to its original value whenever the
chunk is accessed again. When a new chunk cquery arrives,
LBF sorts the cached chunks in ascending weight order and

marks as potential victims the first ones which, if evicted,
will release enough space for cquery. In order to avoid access-
ing the entire cache index each time a new object arrives, we
employ CLOCK [5]. Observe that the sorting step of line
8 requires at most O(log |CIndex|) time, where |CIndex|
is the number of objects in the cache, because the objects
are previously sorted and in every step the position of only
one object may change. The new chunk is stored only if its
benefit is greater than the combined weight of the victims.

Algorithm 1 LeastBenefitFirst(cquery)

1: /* cquery is the query chunk */
2: if cquery is already in the cache then
3: W(cquery) := B(cquery, P) /* reset W(cquery) to its

initial value */
4: else
5: Let cCLOCK be the chunk corresponding to the

CLOCK position
6: W(cCLOCK) := W(cCLOCK) - B(cquery, P)
7: Advance CLOCK position
8: CIndex := List of all cached chunks sorted in ascend-

ing W(ci) order
9: victims := ∅
10: next := 0
11: while FreeCacheSpace +

∑
vi∈victims

size(vi) <

size(cquery) do
12: victims := victims

⋃
CIndexnext

13: next++
14: end while
15: Wvictims :=

∑
vi∈victims

W (vi) /* the total weight of

all victims */
16: if Wvictims ≤ B(cquery) then
17: Evict victims from cache
18: Insert cquery

19: W(cquery) := B(cquery, P)
20: end if
21: end if

LBF resembles the GD [27] algorithm, which is used for
caching web pages. GD, however, will always cache a new
object even if it needs to evict more beneficial ones. In
our case such behavior is contradictory with the controlled
replication scheme that we aim at achieving.
The LBF algorithm controls the local cache of each peer.

Next we will present three policies, which describe the be-
havior of the entire system and enforce progressively higher
degree of collaboration.

4.3.2 Isolated Caching Policy (ICP)
The rational behind the Isolated Caching Policy is that a

peer P is completely autonomous and will attempt to ben-
efit from the other peers in a greedy manner. P publishes
its cache contents and employs the algorithms that were de-
scribed before, but it does not count the hits on its cache by
the other peers. Therefore, if a neighbor Q requests a chunk
c, which is in the cache of P , P will provide c but it will not
update its weight back to the original value (line 3 of LBF).
If c is not important for P it will eventually be evicted even
if it is beneficial for the neighbor peers.
Although ICP disregards collaboration, it suits the phi-

losophy of P2P systems. Recall that the peers do not nec-
essarily belong to the same organization. Instead they may

belong to autonomous users who would like to have complete
control on the resources they provide.

4.3.3 Hit Aware Caching Policy (HACP)
In contrast to ICP, the Hit Aware Caching Policy con-

siders the hits from other peers in an effort to ensure that
the caches cooperate with the aim of minimizing the total
query cost. In order to comprehend this consider again the
benefit function of LBF: If P finds a chunk c in a peer Q,
then B(c, P) is lower than if c were answered by the ware-
house; therefore, the probability that P caches c decreases.
Intuitively, LBF implements a passive way of collaboration,
based on an optimistic approach, since it assumes that c

will still be in Q when it needs it again. In order for this to
happen, HACP increases the benefit of c in Q, whenever c
is used by another peer.

4.3.4 Voluntary Caching
The Voluntary Caching Policy attempts to exploit under-

utilized resources that may exist in some peers and at the
same time avoid wasting any result that has been obtained
from the warehouse. Assume two peers, P and Q where P
exhibits a heavy workload and its cache is full with high-
benefit chunks, while Q poses a few queries and its cache
is under-utilized with low-benefit chunks. P asks for chunk
c, which is found only at the warehouse. Although c has a
substantial benefit, assume that P cannot admit it because
the benefit of the potential victims is higher. Instead of
discarding it, the voluntary caching policy will ask whether
any neighbor of P can cache the result. If such a neigh-
bor, say Q, exists, c will be forwarded to it. In case that
multiple neighbors volunteer to cache c, P selects the one
with the highest B(c,Q) − B(victims,Q) value. Naturally,
P has to pay the cost of transferring c to Q which is added
to the total query cost. The intuition is that this cost will
be amortized by subsequent requests for c. Note that due to
the transferring cost, the benefit of caching c at Q becomes:

B(c,Q) =
T (c,DW → P)− T (c, P → Q)

size(c)
(4)

where DW is the warehouse, P the requesting peer and Q

the caching peer.
The voluntary caching policy may work either in conjunc-

tion with ICP (v-ICP) or with HACP (v-HACP).

4.4 Network Reorganization
The previous techniques attempt to minimize the total

query cost by constructing efficient execution plans and caching
query results. In this section we try to optimize the network
structure, by creating virtual neighborhoods of peers with
similar query patterns. The goal is to assign a set of neigh-
bors to each peer P , so that there is a high probability for P
to obtain missing chunks directly from them without having
to search a large part of the network. These neighbors are
the only ones that P can visit directly.
Ideally a peer should be able to communicate with all oth-

ers by direct connections, in order to have complete knowl-
edge about the contents of all caches. This is impractical for
two reasons: (i) network connections consume resources at
the peer and (ii) the entire network would be flooded with
messages. Nevertheless, as we show experimentally good re-
sults can be obtained even with a limited set of beneficial
neighbors. Note that the initial neighbors that a peer con-

� Qg�

Qe�

Qf�
P�

Qa�

Qb�

Qc�

DW1� �

Figure 5: An example network structure

�

5/20�1/20�3/20�1/20�5/20�2/20�3/20�

Qa� Qb� Qc� Qd� Qe� Qf� Qg�

�

Figure 6: The LFU connection cache at peer P

(numbers represent hit ratios)

nects to when entering the network, are nothing more than
starting points and they are by no means optimal. Addi-
tionally, even if a good set of neighbors is known at the
connection time, the query patterns may change or some of
the neighbors may leave the network.
Motivated by the above, we formulate the problem as a

special case of caching. Each peer has a number of available
network resources, which are the equivalent of cache cells,
and the objects that are cached are the direct connections
to other peers. Each connection is assigned a benefit value
and the most beneficial connections are selected to be the
peer’s neighbors.
Similar to the LBF policy, we follow an optimistic ap-

proach assuming that if a peer was contacted once it can be
found again latter. From this assumption, and given that
the cached objects cannot be further aggregated, it is clear
that a hit to any peer is of equal benefit, regardless of the
chunk that was retrieved. Recall that in any case the results
are send back to the peer that initiated the query via a di-
rect connection, which opens for this transfer. Therefore, in
Figure 5 if Qf provided a very beneficial object to P while
Qe provided a less beneficial one, each connection is charged
with one hit. For these reasons, we use a simple LFU policy
for caching network connections.
Since the number of allowed network connections ncmax

is expected to be small, we can maintain accurate statistics
for more than ncmax connections. For instance, in Figure 6
ncmax = 3 and the neighbors of P are Qa,b,c but we main-
tain a cache of 7 connections. The set of neighbors is not al-
tered every time there is a change in the LFU cache in order
to avoid frequent re-configurations of the network. Rather,
the system waits until k requests are served (where k is a
system parameter) and then selects as neighbors the ncmax

more beneficial connections. In the previous example, if it
is already time for reorganization, Qb will be evicted and it
will be replaced by Qe.
Notice that the network connections considered here are

virtual and differ from the physical network connections.
Consequently the “neighbor” relation is asymmetric: if P
has Q as neighbor, the opposite is not necessary true. In
case that some relations are symmetric, the two directions
can share the same physical connection, thus saving the cost
of initializing new connections. Here we do not consider the
minimization of this cost.

Table 2: The schema of the APB dataset. The values
represent the size of the domain in each dimension
at the corresponding level of hierarchy

Product Customer Channel Time
L0 1 1 1 1
L1 4 99 9 2
L2 15 900 - 8
L3 75 - - 24
L4 300 - - -
L5 605 - - -
L6 9000 - - -

Table 3: The schema of the SYNTH dataset
D1 D2 D3 D4

L0 1 1 1 1
L1 25 25 5 10
L2 50 50 25 50
L3 100 - 50 -

5. Experimental Evaluation
We used two implementations to evaluate the performance

of PeerOLAP. The first one is an actual prototype consisting
of a data warehouse server in Hong Kong, and 10 peers in
Singapore. The prototype was used to test the fundamental
aspects of the architecture and to derive real-life parame-
ters that were subsequently used by a simulator to evaluate
the behavior of PeerOLAP in various situations. Table 1
illustrates this set of parameters, which will be used in this
section.
We employed the dataset from the APB benchmark [19]

in addition to a synthetic dataset (SYNTH) which was also
used by [5] (see Tables 2 and 3). The total space of the
entire cube was around 3.5G tuples for APB and 69M tuples
for SYNTH. The total space was divided in chunks in a
way that the chunk dimension range at any level was kept
proportional to the number of distinct values at that level.
The size of the largest chunk was 1M tuples.
The Detailed Cost Saving Ratio (DCSR) [15] was em-

ployed to measure the results. DCSR is defined as:

DCSR =

∑
i
wcost(qi)−

∑
i
cost(qi)

∑
i
wcost(qi)

(5)

where wcost(qi) is the total cost of answering the query
qi in the worst case, and cost(qi) is the cost achieved by the
system. For the worst-case scenario, we assumed that the
peers do not have any cache3, so all the queries must be an-
swered by the warehouse (Figure 7d). Note that these costs
include both T (c,Q → P) (i.e. the cost of calculating and
transmitting a chunk) plus the overhead of the messages.
The tested configurations consisted of one data warehouse

at a remote location (i.e., the transfer rate of the connection
was TRR) and a set of 1 to 100 local peers. The speed of
all local connections was set to TRL.

5.1 PeerOLAP vs. Client-Side-Cache Architecture
In the first set of experiments we compared PeerOLAP

against a traditional client-server architecture with client-
side-caching (C-S) (Figure 7b). First we considered the best

3Theoretically, the worst-case cost can be higher, due to
messages. This is not significant for our results, since we are
interested on the relative performance of different policies.

Table 1: Parameters derived from the prototype
Parameter Value Comments

TRR 3.68891 KB/sec Average transfer rate between remote peers (WAN)
TRL 594.9347 KB/sec Average transfer rate between local peers (LAN)
TRD 4675.945 KB/sec Average transfer rate from the disk
AMTR 1.2975 sec/mes Average time per message between remote peers (WAN)
AMTL 0.3765 sec/mes Average time per message between local peers (LAN)
ICTR 3.68 sec/con Average time to initiate a remote connection (WAN)
ICTL 0.36 sec/con Average time to initiate a local connection (LAN)

DW

DW

DW

DW

(a) (b) (c) (d)

Figure 7: Configurations with one data warehouse.
Dashed lines represent remote, and solid lines lo-
cal connections, respectively: (a) PeerOLAP, (b)
Client-Side-Cache, (c) One large cache, (d) Clients
without cache

case for PeerOLAP, where all peers are connected to each
other (i.e., clique network). We used 10 peers and we varied
the cache size of each one from 0.001% to 10% of the total
data cube size. The query set consisted of 20K queries fol-
lowing the 80-20 rule (i.e., 80% of the queries access a hot
region representing 20% of the entire data cube). Each peer
initiates the same number of queries. For fairness of compar-
ison with C-S, PeerOLAP used its most näıve configuration:
the optimizer employs the lazy policy (LQP) and the cache
policy is ICP.
The results are shown in Figures 8 and 9. At the same

figures we draw the results of a hypothetical 1-peer system
(Figure 7c) having cache size equal to the sum of the caches
of all peers. This configuration, called CentralCache repre-
sents the optimal case of the system. It is clear that in a
clique configuration PeerOLAP achieves near-optimal per-
formance. The cost difference from CentralCache is due to
the replication of some objects, which is difficult to be com-
pletely avoided, and the cost of the messages. PeerOLAP
easily outperforms C-S as expected. The results from both
APB and SYNTH dataset are similar, although the absolute
values differ. Since the trends were the same for all our ex-
periments, in the following we only present the results from
SYNTH.
Next we tested a more realistic configuration: each peer

was connected to 4 others only, and the maximum hops al-
lowed for searching was set to 3. The cache size of each
peer was set to 1% of the total cube size, while all policies
remained the same as before. The number of peers varied
from 10 to 100. The query set was generated as follows:
The peers were divided to groups of 10. For each group we
provided a separate query set following a 90-10 distribution,
while there was no intersection among the hot regions of dif-
ferent groups. Again 20K queries were generated and each
peer initiated the same number of queries. The results are
presented in Figure 10.
The performance of C-S is almost constant since, irre-

�

0.00�
0.10�

0.20�
0.30�
0.40�
0.50�
0.60�
0.70�
0.80�

0.001%� 0.01%� 0.1%� 1%� 5%�
Cache�size�(%�of�cube)�

DCSR� C-S� Central Cache�PeerOLAP�

Figure 8: PeerOLAP vs. Client-Side-Cache system:
(APB dataset)

�

0.00�
0.20�
0.40�
0.60�
0.80�
1.00�

0.01%� 0.1%� 1%� 5%� 10%�

DCSR�

Cache�size�(%�of�cube)�

C-S� Central Cache�PeerOLAP�

Figure 9: PeerOLAP vs. Client-Side-Cache system:
(SYNTH dataset)

�

0.30�
0.40�
0.50�
0.60�
0.70�
0.80�
0.90�
1.00�

10� 20� 40� 60� 80� 100�
Number�of�Peers�

DCSR�
PeerOLAP� C-S� Central Cache�

Figure 10: Groups of ten peers each, accessing the
same hot region (4 neighbors per peer, 3 hops al-
lowed)

�

0.40�
0.50�
0.60�
0.70�
0.80�
0.90�

0� 2� 4� 6� 8� 10�
Neighbors�per�Peer�

DCSR�

EQP� LQP�

Figure 11: Query optimization for a network of 100
peers and 3 hops

�

0.40�
0.50�
0.60�
0.70�
0.80�
0.90�

0� 1� 2� 3� 4� 5� 6�
Maximum�Number�of�Hops�

DCSR�

EQP� LQP�

Figure 12: Query optimization for a network of 100
peers and 4 neighbors per peer

spectively of the number of peers, the size of an individual
cache remains the same. CentralCache also improves when
size of the total cache increases, as expected. The behav-
ior of PeerOLAP is more complicated: for 10 peers, there
is only one group, and the system attempts to exploit the
contents of neighbor caches, as before. However, its per-
formance now is not very close to the optimal, because the
number of neighbors and the number of hops are limited.
Although in the best case each peer can reach 12 others (i.e.
number of neighbors times number of hops), the structure
of the network may contain loops so the actual number of
peers that are explored is lower. Due to the limited knowl-
edge of the contents of other caches, the performance drops.
This is more obvious when the number of peers increases.
More peers with irrelevant data are inserted therefore it is
more difficult for a peer to find others with similar work-
loads. Nevertheless, even when there are 100 peers in the
network, PeerOLAP is still considerably better than C-S,
partially because it can locate peers at the same group, and
also because it takes advantage on similarities on the “cold”
part of the workload.
Notice that the performance of PeerOLAP drops because

we add peers with different workload. If more peers with
similar workload are inserted, the performance typically in-
creases, or remains the same at the worst case.

5.2 Evaluation of the Query Optimization Strategies
The next experiment evaluates the performance of the ea-

ger (EQP) and the lazy (LQP) query optimization strate-
gies. We used a network of 100 peers, each equipped with
cache space equal to 1% of data cube space. The caching
policy was set to ICP and network reorganization was dis-
abled. The query set consisted of 10 groups with 10 peers
each, and every group was accessing a different hot region,
as before. First we fixed the maximum number of hops to 3
and we varied the number of neighbors per peer. The results
are shown in Figure 11.
Naturally, when there are 0 neighbors PeerOLAP is equiv-

�

0.74�

0.79�

0.84�

0.89�

1%� 5%� 10%�
Cache size (% of cube)

ICP
HACP
v-ICP
v-HACP

DCSR�

Figure 13: Comparison of the caching policies

alent to C-S. When the number of neighbors increases, the
knowledge of other peers’ contents also improves leading to
better performance. The performance gain is almost linear
for LQP since the maximum number of peers it can search
is also a linear function of the number of peers. EQP on
the other hand, can explore up to O(nhops) peers, where
n is the number of neighbors. For example, when n = 6,
EQP may potentially contact all the nodes (depending of
course on the network structure) since 63 = 216. Therefore
the performance improves fast until it is almost equal to the
optimal one. Similar results are shown in Figure 12, where
we fix the number of neighbors to 4 and we vary the num-
ber of hops. Notice that when the number of hops is 1, the
two policies are equivalent, since LQP always searches all its
direct neighbors.
From these results, one might suggest that it is always

preferable to follow the EQP strategy. However the perfor-
mance metric we use here is based on the total execution
cost and does not provide any information about the re-
sponse time. EQP transmits a large amount of messages in
the network. If all these messages need to be simultaneously
processed, the response time will be affected considerably;
such behavior contradicts the users’ requirements.

5.3 Evaluation of the Caching Policies
In this set of experiments we evaluate the performance of

the caching policies. We used a clique network consisting
of 10 peers and we generated query sets consisting of 20K
queries following a 90-10 distribution. In contrast with the
previous experiments, here the number of queries each peer
initiates is not the same for all peers. In each dataset Qk,
one of the peers receives k queries and the rest are divided
equally to the remaining 9 peers. For instance, in the Q90

query set, 90% of the queries will be assigned to one peer,
and the rest will receive 10/9=1.1% of the queries. In this
way we want to simulate situations where some peers use
heavily their resources, while others are underutilized.
Figure 13 compares the four combinations of caching poli-

cies for the Q90 query set and cache sizes varying from 1 to
10%. The experiments reveal that ICP and HACP have neg-
ligible performance differences. Moreover, there are cases
where HACP performs slightly worse than ICP. This can be
explained by the following example: assume that P fetches
cQ and Q fetches cP from the warehouse and store them in
their local cache with high benefit values. Then P and Q re-
quest cP and cQ respectively. cP is not cached in P (neither
cQ in Q) since its benefit is low because it is already stored in
the neighbor peer. At the same time, because of the HACP
policy, cP is forced to remain in Q (and cQ in P). The re-
sult of this kind of “deadlock” is that both peers must pay
the network cost of fetching the result from their neighbor,

�

0.5�
0.55�
0.6�

0.65�
0.7�

0.75�
0.8�

0.85�

10%� 50%� 66%� 90%� 100%�
Percentage�of�workload�at�P2�

HACP�
v-HACP�

DCSR�

Figure 14: HACP vs. v-HACP for Q10, Q50, . . . , Q100

query sets

�

0.2�
0.3�
0.4�
0.5�
0.6�
0.7�
0.8�
0.9�

P1� P2� P3� P4� P5� P6� P7� P8� P9� P10�

HACP�
v-HACP�

DCSR�

Peer�ID�
0.2�
0.3�
0.4�
0.5�
0.6�
0.7�
0.8�
0.9�

P1� P2� P3� P4� P5� P6� P7� P8� P9� P10�

ICP�
v-ICP�

DCSR�

Peer�ID�

Figure 15: DCSR achieved by each individual peer
for Q90, and cache size 1%: (left) Isolated Caching
Policy, (right) Hit Aware Caching Policy

in contrast with the ICP policy which would eventually en-
able each peer to cache the correct chunk. Assigning a lower
weight to the remote accesses, compared with the local ones,
only reduces but does not solve the problem.
Although HACP is not very beneficial itself, it combines

well with the voluntary caching approach. In theQ90 dataset,
there are 9 nodes, which are under-utilized. Voluntary caching
allows some of the data from the heavy loaded peer to use the
available resources of its neighbors. Therefore both v-ICP
and v-HACP perform better than ICP and HACP. v-HACP
is better than v-ICP because it allows the heavy-loaded peer
to inform the others that the chunks it provided previously
are still useful. Nevertheless, again the performance differ-
ence is not significant; the major performance gain comes
from voluntary caching.
In Figure 14 we further investigate this issue: we compare

HACP and v-HACP for workloads with different skew. We
set the cache size to 1% and used query sets varying from
Q10 to Q100 (i.e., all the queries are initiated by the same
peer). v-HACP is better in all cases; however, when all
peers are significantly loaded, the difference between the two
policies is not large. Nevertheless, when some peers are
under-utilized, v-HACP is clearly better. This is obvious in
the extreme case, where all the queries are asked by the same
peer, while the rest just share their caches. If voluntary
caching is not used in this case, the caches of all 9 peers
are always empty; this explains the substantial performance
difference when v-HACP is employed. Note that the results
among different query sets are not comparable.
Figure 15 presents the performance of each individual peer

for the Q90 set where the cache size is set to 1%. Obviously
P2 is the peer which initiates the 90% of the queries. We
have shown before that the overall performance of the sys-
tem improves due to voluntary caching. Figure 15 reveals
that in addition to the heavy-loaded peer, other peers may
also benefit, but some may exhibit worse performance. This
is true both for v-ICP and v-HACP, although the peers are
affected in a different way.

�

0.44�
0.49�
0.54�
0.59�
0.64�
0.69�

0� 2� 4� 6� 8� 10�
Neighbors�per�Peer�

DCSR�

Static�LFU�

Figure 16: Effect of network reorganization

�

0.5�

0.55�

0.6�

0.65�

0� 10� 20� 30� 40� 50� 60� 70� 80� 90� 100�
Reorganization�Period�(number�of�queries)�

DCSR�

Static�LFU�

Figure 17: Frequency of network reorganization

5.4 Effect of Network Reorganization
In the last set of experiments we evaluated the adaptive

behavior of PeerOLAP. We employed a network of 100 peers
and we set the cache size of each to 1% of the data cube.
The query optimization strategy was LQP and the caching
policy was ICP. We used the same query set as in Section 5.2
(i.e. 10 groups with 10 peers each; every group accesses a
different hot region). The maximum number of hops was set
to 5. The period Treorg that a peer reorganizes its neighbors
was set to 40 (i.e., each time it has asked 40 queries).
In Figure 16 we vary the number of neighbors per peer

and compare our adaptive strategy, versus a static network.
As the number of neighbors increases, the performance of
the static system improves, because of the better knowledge
about the contents of other peers. By rearranging the neigh-
bors of a peer P , there are two possible benefits: (i) the cost
of searching for chunks decreases because some distant ben-
eficial relevant nodes are becoming direct neighbors and (ii)
with high probability, the neighbors of a beneficial peer are
also beneficial to P ; therefore, larger groups are constructed
incrementally.
In Figure 17 we set the number of neighbors per peer to

4 and we vary the reorganization period Treorg from 0 to
100. When Treorg = 0, the network is static. When Treorg

becomes 10, the performance drops significantly. This is due
to the fact that there was not enough time to gather accu-
rate statistics; the initial network structure happened to be
quite beneficial and the new structure is worse. However, if
we allow the system to collect more information, the result-
ing network structure will be better and the performance
increases. Observe that for values of Treorg greater than
40, DCSR drops again slowly. The reason now is different:
reorganization is performed so infrequently that cannot fol-
low the changes of the workload. In the extreme case, if
Treorg approaches infinite (practically if it is larger than the
number of queries), the network becomes identical to static
again. Fine-tuning Treorg is outside the scope of this paper.

6. Conclusions
In this paper we have presented PeerOLAP, a distributed

caching system for OLAP results. In a typical client-server
architecture, isolated remote clients access data warehouses
and maintain previous results in their local caches. By shar-
ing the contents of the individual caches, PeerOLAP con-
structs a large virtual cache which can benefit all peers. The
system is fully distributed and highly scalable as there is no
centralized administration point and no central catalogue.
The network does not have any specific structure and par-
ticipation of the peers is unpredictable.
As shown in the experimental evaluation, PeerOLAP achieves

significant performance gains with respect to traditional sys-
tems. This is accomplished by (i) query optimization tech-
niques that determine which chunks should be requested
form the warehouse, and which should be retrieved from the
peers (ii) caching policies that enable co-operation among
caches and eliminate unnecessary replication of objects (iii)
re-configuration mechanisms that create virtual neighbors of
peers with similar access patterns.
Currently PeerOLAP considers only cached chunks at the

same level of aggregation as the query. For our future work
we will investigate the option of computing a result at the
peer side by further aggregating the cached data. The com-
plication in such case is that every chunk can be computed
by exponentially (to the number of dimensions) many plans.
[4] explore this problem for a single cache and propose a
method, which maintains additional information with each
chunk in order to achieve good amortized performance for
the query optimizer. In the distributed case, however, this
method is inapplicable since it requires complete knowledge
of the cached contents.
Another possible extension is the development of more so-

phisticated algorithms for the network reconfiguration. Iden-
tifying the neighborhoods of peers with similar access pat-
terns is essentially a clustering problem, which however is
difficult to solve because: (i) there is no complete knowl-
edge about the whole network at any site; thus, each peer
should decide using only partial information, and (ii) the
available information constantly changes as the caches get
updated, or the peers enter/leave the network.

7. Acknowledgments
W.S. Ng, B.C. Ooi and K.L. Tan are partially supported

A*STAR and NUS under grant R-252-000-015-112/303. P.
Kalnis was supported by grants HKUST 6081/01E and HKUST
6070/00E from Hong Kong RGC.

References
[1] J. Albrecht and W. Lehner. On-line analytical process-

ing in distributed data warehouses. In IDEAS, pages
78–85, 1998.

[2] P. Cao, J. Zhang, and P. B. Beach. Active cache:
Caching dynamic contents on the web. In Middleware

Conference, 1998.

[3] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava,
and M. Tan. Semantic data caching and replacement.
In VLDB, pages 330–341, 1996.

[4] P. Deshpande and J. F. Naughton. Aggregate aware
caching for multi-dimensional queries. In EDBT, pages
167–182, 2000.

[5] P. Deshpande, K. Ramasamy, A. Shukla, and J. F.
Naughton. Caching multidimensional queries using
chunks. In SIGMOD, pages 259–270, 1998.

[6] H. Garcia-Molina, W. J. Labio, J. L. Wiener, and
Y. Zhuge. Distributed and parallel computing issues in
data warehousing. In ACM Symposium on Principles

of Distributed Computing, 1998.

[7] Gnutella. http://gnutella.wego.com.

[8] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.
What can databases do for peer-to-peer? In WebDB

Workshop, 2001.

[9] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Im-
plementing data cubes efficiently. In SIGMOD, pages
205–216, 1996.

[10] R. Hull and G. Zhou. A framework for supporting
data integration using the materialized and virtual ap-
proaches. In SIGMOD, pages 481–492, 1996.

[11] Icq. http://www.icq.com.

[12] P. Kalnis and D. Papadias. Proxy-server architectures
for olap. In SIGMOD, pages 367–378, 2001.

[13] A. M. Keller and J. Basu. A predicate-based caching
scheme for client-server database architectures. VLDB
Journal, 5(1):35–47, 1996.

[14] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, 32(4):422–469,
2000.

[15] Y. Kotidis and N. Roussopoulos. Dynamat: A dynamic
view management system for data warehouses. In SIG-

MOD, pages 371–382, 1999.

[16] T. Loukopoulos, P. Kalnis, I. Ahmad, and D. Papadias.
Active caching of on-line-analytical-processing queries
in www proxies. In International Conference On Par-

allel Processing, pages 419–426, 2001.

[17] Napster. http://www.napster.com.

[18] W. S. Ng, B. C. Ooi, and K. L. Tan. Bestpeer: A
self configurable peer-to-peer system (poster). In ICDE,
2002.

[19] Olap council apb-1 olap benchmark r-ii.
http://www.olapcouncil.org.

[20] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1999.

[21] P. Scheuermann, J. Shim, and R. Vingralek. Watch-
man : A data warehouse intelligent cache manager. In
VLDB, pages 51–62, 1996.

[22] Seti@home. http://setiathome.ssl.berkely.edu.

[23] A. Shukla, P. Deshpande, and J. F. Naughton. Materi-
alized view selection for multidimensional datasets. In
VLDB, pages 488–499, 1998.

[24] A. Shukla, P. Deshpande, and J. F. Naughton. Mate-
rialized view selection for multi-cube data models. In
EDBT, pages 269–284, 2000.

[25] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A
wide-area distributed database system. VLDB Journal,
5(1):48–63, 1996.

[26] B. Yang and H. Garcia-Molina. Comparing hybrid peer-
to-peer systems. In VLDB, pages 561–570, 2001.

[27] N. Young. On-line caching as cache size varies. In Sym-

posium on Discrete Algorithms, 1991.

[28] Y. Zhao, P. Deshpande, and J. F. Naughton. An array-
based algorithm for simultaneous multidimensional ag-
gregates. In SIGMOD, pages 159–170, 1997.

