On the Complexity of Approximate Query Optimization

[Extended Abstract]

S. Chatterji S.S.K. Evani
University of California Sun Microsystems
Berkeley, CA Bangalore, India

souravc@eecs.berkeley.edu saikiran.surya@sun.com

ABSTRACT

In this work, we study the complexity of the problem of ap-
proximate query optimization. We show that, for any § > 0,
the problem of finding a join order sequence whose cost is

within a factor 200°s" ~*(F)) of K, where K is the cost of
the optimal join order sequence is NP-Hard. The complex-
ity gap remains if the number of edges in the query graph
is constrained to be a given function e(n) of the number of
vertices n of the query graph, where n(n —1)/2 — ©(n") >
e(n) > n+ ©(n") and T is any constant between 0 and
1. These results show that, unless P=NP, the query op-
timization problem cannot be approximately solved by an
algorithm that runs in polynomial time and has a competi-
tive ratio that is within some polylogarithmic factor of the
optimal cost.

1. INTRODUCTION

The problem of finding an optimal join order sequence for
Select Project Join (SPJ) Queries is a classical problem in
Query Optimization and has merited considerable research
attention.

It is well-known that this problem is NP-complete in gen-
eral [1], and continues to be so in many variant formulations
[2, 3]. Despite the set of results on NP-completeness, there
may be a justifiable optimism about the existence of poly-
nomial time approximation algorithms; algorithms that, for
a given query on a database, will return a plan whose cost is
within a small factor of the cost of the optimal plan. Given
the fundamental importance of the query optimization prob-
lem, the design of such approximation algorithms would be
both practically relevant and theoretically interesting. This
paper studies the complexity of efficiently computing ap-
proximate solutions to the query optimization problem. The
results of this paper imply that designing an efficient approx-
imation algorithm with a competitive ratio that is within a
polylogarithmic factor of the cost of the optimal plan is NP-
Hard.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Principles of Database Systems 2002, Madison, Wisconsin USA
Copyright 2002 ACM 0-89791-88-6/97/05 ...$5.00.

M.D. Yemmanuru
Sun Microsystems
Bangalore, India

S. Ganguly
Bell Labs
Lucent Technologies

sganguly@research.bell-labs.com mahesh.datt@sun.com

We consider several variants of the query optimization
problem. In one variant of the problem, we restrict all join
operations to computed using the nested-loops join method
only, by following a cost model virtually identical to that
of [1]. We then consider a variant where join operations
are restricted to be computed using the hash-joins method
only. We show that, for any constant value of § > 0, the
problem of computing a join order sequence whose cost is

within a factor 20Ueg™ ™" (50) of K, where K is the cost of the
optimal join order sequence, is NP-Hard. We then restrict
the problem by considering instances where the number of
edges in the query graph matches a given function e(n) of
the number of vertices n of the query graph, where n(n —
1)/2—-0(n") > e(n) > n+ 0(n"), for any constant 0 < 7 <
1. Under this restriction, we show that the complexity of
approximation remains equally difficult.

The rest of the paper is organized as follows. Section 2
presents the problem definitions for two variants of the query
optimization problem, namely, QOn and QOpm, that we
study in this paper. Section 3 presents the proof tech-
niques used in proving the hardness of the problems QOxy
and QOp respectively. Sections 4 and 5 presents the com-
plexity results for the problems QOn and QOg respectively.
In Section 6, we extend the complexity results to the case
when instances of the QOn and QOg problems are sparse
query graphs. We offer concluding remarks in Section 7.
Appendix A proves the NP-completeness of another variant
of the query optimization problem.

2. PROBLEM DEFINITIONS

In this paper we study two variants of the query optimiza-
tion problem, which restrict relational join operations to be
computed using the nested-loops join method and the hash-
joins method respectively. These problems are called QOn
and QOx respectively, which we define next.

2.1 The Qoxy problem

In this section, we define the QOn problem by specifying
its instances, the cost function for an instance and the opti-
mization problem. Our definition of QOx is similar to that
given in [1].

2.1.1 Instanceof QOx

An input instance of the QOnN problem is specified as a
five-tuple (n,@Q = (V, E), S,T, W) as follows.

The term @ is an undirected query graph Q = (V, E),
where V is the vertex set {vi,v2,... ,v,} and E is a subset

of the set of all unordered pairs over V. Each vertex in the
vertex set V corresponds to a relation R; for 1 < ¢ < n.
An undirected edge {vi,v;} between two vertices v; and v;
means that the relations R; and R; have a join predicate
between them. The absence of an edge between two ver-
tices indicates the absence of a join predicate between the
corresponding relations.

The selectivity matrix S is an n X n symmetric matrix,
specifying the selectivity s;; = sj; of the predicate corre-
sponding to relations R; and R;, for 1 < 4,57 < m and
i # j. If relations R; and R; are not related by a pred-
icate, then s;; = sj; = 1. The relation sizes vector T =
(t1,t2,... ,ts) specifies the number of the tuples of the re-
lations Ri, R»,..., R, respectively. In order to minimize
mathematical notation, we assume that the size of each tu-
ple of a base relation and all intermediate relations is one
page.

The access path cost matrix is an n x n matrix, that asso-
ciates with each unordered pair {v;, v;} of vertices in V, two
integer values, denoted by w;; and wj;. If the vertices do not
have an edge between them in the query graph @, then w;;
is defined to be t; and wj; is defined to be t; respectively.
This cost model corresponds to the fact that for every tu-
ple of relation R;, all tuples of the relation R; qualify, since
there is no join predicate between R; and R;. Otherwise,
the vertices v; and v; are related by an edge in E, that is,
the relations R; and R; are related by some predicate P.
In this case, the value w;; denotes the least cost of solv-
ing the predicate P for some given tuple of R; (containing
join attributes from R; that are relevant to the predicate P)
among all the possible choices of access paths for R;. We
constrain w;; to be at least t;s;; since this is the expected
number of tuples (and therefore pages) output for each tuple
of R;. Similarly, w;; is constrained to be at most t;, since,
in the worst case, all tuples of R; are accessed once. The
value wj; is defined and constrained likewise with the roles
of R; and R; reversed.

2.1.2 Instance Cost and Decision Problemfor QO

In this section, we define the cost of join sequences for an
instance of QO .

Consider an instance of QOn as specified above. Let Z =
(Vz1,0z20, ... ,z,) be any permutation of vertices in V. The
sequence Z is called a join sequence consisting of n join
operations denoted by Ji1(Z), J2(Z),... , Jn—1(Z). The first
join operation Ji(Z) is between relations R, and R.,. The
k" join operation is between the result of join operation
Jr—1(Z) and the relation R, .

Let Z be a join sequence and let X be any prefix of Z.
The number of tuples in the output of X, denoted by N(X),
is estimated as a product of relation sizes and the relevant
selectivities. More formally,

NX)= 1
N(Xv;) = N(X)-t;[I,,ex sii

it X =¢
otherwise.

The intermediate size produced by the join operation J;(Z)
is denoted by N;(Z) and is defined as N(Xv;). Let Z =
Xv;Y be a sequence such that v; occurs in position i+1 (i.e,
|X| =4) for some i € {1,2,... ,n—1}. The intermediate size
produced by the join operation J;(Z) is denoted by N;(Z)
and defined as N(Xv;). The cost of the join operation J;(Z)
according to the nested loops join method, is denoted by

H;(Z), and is defined as
H;(Z) = N(X) - miny, exwjk

The cost of a join sequence Z is defined as the sum of the
cost of the n — 1 join operations, that is,

c(Z2) = .i:Hi(Z)

All n! permutations of the elements of V' are candidate join
sequences. The problem QOx may now be posed as follows.

QOn: Given an instance (n,Q = (V,E),S,T,W), and a
number K, does there exist a join sequence Z such that
C(Z) < K?

2.2 The Qo problem

We now specify instances, costs and the decision prob-
lem for the query optimization problem @QOp in which join
operations are computed using the hash-joins method.

An instance of the QOg problem is specified by a five-
tuple (n,Q = (V, E), S, T, M), where the number of relations
n, query graph @, selectivity matrix S and sizes of relations
vector T have the same meanings as they were defined to
have for the problem QQOn. The term M denotes the total
memory that is available for each set of relations scheduled
to be joined as a hash-join pipeline. We first describe the
execution model, followed by the cost model for estimating
the cost of a given pipelined sequence of hash-joins.

2.21 Execution Model for Pipelined Hash Joins

The query corresponding to the query graph @ is executed
by first ordering the vertices of the vertex set V into a join
sequence Z. Let Z be the sequence v,,,v.,,... ,Vz,-

The join sequence Z is executed by decomposing it into
a collection of one or more pipelines, where each pipeline is
specified by two indices 7 and k, 1 <7<k <m—1, and is
denoted by P(Z,i,k). The pipeline P(Z,4,k) denotes that
the join operations J;(Z) through Ji(Z) (inclusive) are ex-
ecuted concurrently in a pipeline. A pipeline decomposition
of a join sequence is a partition of the sequence into con-
tiguous fragments, where (a) each fragment is executed as a
pipeline, and (b) the output of each fragment is materialized
to disk and used as the outermost relation for the execution
of the following fragment (if any). The first relation R.,
from the join sequence Z is used as the outermost relation
for the first pipeline. During the execution of a pipelined
fragment P(Z, i, k), the join operations within the pipeline
are executed concurrently by partitioning the available main
memory M among the join operations in that pipeline. The
hash tables corresponding to the relations R, , through
R, are built before the phase of pipelined sequence of hash
table probes commences. However, if the allocated memory
to a join operation in the pipeline is not sufficient to stage its
inner relation into memory, then the relation is first parti-
tioned as in a hybrid hash-join algorithm. Such partitioning
may have a stalling effect the later join operations in the
pipeline.

2.2.2 Instance Cost and Decision Problemfor QO g

In this section, we present formulae for giving costs to a
single hash-join operation and use it to define cost formulae
for a pipeline decomposition of a join sequence.

The I/O cost of a hash-join operation between outer re-
lation R, with br pages, and inner relation S with bs pages
using m pages of memory is denoted by h(m,br,bs) and is
abstracted as follows. We assume that R is streaming into
memory whereas the inner relation S is resident on disk.

h(m,br,bs) = (br + bs)©(g(m,bs)) + bs if m > hjmin(bs)

The function hjmin (bs) is assumed to be a given lower bound
on the memory that must be made available in order for the
hash-join between relations R and S to be feasible. We
assume that hjmin (bs) = O(b%), for some constant 0 < 1 <
1. The function g(m,bgs) satisfies the following constraints.

1. g(m,bs) is a linear decreasing function of m in the
range hjmin(bs) < m < bs.

2. g(m,bs) =0, for m > bs,
3. g is a continuous function.
4. g(hjmin(bs),bs) = 6(1)-

It follows that A(hjmin (bs),br,bs) = ©(br + bs).

The execution of a pipeline P(Z,i,k) is specified by a
memory allocation vector that specifies the memory allo-
cated to each of the the k — i+ 1 hash-join operations in the
pipeline. The cost of the execution of a pipeline P(Z,1, k)
is the sum of the following components:

1. The cost of reading from disk the intermediate rela-
tion which is materialized at the end of the previous
pipeline, that is, N;_1(Z).

2. The sum of the cost of performing each of the hash-
join operations J;(Z) through Ji(Z) according to the
given memory allocation vector.

3. The cost of writing to disk the output of the pipeline,
that iS, Nk(Z)

The cost of executing a pipeline decomposition of a join
sequence Z according to a given memory allocation vec-
tor is defined as the sum of the costs of executing each of
the pipelined fragments in the pipeline decomposition. The
problem QOx may now be posed as follows.

QOg: Given an instance (n,Q = (V,E),S,T,M), and a
number L, does there exist a join sequence Z, a decomposi-
tion of Z into a sequence of pipelines and a memory alloca-
tion vector such that the cost of executing the pipeline de-
composition according to the given memory allocation vec-
tor is at most L7

3. PRELIMINARIES

In this section, we review the relevant results from the lit-
erature and define notation that is used subsequently in the
paper. We first review the problem definition for 3SAT(13).

3SAT(13): An instance of this problem consists of (a) a
boolean formula in 3CNF such that each variable occurs in
at most 13 clauses, and (b) a fraction x where 0 < z < 1.
The question is, does there exist an assignment of truth
values to the variables such that a fraction z of the clauses
are satisfied by that assignment?

Our proofs use the following two variants of the standard
clique problem, which we denote by CLIQUE and %CLIQUE,
and define next.

CLIQUE: An instance of this problem is (a) an undirected
graph G = (V, E) in which the degree of each vertex is at
least |V| — 14, and (b) a number k. The question is, does
there exist a clique of size k in G7

%CLIQUE: Instances of this problem are undirected graphs
G = (V, E) where the degree of each vertex is at least |V| —
14. The question is, does there exist a clique of size (2/3)|V|?

We first state two fundamental theorems from [4] that
form the starting point of our reductions.

THEOREM 1. There ezists a positive constant 8 for which
there is polynomial time reduction f from any NP problem
to 8SAT(13) s.t. YES instances map to satisfiable formulae
and NO instances map to formulae in which less than 1 — 60
fraction of clauses can be satisfied.

PROOF. See proof of Theorem 6.2 of [4]. [

THEOREM 2. There ezist positive constants v and p for
which there is a polynomial time reduction from 3SAT to
VERTEX COVER with the following properties:

1. Satisfiable formulae map to graphs G with n vertices
whose vertex cover has size at most yn.

2. Unsatisfiable formula map to graphs G with n vertices
whose vertex cover has size at least y(1 + v)n.

g.oy>1i, vy1+4v)> 1.

PROOF. See Theorem 6.22 in [4]. [

LEMMA 3. There exist constants ¢ and d for which there
18 a polynomial time reduction that maps instances of 3SAT
to graphs from CLIQUE with the following properties:

1. Satisfiable formulae are mapped to graphs G with n
vertices such that G has a clique of size cn.

2. Unsatisfiable formula are mapped to graphs G with n
vertices such that the largest clique in G is of size at
most (¢ — d)n.

3.¢>2,c—d> 3.

PrOOF SKETCH. The proof is a direct adaptation of The-
orem 2. Consider the reduction given in [5] from instances
of 3SAT to instances of VERTEX COVER. From Theorem
1, it follows that it is sufficient to restrict ourselves to in-
stances of 3SAT(13) in which either the instance is a satis-
fiable formula or at most a fraction 1 — 8 of the clauses can
be satisfied.

Counsider the graph G = (V, E) obtained by applying the
reduction to a formula F' that is an instance of 3SAT(13),
and which consists of v variables and m clauses. It now
follows that if F' is satisfiable then G has a vertex cover of
size v + 2m, and if at most a fraction 1 — 6 of the clauses
of F are satisfied, then, G has a vertex cover of size at
least v + 2m + Om. The claims about ¢ and ¢ — d may be
verified by forming the complement graph G of G and then
extending G° with a complete graph over 4v + 3m vertices
and connecting each of the new vertices to all the vertices
nVv. O

LEMMA 4. There ezxists a positive constant € < 1 and a
polynomial time reduction that maps instances of 8SAT to
graphs from %C’LIQ UE with the following properties:

1. Satisfiable formulae are mapped to graphs that have a
clique of size at least 2n/3, where n is the number of
vertices in the graph.

2. Unsatisfiable formulae are mapped to graphs whose largest
clique has size at most (2 — e)n/3.

PrROOF SKETCH. The reduction is similar to the argu-
ment in Lemma 3. Let G = (V, E) be the graph produced
by the reduction and the standard reduction of instances
of 3SAT to instances of VERTEX COVER. Let G° be the
complement graph of G. We obtain G’ = (V', E') by adding
n1 = (37 — 1) - |V|, where « is the constant mentioned in
Theorem 2. The new vertices are all connected to each other
and to every vertex in V. Thus n = |[V'| = |[V|+n1 = 3y|V].
The claims of the lemma can now be directly verified. [

4. COMPLEXITY OF @oxn

In this section, we present a polynomial time reduction
function fy from instances of CLIQUE to QOn.

Let G = (V,E) be an instance of CLIQUE where n =
|V|. We construct an instance (n,Q = G, S, T, W) with the
following properties. The query graph @ is set to be identical
to the input graph G. The selectivity s;z corresponding to
the edge {v;,vr} € E is set to 1oy, where a = Q(1). The
sizes of the relations corresponding to the vertices in V are
set equal to t(n) = a(c_%)", where ¢ and d are constants
obtained from Lemma 3. For each edge {j,k} € E, wj; is
set to w(n) = t(n)/a(n). For vertex pairs {vj,vr} & E we
set wjr = t(n).

Since the degree of each vertex in G is at least n — 14 |
we assume that there exists a constant ng (no > 28) such
that any instance G with at least n > ng vertices is a single
connected component. Further we assume that ng > 30/d.
For brevity, we denote a(n),t(n) and w(n) by a,t and w
respectively. For a graph G, we let w(G) denote the largest
size of a clique in G.

We now establish some simple properties of the reduc-
tion and define notation that is used later. Let Z be a
join sequence for the constructed instance of QOxn. The
term D;(Z) denotes the number of edges in the subgraph
of the query graph G formed by the vertices that occupy
the first ¢ positions of Z. We let the term K. 4(a, n) to be

[(e— $)nll(c— $)n+1]
w- - 2 +1

Given a join sequence Z, an edge {vj,vx} € E is called
a back-edge corresponding to the vertex v; if vy appears
earlier than v; in Z. For 1 < ¢ < m, if the it? position of Z
is occupied by vertex vj;, then B;(Z) denotes the number of
back-edges of v;.

Let Z be the sequence Xv;Y, where |X| = ¢. Recall that
H;(Z) = N(X)-min{w;x|vr appears in X}. By construc-
tion of the reduction mapping, it follows that

_ wN(X) if Bi+1(Z) >0
Hi(7) = { T;N(X) if Bit1(Z) =0

Consider the join sequence Z and assume that none of
the n — 1 join operations in Z are cartesian products (i.e.,
Bi(Z) > 0,for1 <i<n-—1). Then, for 1 <7< n-—1,
H;(Z) = wale™8)mi=Di(2)

LEMMA 5. Let Z be a join sequence for an instance I of
QOnN consisting of n > no vertices in the query graph. If
Z has no cartesian products, then, for i > cn, Hi11(Z) <
(3) Hi(Z).

PROOF. As noted in the discussion above, H;y1(Z) =
H;(Z) - a(c_%)"(é)BHl(Z). Since the number of vertices in
G with which v; cannot have edges is at most 14, it follows
that

B (Z) > i—14
> cn—14
= (c—%)n+1+(%)n—15
> (c—$%)n+1 since n > no.

It follows that Hi41(Z) < Hi(Z)-(1). O

LEMMA 6. Let G be an instance of CLIQUE consisting
of n > no wvertices such that w(G) > cn. Suppose that the
reduction function fn maps the graph G to the instance I
of QOn. Then, there is a join sequence Z for I such that
C(Z) < Kca(a,n).

PrOOF. We consider a join sequence Z with no cartesian
products, such that the first cn nodes of Z are the nodes of
a clique of size w(G) > cn. As noted above, G is connected
and hence such a sequence Z can be constructed. Let 1 <
i <en—1. Then, Bi(Z) =i—1and D;(Z) =i(i—1)/2. It
follows that

wale—$)mi-Di(2)
i(i—1)
2

Hi(Z) =
_ wa(cfg)-n-i—

The function of ¢ in the exponent attains its discrete maxi-
mum when ¢ = (¢ —d/2)n or i = (¢ —d/2)n + 1. Thus, we
have the following relations.

Hi(Z) < Hy(Z) < ... < H(,_g,,(Z) and

H(c—%)n(Z) = H(c—%)n+1(Z) and

H(C_%er(z) > H(c_g)n+1(Z) > ... > Hen(Z)

From Lemma 5, we can further extend the above set of in-
equalities to obtain the following

Hon(Z) > Hony1(Z) ... > Hyo 1 (2)
Further, since Z has no cartesian products, H;(Z) < H;(Z)
implies that H;(Z) < (1/a)H;(Z), since, each of H;(Z) and
H;(Z) are w multiplied by some (different) power of 1/c. It
therefore follows that

0@) = TSV H ¢ Tl g
- i=1 v i=(c—%)n+1 v
< H(C,g)n[l+($)1+(§)jt---]+
Hieo gyl +(2) + ()7 +..]
S 2% .H(cfg)n’ smce H(cfg)n = H(cfg)nJ—l
< a- H(C_%)n, by assuming a > 4
[(c— 2)nli(c— §)n+1]
< w- a%*'l = Kc,d(a,n).
|

The following lemma states a simple property about graphs
by giving an upper bound on the number of edges that a
graph G with a maximum clique size of w(G) can have.

LEMMA 7. Let G = (V, E) be an undirected graph such
that |V| =n. Then |E| < @ —n+w(G).

PROOF. Let W be a set of w(G) vertices of G which form
a clique. For each vertex v € V — W, there exists a vertex
w € W, such that the pair {v,w} is not an edge in E.
Otherwise WU{v} will be a clique of size w(G)+1. It follows
that |[E| < 2020 |y —w| = 20D 4 y(@). O

LEMMA 8. Let G = (V,E) be a graph with n > 30/d
vertices such that w(G) < (¢ — d)n. Let I be the instance
of QOnN obtained by applying the reduction fn to G. Then,

for every join sequence Z, C(Z) > K. 4(a,n) - a8t

ProoFr. Consider any join sequence Z. Consider the sub-
graph G1 = (Vi, E1) of G induced by the nodes of G which
occur in the first (c— %)n positions of Z. Let w; be the size
of the largest clique in G1. By our hypothesis about w(G),
it follows that w; < (c—d)n. From Lemma 7, we obtain that

I
Sl

D(c— %)n(Z)

IN
—
=
3

|
IR
NS SN—r
=
—
=
)

|
vl
=
S

|
=
~
N
M,

= [(c— %)n] (c— %)n—l]/2:| +4n
It therefore follows that
C(Z) Z H(c— %)n

> ol Drllle=m-n_g,,)
Note that the above inequality holds irrespective of whether
cartesian products occur in the first (c— %)n join operations
in Z or not. If there are cartesian products, then the cost is
higher than the RHS above (since w < t;/a, for 1 < j < n),
otherwise, the RHS is a correct estimate. Thus,
c=2)n]l(c—)n
c(2) (=% 1[(2 $yn+1] +(Dn

> wa
> Kc,d(a,n)-a(%)"_l.

O

The following result formally states the complexity of the
approximating QOg by composing the reduction fy with
the reduction function in Lemma 3.

THEOREM 9. There is a polynomial time reduction from
3SAT to QOnN with the following properties.

1. Satisfiable formulas map to instances of QON such
that there is a join sequence Z with cost C(Z) < K¢ 4

(a,m).
2. Unsatisfiable formulas map to instances of QOn such

that every join sequence Z has cost C(Z) > K, q4(a,n)-
O(n)
a®'\",

3. log Kea(a,n) = ©(n’log a).

where n is the number of vertices in the query graph produced
by the reduction function.

By setting a(n) = 4”1/6, for any constant § > 0, the gap

o(n) _ ze(n)nl/“

function « , which in terms of K. 4(a(n)

gives a a complexity gap of 2The‘“(l°91_5K). Thus, solving
the QOn problem approximately using a polynomial time
algorithm with a competitive ratio better than 29(1"91_61(),
for any é > 0 would imply that P=NP.

It is apparent from the construction of the reduction func-
tion that the existence of cartesian products in the join se-
quence serves only to increase the cost. Hence, even if we
had restricted the join sequences in the problem definition
of QOn to have no cartesian products, the same complexity
gap would be obtained.

5. COMPLEXITY OF Qox

In this section, we present a reduction fz from %CLIQUE
to QOm-.

Let G = (V, E) be an instance of ZCLIQUE, where V =
{v1,v2,... ,vn}. The instance fr(G) of QOr is constructed
as follows.

1. The query graphis G' = (V', E’), where V' = VU{vo}.
The vertex vg corresponds to a new relation Ry and
is joined by an edge in E’ to every vertex v; € V,
1<i<n.

2. Let a = Q(4") and t = "~ "/2, The number of tuples
in the relations corresponding to the vertices in V are
set to t. The number of tuples for the relation Ry, that
is, to, is set to O((nt)*/?).

3. The selectivities s;z and sx; corresponding to a pair of
vertices {v;,vr} € E are set to 1/a. The selectivity of
the join predicate corresponding to the edges between
vo and v;, for 1 < ¢ < n, is set to 1/2. The selectivity
corresponding to pairs of vertices not connected by an
edge in FE is set to 1.

4. The available main memory M is set to (n/3 — 1)t +
2 - hjmin (t) pages.

We let L(a, n) denote the expression toa™ /9 and let G(a,n)
denote the expression toa("2/9+"5/3_1), where € is a constant
< 1 mentioned in the statement of Lemma 4

Note that the construction of ¢y is designed so that M <
hjmin(to), that is, the available memory M is less than the
minimum memory required to build a hash table on the re-
lation Rp. Thus the only feasible join sequences are the ones
where vy appears as the first element of the sequence. To
simplify further discussions, we do not introduce the notion
of a page size in the reduction. We assume that tuples of the
base relation Ry and the result of joining Ry with any subset
of the remaining relations results in tuples that span exactly
one page. The following result is an elementary lemma con-
cerning the optimal memory allocation to join operations in
a pipeline and the resulting cost of the pipeline under the
given memory allocation.

LEmMMA 10. Let G = (V, E) be an instance of 2 CLIQUE
and consider the instance I of QOm obtained by applying the
reduction function fu to G. Let Z be a join sequence for I
beginning with vo. Consider a pipeline P(Z,1i, k), and let the
join operations in P with the lowest and the second lowest
sizes of the outer relations be J;(Z) and Ji(Z) respectively.

1. if (k—i+1) < (n/3—1), the optimal memory allocation
allocates t pages to all the join operations. The cost of
the pipeline is O(N;—1(Z) + Np(2)).

2. if (k—i+ 1) = n/3, the optimal memory allocation
allocates hjmin(t) pages to the join operations J;(Z)
and t pages to all the other join operations. The cost
of the pipeline is O(N;—1(Z) + Nx(Z) + N;j_1(2)).

3. If (k—i+1) = n/3 + 1, then the optimal memory
allocates hjmin(t) pages to join operations J;(Z) and
Ji(Z), and t pages to all other join operations. The
cost of the pipeline is O(N;—1(Z) + Np(Z) + N;j—1(2)
+ Ni-1(2)).

PROOF SKETCH. Item 1 is self-evident. The claims in
items 2 and 3 about the optimal memory allocation follows
from the linearity of the cost function g(m,bs) as a function
of m. By the definition of the cost function h in Section 2.2,
it follows that the cost of a pipeline is proportional to the
sum of the sizes of the outermost relation, the result size of
the pipeline and the sum of the inner relations corresponding
to the join operations that were allocated minimum mem-
ory. [I

The following lemma is an auxiliary lemma that places
upper bounds on the sizes of the intermediate relations.

LEMMA 11. Let G = (V, E) be an instance of 2 CLIQUE
such that there exists a clique C C V of size 2n/3, where n =
|V|. Let Z be a join sequence for the constructed instance
fu(G) of QOu which begins with vo, followed by the vertices
in C in some order, followed by the vertices in V —C. Then,
each of N1(Z), Nyp3(Z), Nanys(Z), Nn—1(Z) and Nn(Z) is
O(L(a, n)).

PRrROOF. Let 1 < j < 2n/3. Consider the set of vertices
U; that occupy positions 2 through j + 1 positions in Z.
The vertex vo has j edges to the vertices in U; and each
of these edges has a selectivity of 1/2. The vertices of U;
form a clique of size j, and hence there are j(j —1)/2 edges,
each with selectivity a. The product of the selectivities is
a~7U=Y/29=7 The product of the sizes of the relations is
tot’. Thus

N; (Z) — totja*j(jfl)/22*j

Substituting ¢ = a™~1/2 and noting that 277 < 1/a, we
get

Ni(Z) = toaU(—D/2-iG=1D/2g-
< toaUn=D/2=iG=1/2) /g
= toalin—i)/2-1
Thus
No3(2) = O(toa("/s)(z"/e’)(l/z)the)=O(toa"2/9)

O(L(a,n))

Replacing j by 1 and 2n/3 yields the bounds for N; and
Ny, /3 as claimed.

We now estimate upper bounds for N,,_;(Z) and N,(Z).
By definition, N,,(Z) = tot"a~F127". Since the last vertex
in Z may be connected to at most (n — 1) other vertices
in V, it follows that N,_1(Z) < tot" o~ |El+(n=1g=(n-1)
= N, (Z2)a™~V/2_ Since |E| = n?/2 — O(n) (degree of each
vertex is at least n—14), the claim of the lemma follows. [

LEMMA 12. Suppose the instance G = (V, E) of% CLIQUE
has a clique C of size > %" Then the constructed instance
I of of QOu has a join sequence Z and a pipeline decompo-
sition P whose cost is O(L(a, n)).

PrROOF. Let Z be any sequence that begins with vy fol-
lowed by the 2n/3 vertices of C in any order, followed by
the vertices in V — C in some order.

Consider a pipeline decomposition of Z with five pipelines,
namely, Pi(1,1), P2(2,n/3), P3(n/3 + 1,2n/3), Ps(2n/3 +
1,n — 1) and Ps(n,n). The sizes of the intermediates gen-
erated by this decomposition of pipelines is N1(Z), N, /3(Z),
N3ny3(Z), Nyp—1(Z) and the final result N, (Z). By Lemma 11,
each of these sizes is bounded by O(L(c, n)).

The pipelines P1, P2, Py and Ps have no more than (n/3—
1) join operations and the available memory (n/3 — 1)t +
hjmin (t) is sufficient for each of these join operations. There-
fore, in these four pipelines, there is no additional cost in-
curred due to insufficient memory allocation.

We now consider the pipeline P;, which has n/3 join op-
erations. By Lemma 10, the join that uses the the smallest
size relation as its outer relation is given the least memory.
Therefore, the join operation J,/311(Z) is given the mini-
mum memory hjmin(t) and its cost becomes O(IV,/3(Z)).
Thus the cost of pipeline P; is ©(N,;3(Z) + Napy3(2)),
which, by Lemma 11 is O(L(a, n)). It follows that the to-
tal cost of the pipeline decomposition P; through Ps for the
join sequence Z is O(L(a,n)). O

We now consider the family of instances G = (V, E), of
%CLIQUE whose largest clique size is no more than (2 —
€)n/3, where n = |V|.

LEMMA 13. Let G = (V, E) be an instance of 2 CLIQUE
whose largest clique size is no more than (2 — €)n/3, where
n = |V|. Let Z be any feasible sequence of the constructed
instance of QOm, such that Z begins with vo. For 1 < j <
m/3; Nm/3+j(Z) = Q(G(avn))

PRrROOF. Let 1 < j < (n/3 —1). Consider the set of ver-
tices U, 34+; that occupy positions 2 through n/3 +j + 1
positions in Z and let E,3;; denote the set of edges in E
among vertices in U,,/34;. The vertex vo has j edges to the
vertices in U; and each of these edges has a selectivity of
1/2. Let D, /34; denote the number of edges in E,, /34 ;.

By construction, the product of the relation sizes corre-
sponding to the first n/3+ j join operations is tot"/3*7, The
product of the selectivities of join operations consists of the
selectivities contributed by the set E, /3, ; of edges. The to-
tal contribution of these edges to Ny, /34;(Z) is o Pny3+i(2),
A set of n/3+j edges connecting vo to the vertices in U, /3
contributes a total factor of 2~ */3+9) towards N3t (2)
Nojsri(Z) = tot™/3Hiq=Prss+i@o=n/3-0 1 1 < j <
n/3 —1, then D, /3:;(Z) < (n/3+ j)(n/3+ j —1)/2. Sub-

stituting this expression in place of D, 3,; in the expres-
sion for N,/3;;(Z) and noting that ¢ is a2 we get

Nojosi(Z) = toa /3 nD/2~ (/34 (0/3+i-1)/29-n/3=5,
Since 27" > 1/a, we get

Npjspj(Z) = Q(toa(n/3+1:)(n—1)/2'—(n/3+j)(n/3+j—1)/2)—1)
Q(toa(n/3+y)(2n/371)/271)

Note that the minimum value of (n/3 + 7)(2n/3 — j) in the
range 1 < j < n/3—1is obtained for j =1 and j =n/3—1.
Substituting j = 1, we get

Nujsts (2) = Qtoa™/°T/271) = Q(G(a,n)), 1 < j < n/3.

We now consider Ny, /3. Since the largest clique of G has
size at most (2 — €)n/3, it follows from Lemma 7 that for
any feasible sequence Z,

Dy,3(Z) < (2n/3)(2n/3 —1)/2 — (2n/3) + (2 — €)n/3
Thus,
N2n/3 (Z) > t0t2n/3a7("2/9+n5/3)272n/3
> toa(™/OHn /5D = G(a, n).
O

We are now in a position to prove that instances of the
%CLIQUE problem which have cliques of size less than (2 —
€)n/3 are mapped to instances of QOx whose join sequences
have cost Q(G(a,n)) thereby proving the complexity gap.

LEMMA 14. Suppose the instance G = (V, E) of% CLIQUE
problem has no clique of size (2 — €)n/3, where n = |V|
and consider the instance I of QOwu produced by applying
the reduction function fr. Then, every join sequence Z

and its decomposition into a sequence of pipelines has cost
QG (a,n)).

PROOF. Let Z be any join sequence for the instance I of
QOun. Consider the join operations Jy,/341(Z), Jp/342(Z),
ooy Janys+1(Z). Since, by Lemma 13, the output sizes of the
join operations J,/34;(Z) is Q(G(a,n)), for 1 < j < n/3,
it follows that the above n/3 + 1 join operations must be
placed in a single pipeline. We now consider the problem of
optimal distribution of the available memory M.

The total available memory is (n/3 — 1)t + 2hjmin (t), and
thus, two join operations must be allocated minimum mem-
ory and the rest must be allocated memory ¢. The smallest
outer relation is the input to J,/311(Z) of size O(L(a,n),
and so we must allocate Ajmin(t) to the join J,/511(Z).
However, all the other n/3 intermediates, that is, the out-
puts of join operations J,/311(Z) through Jy,,3(Z) have
size at least Q(G(a,m)). It follows from Lemma 10 that
by allocating minimum memory to any of the join oper-
ations Jy/34;4+1(Z), for j € {1,3,...,n/3}, the cost be-
comes N,,/34;(Z) = Q(G(a,n)). We conclude that, for every
memory allocation, the cost of the pipeline decomposition

is Q(G(a,n)). O

By composing fr with the reduction function defined in
Lemma 4, we obtain the following complexity result.

THEOREM 15. There is a polynomial time reduction from
8SAT to QOm with the following properties.

1. Satisfiable formulas map to instances of QOm such
that there is a feastble join sequence Z, a pipeline de-
composition of Z and a memory allocation vector such
that the cost is O(L(a, n)).

2. Unsatisfiable formulas map to instances of QOn such
that for every feasible join sequence Z, all pipeline de-
compositions have a cost Q(G(a,n)).

3. log L(a,n) = ©(n%log a) and G(a,n) = L(a,n)a®™.

where n + 1 is the number of vertices in the query graph
produced by the reduction function.

Note that if @« = 4", then log @ = ©(n) and hence
log L(a,n) = O(n?®). Thus, G(a,n) = L(a,n)2@(l°92/3(L(°""))).
The bound of 218> *(X) may be further improved as in the
problem @QOn by letting o to be 4”1/6, for any constant

6 > 0. This yields a gap factor of 21091_6L, as claimed in
Section 1. Thus, designing a polynomial time algorithm that
approximates QOg with a competitive ratio that is better

-5
than a factor 219" "L , for any constant § > 0 is equivalent
to showing that P=NP.

6. COMPLEXITY OF Qox AND Qor FOR
SPARSE QUERY GRAPHS

In Sections 4 and 5, we presented polynomial time re-
ductions of problems CLIQUE and %CLIQUE to QOn and
QOnu respectively using reduction functions fy and fa. A
common characteristic of these reductions is that the query
graph of the resulting instance is a dense graph, namely,
the number of edges in the graph are n”>/2 — ©(n). This
observation leaves open the possibility of finding efficient
approximation algorithms for problems QOn and QOg for
sparse query graphs with better competitive ratios than the
gaps proved in Sections 4 and 5 respectively.

In this section, we show that, for any (real) constant
7 > 0, the complexity of finding the approximate optimal
solution for problems QOp and QOn remain unchanged
from the previous sections, when the input is restricted to
query graphs, whose number of edges is a given function
e(n) of the number of vertices n in the query graph, such
that n(n—1)/2—0(n") > e(n) > n+0O(n"), where 7 is any
constant 0 < 7 < 1.

6.1 Complexity of Qo for sparse query graphs

We define a reduction fw,. that maps instances of CLIQUE
to instances of QON whose query graph has m vertices and
e(m) edges. Choose k = ©(2/7). Let G1 = (V1,E1) be
an instance of CLIQUE where |Vi| = n. We construct an
auxiliary connected undirected graph G» = (V2, E2) where
[Vo| = n¥ —n and |E| = e(n*)— |E1| — 1. We then con-
struct the query graph Q as @ = (V, E), where V = V1 UV,
and E = E1 U E3 U {v1,v2}, where v1 and va are arbitrary
vertices from Vi and V5 respectively.

From the above construction, it is clear that [V| = n
and |E| = e(n*), thus, the query graph Q has the desired
form. Further, G2 can be constructed to be a connected
graph, since, we can choose k = ©(2/7) such that |Ez| =
e(n®) — |E1| =1 >nF —n —1 edges.

Let 3 =4, and let o = ﬂ"2k+2. The size of each relation
corresponding to nodes in Vi is set to be the same as in
our reduction fz of Section 4 (that is, t = a(¢~%/?™). The
size of each relation corresponding to nodes in V5 is set to
u = B". The selectivity factor of each edge is set to 1/«
for each edge in F; and to 1/3 for each edge in E>. The
selectivity factor corresponding to the edge {v1,v2} between
vertex sets V1 and V3 is also set to 1/8. We set w;x to be
t/a if the edge {v;, v} € E and v; € V1. We set wjx to u/8
if the edge {v;,v+} € E and v; € Va. The property of the
reduction fn,e is explained in the following theorem.

k

THEOREM 16. For every T > 0, There ezists a polynomial
time reduction fn. that maps instances Gi = (Vi,E1) of
CLIQUE with n vertices to instances I of QOn whose query
graph @Q = (V, E) has m vertices and m(m —1)/2 —0(m) >
e(m) > m+ 0O(m") edges, with the following properties.

).

2. If G1 has a clique of size at least cn, then there exists
a join sequence Z for I such that C(Z) < K. 4(a,n).

2k+2

1. k=0(2/7), m = O(n*) and a = Q(4"

3. If G1 has cliques of size at most (c — d)n, then for all
join sequences Z for I, C(Z) > Kc,d(a,n)ad"/z—l,

Proor SKETCH. The size of the cartesian product of
k
the relations in G2 is small. It is bounded above by ™™
k+1 k+1
=pg" ottt Similarly, the product of all the selec-
k. k 2k
tivities in G is bounded below by g7 ™ =8""" > 1/a.
Due to these properties, the selectivities corresponding to
the edges of the auxiliary graph G2 and the relations cor-
responding to nodes of G2 contribute at most a factor of
a®W to the costs H;(Z) where the i join involves a vertex
from Vi. Thus, by extending the graph, we have introduced
a factor of at most a®™®) to the cost. [

6.2 Complexity of ox for sparse query graphs

We define a reduction fg . from instances of %CLIQUE to
instances of QOn with query graphs whose number of edges
is a given function e(n) of the number of vertices n. The
reduction fm,. bears a correspondence with the reduction
function fy (presented in Section 5), that is very similar
to the correspondence between the reduction functions fn,e
and fn.

Choose k = ©(2/7). Let G1 = (V1, E1) be an instance
of 2CLIQUE where |Vi| = n. We construct an auxiliary
connected undirected graph G = (Va, E2) where V2| = nF —
n—1and |E| = e(n*)— |E1| — n— 1. We then construct the
query graph Q as Q = (V, E), where V = Vi U{vo} UV, and
E =FE,UE;U{v1,v2} U {(vo,u)|u € V1}. The vertex vo is
a new vertex not appearing in Vi or V2 and v; and vy are
two arbitrary vertices from Vi and V5 respectively.

By the above construction, |V| = n* and |E| = e(n®),
thus, the query graph @ has the desired form. Further, G»
can be constructed to be a connected graph by the same
argument as in Section 6.1.

We let a(n) = Q(4n2k+2) be a polynomially computable
function of n. The number of tuples in the relations corre-
sponding to Vi is set to t = a(® /2 as in the reduction fy.
The number of tuples in the relation Ry, corresponding to
the vertex v is set to ©((nt)'?). The available main mem-
ory M is set as before to (n/3 — 1)t + hjmin(t) pages. The
selectivities of each edge in E} is set to 1/a. The selectivity
of edges between vo and vertices in V1 is set to 1/2". The
sizes of relations corresponding to vertices in V3 is set to
2". The selectivities of all edges in E> and the edge {v1, v2}
connecting Vi with V5 is set to 1/2.

Note that the subgraph of G comprising the vertex set
Vi U {wo} is essentially a copy of the graph that would be
obtained by applying the reduction function fz to the in-
stance G1, except for using a larger value of a. As discussed
in Section 6.1, the cartesian product of the relations corre-
sponding to the vertices in V> have a size that is insignificant

compared to t. Similarly, the product of the selectivities of
2k

edges in Es is Q27" /%) = Q(a®®). Thus, the new vertices

and the edges do not play any significant role in the cost of

join sequences. We therefore state the following theorem

without further ado.

THEOREM 17. For every T > 0, there exists a reduc-
tion function fm.e that maps instances G1 = (Vi,E1) of
%CLIQUE with n vertices to instances I of QOn whose
query graph Q = (V, E) has m vertices and m(m — 1)/2 —
O(m™) > e(m) > m+0O(m") edges, with the following prop-
erties.

1. k=0(2/7), m = O(n*) and a = Q(4”k+1)

2. If G1 has a clique of size at least 2n/3, then there
erists a join sequence for I such that its cost is at least
L(a,n).

3. If G1 does not have a clique of size less than (2—e)n/3,
then all join sequences have cost Q(G(n,).

4. log L(n,a) = O(n%log a) and G(a,n) = L(a,n)a®™.

6.3 Comments

By composing the reduction functions fy,. (respectively
fa,e) with the reduction function of Lemma 3 (respectively,

Lemma 4), and letting a = @(4"(k+1)/5), we conclude that
designing a polynomial time approximation algorithm for
instances of QOn (resp. QOm) whose query graphs have
m vertices and e(m) edges, where, m(m —1)/2 — O(m") >
e(m) > m+0©(m7) edges, and whose competitive ratio is at
most 2"’91_%, where L is the optimal cost, for any value of
1>7>0andé > 0 is equivalent to P = NP.

The work presented in [1] and [6] present polynomial time
algorithms for tree queries for a problem which is very sim-
ilar to QOn . It is therefore an interesting question to ask if
polynomial time algorithms could be designed for optimiz-
ing queries with connected query graphs which have edges
other than tree edges. The results of this section place lim-
its on an affirmative answer to the above question. First
note, that since e(m) > m+ ©(m"), for any constant 7, the
only possible family of queries that could be optimized in
polynomial time are the ones which have m + o(m”) edges,
for any 7 > 0.

7. CONCLUSIONS

In this paper, we study the complexity of two variants of
the query optimization problem, namely, QOnx and QOpx.

We show that for any § > 0, the problem of finding a join
order sequence whose cost is within a factor glog' () of
K, where K is the cost of the optimal join order sequence
is NP-hard. Further, the complexity result remains true,
when the number of edges in the query graph of the instances
for QOn and QOuy is constrained to match a given function
e(n) of the number of vertices n of the query graph, where
n(n —1)/2 — ©(n) > e(n) > m + O(m"), for any constant
0<7T<1

These results show that, unless P=NP, the query opti-
mization problem cannot be approximately solved by an al-
gorithm that runs in polynomial time and has a competitive
ratio that is within any polylogarithmic factor of the optimal
cost in polynomial time.

8. REFERENCES

[1] Toshihide Ibaraki and Tiko Kameda. On the optimal
nesting order for computing n-relational joins. ACM
Transactions on Database Systems, 9(3):482-502,
September 1984.

[2] S.Cluet and G.Moerkotte. On the complexity of
generating optimal left-deep processing trees with cross
products. In Proceedings of International Conference on
Database Theory (ICDT), pages 54-67, 1995.

[3] Chih-Ping Wang and Ming-Syan Chen. On the
complexity of distributed query optimization. IEEE
Transactions on Knowledge and Data Engineering,
8(6):650-662, August 1996.

[4] Sanjeev Arora. Probabilistic Checking of Proofs and
Hardness of Approzimation Algorithms. Technical
Report TR-476-94. Department of Computer Science,
Princeton University, 1994.

[5] M.R.Garey and D.S.Johnson. Computers and
Intractability : A Guide to the Theory of
NP-Completeness. W.H.Freeman, San Francisco, 1979.

[6] R. Krishnamurthy, H. Boral and C. Zaniolo.
Optimization of non-recursive queries. In Proceedings of
the International Conference on Very Large Databases.
Morgan Kaufmann, 1986.

[7] S. Chatterji, S.S.K. Evani, S. Ganguly and M.D.
Yemmanuru. On the complexity of approximate query
optimization. Lucent Internal Technical Document
ITD-02-42549Z, 2002. Lucent Technologies.

APPENDIX
A. COMPLEXITY OF sqQo-cp

In this section, we formulate a variant of the query op-
timization problem for star query graphs in which carte-
sian products among relations are not allowed and joins are
allowed to be performed using both the nested-loops join
method and the merge-sort method. Determining the com-
plexity of this problem was posed as a question in [1]. In this
appendix, we show that the above problem is NP-complete.
This problem, is referred to as the Star Query Optimiza-
tion problem, or SQO— CP (Star Query Optimization minus
Cross Products) for short. We now present some notations
and terminology.

A.1 Oriented Star Query Graph and Cost Pa-
rameters

A star query graph over the relations Ro, R1, ..., Ry has
been defined as an undirected tree with no specified root.
The central relation Ry is distinguished by the property that
it is the only vertex with degree > 1. An oriented star query
graph is obtained by specifying any vertex of the query graph
as theroot. There are m+1 possible oriented trees, one each
for the m+1 choices for the root. These m+ 1 oriented trees
can be divided into two classes. The oriented tree obtained
with R, as the root is denoted by T;. Every feasible sequence
Z that begins with R, corresponds to a traversal of T, in
which a parent node relation occurs earlier in the sequence
than the child node relation, for 0 < r < m.

Let P; denote the predicate between Ry and R;, for 1 < i <
m. For any feasible sequence Z, this predicate is assumed
to be solved during the join of either Ry or R; whichever
occurs later in Z. If Z starts with R;, then Ro (in the form

of So or Np) occurs second, and P; gets solved during the
join of Ry. Otherwise, R; occurs later in the sequence and
P; gets solved at that point.

A.2 Cost Formula

Let A; denote the I/O cost of sorting the relation R; and
leaving the result in the form of a stream in memory. The
cost of sorting a relation R with b pages is calculated as

bk, if Ris on disk

sort-cost(R) = { b(ks — 1) if Ris streaming into memory

Thus, A; = b; - ks. The term k; is the number of times a
relation is read + written to disk during a 2-pass sort. Of
course, if R is already sorted according to the join predicate,
then R need not be sorted again. The I/O cost of a sort-
merge join between relations R and S is estimated as

Csm (R, S) = sort-cost(R) + sort-cost(S)

A comment on k; being assumed constant. Since
the goal in the paper is to prove the NP-completeness of the
SQO—CP problem, we restrict the scope of the problem.
One such restriction already introduced is to assume that
ks is a constant. In general, k is a variable that varies with
the size of the relation to be sorted. We will show that in the
constructed instance of the SQO—CP problem, all relation
sizes (base and intermediate) are such that a 2-pass sort is
required to sort them.

We assume that the query is of the following form.

select Rp.attribute list
from Ro, Rl, aeey R,
where predicates

In the output attribute list, we assume that all join at-
tributes of Ry are included and no attribute from any other
relation is included. A consequence of this is that the tuple
size of all the intermediate relations is the same once Ry
has been joined. For ease of calculations, we assume that
the tuple size of the output of the query is one page. This
implies, that the tuple sizes of all intermediate sequences X
in which Ro occurs is also one page. Let b(X) denote the
output size of X in number of pages. This is estimated as
follows.

b(R,) = b,
b(X) = mn(X) if X contains at least 2 relations.

Let Z = XS;Y be a feasible sequence. The cost of the
sort-merge join operator S; is estimated as

b(X) . (ks —].) + A;

Let Z = XN;Y be a feasible sequence. The cost of the
nested-loops join operator N; is given by

n(X) - w; ifi#0
n(X)-wo,, ifi=0 and Z starts with R,

The cost of a feasible sequence Z is denoted by C(Z) and
is defined as the sum of the costs of the individual join op-
erators appearing in Z. More formally, let Z = XY and
let D(X,Y) denote the cost of the suffix Y of Z. Thus,
C(Z) = D(¢, Z). The function D is inductively defined as

follows.
: bo+w¢-n0+D(RoN¢,Y) r=20
D(¢, R,N;Y) { by +wor - ne +D(R.No,Y) 1#£0
D(¢,R,S;Y) = Csm(Rr,Ri)+ D(R,S;,Y)
D(W, S;Y) = b(W)-(ks —1)+A; + D(WS;,Y)
D(W,N;Y) = n(W)- -w; + DOWN;,Y)
D(W, ¢) =0

A.3 sQo-cp: Problem Specification

In this section, we formally specify the decision version
of SQO—CP, by first specifying an instance of the problem
followed by a statement of the problem.

INSTANCE

1. A number m. The star query consists of m+1 relations,
Ro, Ri, ..., R, in which Ry is the central relation.

2. A constant ks representing the number of times a rela-
tion R is read and written for a 2-pass sort assuming
that R is initially streaming into memory.

3. The page size P.

4. (m+ 1)-dimensional vector (ng,n1,...ny), where n; is
the number of tuples in R;.

5. (m + 1)-dimensional vector (bo, b1, ..
the size of R; in pages.

.bm) where b; is

6. (m + 1)-dimensional vector (Ao, A2, ... A). A; repre-
sents the cost of sorting disk resident relation R;.

7. m-dimensional vector (s1, 82, - . . $m) of non-negative real
numbers where s; represents the selectivity of the pred-
icate between Ry and R;.

8. m-dimensional vector (w1, ws,...wmn). w; represents
the least cost of accessing the relation R; to match a
join predicate with Ry in nested-loops method.

9. m-dimensional vector (wo,1,wo,2,-.-Wo,m). Wo,; rep-
resents the least cost of accessing Ro to match a join
predicate with R; in nested-loops method.

10. A positive integer M.

QUESTION
Does there exist a feasible sequence Z such that C(Z) < M?

A.4 Problem Specification of SPPCS

In this section, we specify the SPPCS problem and then
give a reduction from PARTITION to SPPCS. SPPCS is an
abbreviation for Subset Product Plus Complement Sum.

The SPPCS problem is defined as follows.

INSTANCE. A set of m pairs of non-negative integers, W =
{(p1,c1), (p2,¢2), ... ,(Pm,cm)} and a positive integer L.
QUESTION. Does there exist a set A C {1,2,... ,m} such
that

[Ir+ >

€A je{l..,m}-A

We present the definition of the version of the PARTITION
problem used in this paper.

PARTITION

INSTANCE. A set U = {b1,b2,...,bn} of non-negative in-
tegers such that) 7 | b; is an even number.

QUESTION. Does there exist a subset V of U such that

b= > b ?

iev je{l,y,m} -V

The version of the PARTITION problem is NP-complete
as the following argument indicates. The standard defi-
nition of the PARTITION problem [5] consists of an in-
stance U = {b1,b2,... ,bn} of non-negative integers. Let
U = {2b1,2b,...,2b,} which polynomially reduces the
given instance of PARTITION in the standard definition
to the version used in the paper. Thus, the version of PAR-
TITION used is NP-complete.

A.5 NP-completeness of SPPCS problem

In this section, we give the reduction from the partition
problem to the SPPCS problem. In order to do so, we
present the constructed instance of SPPCS for a given in-
stance of PARTITION. The following definitions are used in
the construction.

Notation : For a real number z > 0, fo(z) : ® — Q is defined
as fq(x) = [292]/29. Given n positive integers b1, ba, ... , by,
the function g,(x) is defined as g,(x) = 29f,(e*/2X)
K = Z?:l b;. 0O
In other words, in the binary representation of f,(x), there
are g bits after the binary point. Further, the binary repre-
sentation of f,(z) agrees with the binary representation of
x from the most significant bit up to the g-th bit after the
binary point.

Given an instance {b1, b2, ... , b, } of PARTITION, we con-
struct an instance of the SPPCS problem as follows. Let

=1

e p=|log2K|+1,q=2p+7+n

o 5= gug(K/2)

e m=2n

e fori=1,...,n, p; =gq(b;) and ¢; = 3SK + b;S

1, pi =207 and ¢; = (i —

, where

efori=n+1,...,2n—
n)3SK

2n—1
® pan = 2K and c2n = (2K) (H pi> +1
i=1

o W={(p1,c1), (p2,2), .-, (Pmycm)}
o L =3KS/2+n(n—1)3KS/2 + 2K + SK

It is clear that the above construction can be carried out
in polynomial time. The proof that the above mapping is a
many to one reduction may be found in the full version of
this paper [7].

B. PROOF OF NP-COMPLETENESS OF sqo-
CP

In this section, we present a polynomial reduction of an in-
stance of the SPPCS problem to an instance of the SQO—CP
problem.

The given instance of SPPCS consists of m pairs of non-
negative integers (p1,c1), (p2,¢2), ..., (Pm,cm) and a pos-
itive integer L. Without loss of generality, we may assume
that p; >2andc¢; > 1,for 1 <i<m.

The constructed instance of SQO—CP is as follows.

1. The query consists of m+2 relations, Ro, R1,... , Rm+1,
with Rp as the central relation.

2. ks =4.

10.

11.

m 2 m m
LetJ:{4-ks-Hpi} andUZZci+Hpi+1.
1=1 i=1 i=1

Let d be any even positive value (join attribute size).
The pagesize P = (m + 1) - d.

The size of the relations in terms of number of tuples
is as follows. ng = 5J%-U, n; = (m+1)-no-J>-ci,
for 1 <4 <mand npy1 = (m+1) -no-J* U.

The size of the relations in terms of the number of pages
is as follows. b; = n; -d/P = noJ?c;, for 1 < i < m,
bm+1 = noJ>U and by = no = 5J°U.

The cost of a 2-pass sort of relation R; is given by
Ai=b¢-ks,f0rogism+1.

The selectivities of the predicate P; (between Ry and
R;), for 1 <i<mis s; =pi/ni. Smt+1 = J/Nm1.

The unit cost of nested-loops access for relation R; is
given by w; = J - ks -p; for 1 <i <m, wmt1 = J? - ks.

The unit cost of nested-loops access for relation Rp to
match a tuple from R; is given by wo,; = mo for 1 <
1 <m+ 1.

M=mng-J? ko(L+1)—1.

It is clear that the constructed instance has size polynomial
in the size of the input instance of SPPCS and can be con-
structed by an algorithm that runs in polynomial time.

Suppose available memory mem = no/2 pages. The small-
est and the largest relations among the base relations and
all possible intermediate relations are Ry and Ry,+1 respec-
tively. Since mem < by < bpt1 < (mem)?, it follows that
a 2-pass sort is needed for all relations during query pro-
cessing. The proof that the above mapping forms a many
to one reduction from the problem SPPCS to the problem
SQO—CP may be found in the full version of this paper [7].

