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ABSTRACT
We consider the fundamental operation of applying a con-
junction of selection conditions to a set of records. With
large main memories available cheaply, systems may choose
to keep the data entirely in main memory, in order to im-
prove query and/or update performance.

The design of a data-intensive algorithm in main memory
needs to take into account the architectural characteristics
of modern processors, just as a disk-based method needs
to consider the physical characteristics of disk devices. An
important architectural feature that influences the perfor-
mance of main memory algorithms is the branch mispredic-
tion penalty. We demonstrate that branch misprediction has
a substantial impact on the performance of an algorithm for
applying selection conditions.

We describe a space of “query plans” that are logically equiv-
alent, but differ in terms of performance due to variations in
their branch prediction behavior. We propose a cost model
that takes branch prediction into account, and develop a
query optimization algorithm that chooses a plan with op-
timal estimated cost. We also develop an efficient heuristic
optimization algorithm.

We provide experimental results for a case study based on
an event notification system. Our results show the effec-
tiveness of the proposed optimization techniques. Our re-
sults also demonstrate that significant improvements in per-
formance can be obtained by applying a methodology that
takes branch misprediction latency into account.

1. INTRODUCTION
Main memories are getting bigger and cheaper. It is now
feasible for many applications to store the application data
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completely in a main memory database, in order to improve
query and/or update performance.

Many traditional database algorithms need to be reconsid-
ered for main memory databases. In this paper, we focus
on one commonly-used database operation, namely apply-
ing a conjunction of selection conditions to a set of database
records. One wishes to obtain those records satisfying the
conjunction of conditions in as efficient a way as possible.

Our discussion will take the perspective that the applica-
tion’s data is stored in a main memory database. However,
the problem we shall address is also relevant for informa-
tion processing systems that are not considered “traditional”
database systems. Examples include search engines, event
notification systems, and network management systems. In
each of these types of systems, one commonly poses queries
involving the selection of records satisfying a conjunction of
conditions.

In a disk-based database, it is usual to consider the per-
formance parameters of the disk devices when designing
database algorithms. For example, the high cost of ran-
dom I/O compared with sequential I/O leads to algorithms
that process the data in physical order. The relatively large
size of a disk block leads to algorithms that try to cluster
related data into disk-block sized units.

In a main-memory database we face similar design criteria,
although the device characteristics are different. A feature
with a significant impact on algorithm design is the delay in-
duced when the CPU executes a conditional branch instruc-
tion and predicts the outcome incorrectly (i.e., the branch
misprediction penalty). All else being equal, algorithms that
have fewer branch mispredictions are likely to perform bet-
ter than alternatives.

In this paper we consider how to design efficient algorithms
for applying a conjunction of selection conditions given the
characteristics of the CPU and memory hierarchy. We show
that the branch misprediction penalty can have a significant
impact on the performance of an algorithm.

We propose a class of algorithms that we consider as poten-
tial “plans” for combining selection conditions. To address
the branch prediction issue, we develop a cost model that
takes branch prediction into account. We then develop an
exhaustive query optimization algorithm for choosing among



such plans in a cost-based fashion, using dynamic program-
ming. We also derive results that allow us to safely prune the
search space of potential plans. We then develop a heuristic
optimization method with lower complexity that performs
well in practice.

We present a case study of the proposed methods in the
context of an event-based notification system [16, 8]. Our
experimental results show that significant performance im-
provements can be obtained. Our optimization algorithm
and its cost model are validated against actual performance.

Past work has identified that branch misprediction has a
significant impact on modern database systems [1]. To our
knowledge, the present paper provides the first discussion
of methods for avoiding branch misprediction penalties in
database systems.

2. BACKGROUND
Modern CPUs have a pipelined architecture in which many
instructions are active at the same time, in different phases
of execution. Conditional branch instructions present a sig-
nificant problem in this context, because the CPU does not
know in advance which of the two possible outcomes will
happen. Depending on the outcome, different instruction
streams should be read into the pipeline.

CPUs try to predict the outcome of branches, and have
special hardware for maintaining the branching history of
many branch instructions. Such hardware allows for im-
provements of branch prediction accuracy, but branch mis-
prediction rates may still be significant. Branches that are
rarely taken, and branches that are almost always taken are
generally well-predicted by the hardware. The “worst-case”
branch behavior is one in which the branch is taken roughly
half of the time, in a random (i.e., unpredictable) manner.
In that kind of workload, branches will be mispredicted half
of the time.

A mispredicted branch incurs a substantial delay. [1] re-
ports that the branch misprediction penalty for a Pentium
II processor is 17 cycles.

As a result, one might aim to design algorithms for “kernel”
database operations that exhibit good branch-prediction ac-
curacy on modern processors [10]. In fact, this is precisely
our approach.

Future architectures, such as Intel’s IA-64, support a tech-
nique called “predication” that converts control dependen-
cies (i.e., conditional branches) into data dependencies. This
technique allows the elimination of some branch instruc-
tions. However, it is not always beneficial to use it [7]; some-
times the original branching code is more efficient. Thus we
expect branch misprediction penalties to continue to be a
significant issue for the next generation of architectures.

There has been some past work on main memory database
performance. Since pointer following is inexpensive in a
main-memory database, it can pay to store attribute val-
ues as pointers to some external piece of allocated memory,
often called a domain [17, 23]. Specialized algorithms for
query processing in main-memory databases have been pro-

posed in [17]. In [20], the authors suggested several ways
to improve the cache reference locality of query processing
operations such as joins and aggregations. [3] proposes im-
proving cache behavior by storing tables vertically and by
using a cache conscious join method. Cache-sensitive in-
dexes for main memory databases are described in [18, 19].

It has been observed that specialized memory-resident tech-
niques allow substantial performance gains over buffer-resident
data in a disk-based system [9, 13, 14]. More recently, [2]
describes ways to organize pages in a disk-based database
system so that database operations give good CPU perfor-
mance when the pages are memory resident in the database
buffer.

3. COMBINING SELECTIONS
We define the selectivity of a condition applied to a table
to be the proportion of records in the table satisfying the
condition. This definition applies whether we’re testing a
single condition or a conjunction of conditions. Since one
typically does not know the exact selectivities in advance,
one performs query optimization using estimates of the se-
lectivities. For simplicity of presentation we assume that
the selectivities are independent, so that one can multiply
estimates of the single-condition selectivities to get joint se-
lectivity estimates. Non-independent selectivities can also
be handled by our techniques; see Appendix B.

Suppose we have a large table stored as a collection of ar-
rays, one array per column, as advocated in [3].1 The col-
umn datatypes are assumed to have fixed length. (Variable
length attribute types can use the array representation by
introducing an extra level of indirection, storing pointers in
the array.) Let’s number the arrays r1 through rn. We wish
to evaluate a number of selection conditions on this table,
and return pointers (or offsets) to the matching rows.

Suppose the conditions we want to evaluate are f1 through
fk. For simplicity of presentation, we’ll assume that each fi

operates on a single column which we’ll assume is ri. (The
methods developed in this paper are not dependent on the
assumption that the functions test just a single argument, or
that a column is used in a single function.) So, for example,
if f1 tests whether the first attribute is equal to 3, then both
the equality test and the constant 3 are encapsulated within
the definition of f1. We also assume that functions are well-
defined in a self-contained way, in the sense that they always
execute without error for any possible parameter value. For
example, if f2 dereferences a pointer that is not guaranteed
to be non-null, then f2 must also encapsulate a precondition
testing whether the pointer is null. f2 cannot rely on f1

testing that pointer, say, because we intend to reorder the
execution of the functions. Functions are discussed at more
length in Appendix D.

3.1 Context
Our discussion assumes that the cost of processing the se-
lections is a significant cost within the overall query, and

1If we have a single array of rows, as opposed to an array per
column, the formulation of the problem is the same. The
disadvantage of row-wise storage is that it has poor data
reference locality for scans that consult just a few columns.



therefore worth optimizing. This assumption is certainly
true when the selections constitute the entire query. When
the selections form the initial step of a more complex query,
processing the selections may still be a significant (or even
dominant) cost since a selective selection operation will need
to consult many more records than operations applied after
the selection.

We describe three typical contexts in which a set of selection
conditions is applied. In the first context, we simply apply
the conditions to each record in the underlying table. This
approach would be used if indexes are not helpful, either
because we lack the required index, or because the condition
selects such a large proportion of the records that it is not
worth the overhead of using the index.

In the second context, we identify one (or more) of the se-
lection conditions as corresponding to an indexed attribute;
using the index can speed up processing. In the third con-
text, a selection condition is applied to a “dimension” table
referenced by a foreign key in the main “fact” table. Pre-
processing the dimension table can improve efficiency.

As we shall see, each of the contexts has a common structure:
There is a loop that iterates over all (partially matching)
records, and inside the loop is code to (a) test the records
for the remaining conditions, (b) AND the results together,
and (c) add qualifying record-ids to the answer list.

The straightforward way to code the selection operation ap-
plied to all records (context 1) would be the following. The
result is returned in an array called answer. In each algo-
rithm below, we assume that the variable j has been initial-
ized to zero.

/* Basic Algorithm Structure */

for(i=0;i<number_of_records;i++) {

if(f1(r1[i]) AND ... AND fk(rk[i]))

{answer[j++] = i;}

}

Alternatively, suppose that f1 was a condition that could be
evaluated efficiently using an index on r1 (context 2). For
example, f1 might be an equality test, and using an index
on r1 we may be able to obtain an array matches of off-
sets i of records satisfying f1(r1[i]). Then the remaining
conditions can be tested using the following code.

/* Index Algorithm Structure */

for(m=0;m<number_of_matches;m++) {

i=matches[m];

if(f2(r2[i]) AND ... AND fk(rk[i]))

{answer[j++] = i;}

}

Indexes may be combined by intersecting match arrays.

It is common for queries over a fact table in a data ware-
house to place selections on dimension tables (context 3).
Suppose r1 was a foreign key (i.e., offset) to a dimension
table, and that f1 was a selection condition on some col-
umn c of the dimension table. Then f1(r1[i]) could be

written as g1(c[r1[i]]). Since dimension tables are gen-
erally small, it may pay to evaluate g1 on all rows of c in
advance, and store the result in a temporary array t. (This
saves repetitive execution of g1 on duplicate values.) Thus
we could modify the basic algorithm structure to perform
the selection as

/* Preprocess Dimension Table */

for(i=0;i<records_in_c;i++){t[i]=g1(c[i]);}

for(i=0;i<number_of_records;i++) {

if(t[r1[i]] AND ... AND fk(rk[i]))

{answer[j++] = i;}

}

3.2 Implementing the Loop
In the following discussion we’ll use the code from the first
context, i.e., applying the selection conditions to all records
one by one. However, similar principles apply to the other
contexts. Translated into C, the code for the inner loop
might be:

/* Algorithm Branching-And */

for(i=0;i<number_of_records;i++) {

if(f1(r1[i]) && ... && fk(rk[i]))

{answer[j++] = i;}

}

The important point is the use of the C idiom “&&” in place of
the generic “AND”. (See Appendix A for a discussion of how
&& is typically compiled into assembly language containing
conditional branch instructions.) This implementation saves
work when f1 is very selective. When f1(r1[i]) is zero, no
further work (using f2 through fk) is done for record i.
However, the potential problem with this implementation
is that its assembly language equivalent has k conditional
branches. If the initial functions fj are not very selective,
then the system may execute many branches. The closer
each selectivity is to 0.5, the higher the probability that the
corresponding branch will be mispredicted, yielding a signif-
icant branch misprediction penalty. (Recall the discussion of
branch prediction effectiveness in Section 2.) An alternative
implementation uses logical-and (&) in place of &&:

/* Algorithm Logical-And */

for(i=0;i<number_of_records;i++) {

if(f1(r1[i]) & ... & fk(rk[i]))

{answer[j++] = i;}

}

Because the code fragment above uses logical “&” rather
than a branching “&&”, there is only one conditional branch
in the corresponding assembly code instead of k. (Again,
see Appendix A for a discussion of how & is compiled into
assembly language.) We may perform relatively poorly when
f1 is selective, because we always do the work of f1 through
fk. On the other hand, there is only one branch, and so we
expect the branch misprediction penalty to be smaller.

The branch misprediction penalty for that one branch may
still be significant when the combined selectivity is close to
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Figure 1: Three implementations: Pentium.

0.5. The following loop implementation has no branches
within the loop.

/* Algorithm No-Branch */

for(i=0;i<number_of_records;i++) {

answer[j] = i;

j += (f1(r1[i]) & ... & fk(rk[i]));

}

Note that we would not expect an optimizing compiler to
be able to transform one of these plans into another. Most
importantly, such transformations are not valid in the gen-
eral case. For example, in the condition (A && B), A may
check that a pointer is not null, while B dereferences that
pointer. Executing (A && B) makes sense, while executing
(A & B) would cause an error if the pointer was null. While
our assumption about functions does make (A & B) valid
in the case where A and B represent functions fi and fj, it
is not possible to communicate such information to modern
compilers. Further, even if one was to extend the compiler
with such a mechanism, the decision on whether to rewrite
the code depends on database-level metadata, such as con-
dition selectivities, that are not generally available to the
compiler.

To see the difference between these three methods, we im-
plemented them in C and ran them on a 750Mhz Pentium
III under Linux, and a 300Mhz UltraSparc IIi under Solaris.
In the following experiment, we used k = 4 and let all of the
rj arrays be offsets into an array t of chars of size 5000.
Elements of t are either 1 or 0, simulating the preprocess-
ing of conditions on dimension tables. The fj functions are
then lookups in t. We ran several thousand scans over four
arrays of size 3000, using the same t array. That way, both t

and the arrays are in the L1 cache and the experiments will
not reflect delays due to cache misses. (We briefly address
caching issues Appendix D.) The code was compiled with
gcc under maximum optimization, with several register

hints present in the code.

Figure 1 shows the Pentium results. (See Appendix C for
the Sun results.) While both architectures show some de-
pendence on the selectivity, the Pentium results are more
sensitive to the selectivity because the branch mispredic-
tion penalty is higher on that architecture [25]. The time
per record is shown in microseconds on the vertical axis,
measured against the probability that a test succeeds. The
probability is controlled by setting an appropriate threshold
for an element of the t array to be randomly set to 1. All
functions in this graph have the same probability.

Our preliminary analysis of the three implementations is
borne out by this graph. For low selectivities, the branching-
and implementation does best by avoiding work, and the
one branch that is frequently taken can be well-predicted by
the machine. For intermediate selectivities, the logical-and
method does best. However, when the combined selectivity
gets close to 0.5, the performance worsens. The no-branch
algorithm is best for nonselective conditions; it does more
“work” but does not suffer from branch misprediction.

Each of the three implementations is best in some range, and
the performance differences are significant. On other ranges,
each implementation is about twice as bad as optimal. Thus
we will need to consider in more depth how to choose the
“right” implementation for a given set of query parameters.

Looking at the performance numbers, one might wonder why
we care about per-record processing times that are fractions
of a microsecond. The reason we care is that this cost is
multiplied by the number of records, which may be in the
tens or hundreds of millions. When we don’t have an index,
we have no choice but to perform a full scan of the whole
table. Even when we’re scanning fewer records per query,
the overall performance in queries-per-second is directly im-
pacted by these performance numbers. In a dynamic query
environment, for example, we might be aiming for video-rate
screen refresh, and thus require the completion of 30 queries
per second for each user. See Section 5 for another example.

From now on, when we show an implementation, we will
omit the for loop, just showing the code inside the loop.

4. OPTIMIZING INNER LOOP BRANCHES
Using standard database terminology, we will refer to a par-
ticular implementation of a query as a plan. We now formu-
late our optimization question:

Given a number k, functions f1 through fk,
and a selectivity estimate pm (m = 1, . . . ,k) for
each fm, find the plan that minimizes the ex-
pected computation time.

So far we have seen three ways to write the inner loop. Each
such plan has different performance characteristics. There
are, in fact, many additional plans that can be formed by
combining the three approaches. An example that combines
all three is the following:



/* A Mixed Algorithm (loop code omitted) */

if((f1(r1[i]) & f2(r2[i])) && f3(r3[i]))

{ answer[j] = i;

j += (f4(r4[i]) & ... & fk(rk[i]));

}

Significantly, several of these combination plans turn out to
be superior to the three basic methods shown in Figure 1
over some selectivity ranges.

We will focus on finding a plan, consisting of some combina-
tion of the three methods presented above, giving the best
expected time. We remark that there are other methods
besides the three we have chosen for evaluating the inner
loop. For example, one could add the function values rather
than ANDing them, and compare with k at the end. (This
alternative method might be useful in a hypothetical archi-
tecture in which an addition operation was faster than a
logical AND.) Nevertheless, we expect that on realistic ar-
chitectures, the three basic methods are among the most
efficient.

4.1 A Normal Form for Combined Plans
For now, let us just consider plans involving a combination of
the “branching-and” and the “logical-and” algorithms. We
formulate how these two algorithms can be mixed, and con-
sider when certain combinations are never optimal. Based
on this notion, we derive a normal form for potentially op-
timal plans, and enumerate them.

A first glance at the two algorithms might suggest that all we
need to do is consider all expressions within the if condition
that can be formed out of the two kinds of “and” operation.
However, this is clearly too many because & is commutative,2

and both & and && are associative. Additionally, if we are
only interested in finding at least one optimal plan, we need
only consider expressions in which all “outer” conjunctions
are via && and the conjuncts are terms involving only &.

To justify this assertion, consider the expression E given by
E0 && (E1 & (E2 && E3)) for arbitrary expressions E0, E1,
E2 and E3. (We allow E0 to be empty, in which case there is
no outer &&.) Consider the alternative expression E’ given
by E0 && E2 && (E1 & E3). We claim E’ is always more
efficient than E on a non-parallel machine. In both cases the
expression E0 is evaluated. If E0 is false, the performance
is equivalent. If E0 is true, then E2 is evaluated in both
E and E’. If E2 is true, then both plans are again equiva-
lent in terms of performance, since both E1 and E3 will be
evaluated, and the same number of operations will be per-
formed. However, if E2 is false, then E’ is superior to E

because (a) it does not evaluate E1 and (b) it avoids one &

operation. By repeatedly applying the transformation from
E to E’ whenever we have a subexpression matching E, we
essentially “pull up” all instances of && to the top level. Each
such transformation does not harm the performance, and in
many cases improves it.

2We mean commutative in terms of performance rather than
in terms of logic. Both arguments of & are evaluated and
ANDed together; the order of evaluation does not affect the
overall performance. Similarly, when we talk about associa-
tivity, we mean in terms of performance.

The order of the inner conjunctions (via &) does not matter,
due to commutativity, and the parenthesization of the outer
conjunctions (via &&) does not matter, due to associativity.
We thus consider the inner conjuncts as sets of basic expres-
sions, and the outer conjunction as being parenthesized from
left to right. As outlined above, there must be an optimal
plan in this normal form.

Definition 4.1. A single-function condition is called a
basic term. A conjunction via & of basic terms is called
an &-term. A conjunction via && of &-terms is called an
expression. 2

Let tm,n denote the number of normal-form plans over n ba-
sic terms, with exactly m occurrences of &&. Then t0,n = 1
for all n. For the inductive case, consider prepending (via
&&) an additional &-term to an expression with m occur-
rences of &&. Then

tm+1,n =

n−1∑

i=1

(
n

i

)
tm,n−i.

We are actually interested in an, the number of plans, given
by an = Σn

k=0tk,n. Then a0 = 1 and for n > 1 one can
rearrange the above recurrence to get:

an =
n∑

j=1

(
n

j

)
an−j .

This recurrence has been well-studied, as early as 1859 [4];
see [21] for further references. One representation of the so-
lution [24] is that an is the closest integer to n!/(2 lnn+1(2)).

Algorithm No-Branch can be thought of as a potential opti-
mization to remove the final if test of a combined method.
There is thus just one way to apply the optimization: to
replace

if(E1 && ... && Ek)

{answer[j++] = i;}

with

if(E1 && ... && Ek-1)

{ answer[j] = i; j += Ek;}

where the Ei terms are &-terms. Thus we should consider
plans both with and without this optimization; the total
number of potentially optimal plans is now 2an.

4.2 Cost Functions
To compare the cost of the various plans, we need a cost
model. The basic parameters of the model are: r, the cost
of accessing an array element rj[i] in order to perform
operations on it; t, the cost of performing an if test; l, the
cost of performing a logical “and”; m, the cost of a branch
misprediction; pi, the selectivity of basic term i equal to
the probability that basic term number i is 1; a, the cost of
writing an answer to the answer array and incrementing the



answer array counter; fi, the cost of applying function fi to
its argument.

In our model, we will assume that the processor is perfect
in its branch prediction, i.e., that it predicts the branch to
the next iteration will be taken when the selectivity p ≤ 0.5,
and will not be taken when p > 0.5.

Given a plan, we add up the expected cost given the selectiv-
ities and the structure of the algorithm. We count just the
cost of the code inside the loop, and not the loop iteration
cost itself (since that’s the same across all methods). We
emphasize that in practice, one must model the costs for
the assembly-language instructions generated by the com-
piler, rather than directly modeling the cost of the C code
(see Appendix A).

Example 4.1. Consider Algorithm No-Branch on k basic
terms. The total cost for each iteration is kr + (k − 1)l +
f1 + · · · + fk + a. 2

Example 4.2. Consider Algorithm Logical-And on k ba-
sic terms, with selectivities p1, . . . , pk. The total cost for
each iteration is kr+(k−1)l+f1+· · ·+fk+t+mq+p1 · · · pka,
where q = p1 · · · pk if p1 · · · pk ≤ 0.5 and q = 1 − p1 · · · pk

otherwise. The q term describes the branch prediction behav-
ior: we assume the system predicts the branch to the next
iteration will be taken exactly when p1 · · · pk ≤ 0.5. 2

Example 4.3. Consider Algorithm Branching-And on k
basic terms, with selectivities p1, . . . , pk (in the order listed
in the if condition). The cost formula is the solution for c1

of the recurrence

cn = r + t + fn + mqn + pncn+1 (1 ≤ n ≤ k)

where qn = pn if pn ≤ 0.5 and qn = 1 − pn otherwise, and
ck+1 = a. Again, the qn terms describe the branch prediction
behavior; in this algorithm we can execute as many as k
conditional branches. 2

While this model captures the important aspects of the
problem that are common across most modern architectures,
it is not an exact cost calculation. Several architecture-
dependent features make it approximate, including: out-of-
order execution of instructions, overlapping memory access
and computation, imperfect branch prediction based on just
the most recent branches, and the degree of instruction-level
parallelism present.

Definition 4.2. Let E be an &-term. The fixed cost of E,
written fcost(E), to be the part of the cost of E that does not
vary with the selectivity of E. In particular, if E contains k
basic terms using f1 through fk, then fcost(E) = kr + (k −
1)l + f1 + · · · + fk + t. 2

We can combine the observations of Examples 4.2 and 4.3
to derive a general recurrence for mixed plans: Consider the
plan P1 given by

if (E && E1) {answer[j++] = i;}

where E is an &-term and E1 is a nonempty expression. Then
the cost of this plan is

fcost(E) + mq + pC (1)

where p is the overall combined selectivity of E, q = min(p, 1−
p), and C is the cost of the plan P2:

if (E1) {answer[j++] = i;}

In particular, for P1 to be an optimal plan, P2 must also
be an optimal plan (for fewer terms). We use this obser-
vation as the basis for developing a dynamic programming
solution to our problem in Section 4.4. First, though, we in-
vestigate ways to limit the plans we consider by eliminating
term orders that cannot be optimal.

4.3 Term Order in Optimal Plans
Hellerstein et al. consider expensive predicates, i.e., where
the computation needed for evaluating whether the pred-
icate is true or false dominates the overall cost [12]. In
that context, it is shown that predicates should be ranked

in ascending order according to the metric
selectivity−1
cost-per-tuple

.

Our context differs in that our predicates are often cheap,
meaning that other costs such as the branch misprediction
penalty cannot be ignored. Further, there could be a higher
misprediction penalty for a lower selectivity, meaning that
this ranking would not be correct when the penalty is suf-
ficiently high. Nevertheless, our derivation of term orders
below bears some similarity to this rank ordering approach.

Lemma 4.1. Consider plans of the form

if (E1 && E2 && E) {answer[j++] = i;}

where E1 and E2 are nonempty &-terms, and E is an arbitrary
(possibly empty) expression. Let p1 and p2 be the selectivities
for E1 and E2 respectively. Such plans cannot be optimal if
p2 ≤ p1 and p2−1

fcost(E2)
< p1−1

fcost(E1)
. 2

A corollary of this lemma is that whenever two consecutive
&-terms appear anywhere as conjuncts of && (i.e., not just
leftmost) in an optimal plan, then the one with lower selec-
tivity must appear first if it has the same fcost.

Note that Lemma 4.1 says nothing about the case where
there is an intervening expression between the two &-terms.
An analogous statement to Lemma 4.1 when there are inter-
vening expressions between E1 and E2 fails for two reasons.
First, when p1 > 1/2 it is always possible to find a suffi-
ciently large branch misprediction penalty and a value for p2

less than p1 such that switching the two basic terms leads to
an inferior plan. Second, even when p1 ≤ 1/2, the condition

p2−1

fcost(E2)
< p1−1

fcost(E1)
is not strong enough to guarantee that

switching E1 and E2 is a win. Nevertheless, when there are
intervening terms we can state the following weaker lemma.



Lemma 4.2. Consider plans of the form

if (E1 && X1 && E2 && X2)

{answer[j++] = i;}

where X1 and X2 are arbitrary (possibly empty) expressions,
E1 and E2 are nonempty &-terms with respective selectivities
p1 and p2, and p1 ≤ 1/2. Such plans cannot be optimal if
p2 < p1 and fcost(E2) < fcost(E1). 2

A corollary of Lemma 4.2 is that when all selectivities are at
most 1/2, a relatively common case, we can order &-terms
E with selectivity p by the pair (fcost(E), p). In our case
(x, y) < (x′, y′) if x < x′ and y < y′. This ordering on
&-terms is partial, since it is possible to have incomparable
pairs. The partial order constrains the order of &-terms in
optimal plans.

Definition 4.3. We call the pair ( p−1

fcost(E)
, p) the c-metric

of &-term E having combined selectivity p. We call the pair
(fcost(E), p) the d-metric of &-term E having combined selec-
tivity p. 2

Note that if E1 is less than E2 according to the d-metric,
then E1 is also less than E2 according to the c-metric, but
not vice versa. We use Lemmas 4.1 and 4.2 in the dynamic
programming algorithm below.

4.4 Finding Optimal Plans
When the number of basic terms is small, we could sim-
ply enumerate all normal form plans and calculate the cost,
choosing the plan with the smallest cost. However, the num-
ber of plans grows factorially in the number of basic terms
(Section 4.1), and so alternative methods are necessary in
general.

We propose a dynamic programming solution to the problem
that is outlined below.

Algorithm 4.1. Optimal-Plan Let S denote the set of
basic terms, and let k be the cardinality of S. Create an
array A[] of size 2k indexed by the subsets of S. The ar-
ray elements are records containing: The number n of basic
terms in the corresponding subset; the product p of the selec-
tivities of all terms in the subset; a bit b determining whether
the no-branch optimization was used to get the best cost, ini-
tialized to 0; the current best cost c for the subset; the left
child L and right child R of the subplans giving the best cost.
L and R range over indexes for A[], and are initialized to ∅.

In the loops over subsets of S, we iterate in an order consis-
tent with the partial order of subsets of S. In other words,
if s1 ⊂ s2, then s1 comes before s2 in the loop. We call such
an order an “increasing” order below. Note that a standard
encoding of subsets as bitmaps yields an increasing order if
we simply increment the bitmap on each iteration.

1. /* Consider all plans with no &&s */
Generate all 2k − 1 plans using only &-terms, one plan
for each nonempty subset s of S. Store the computed
cost (Example 4.2) in A[s].c. If the cost for the No-
Branch algorithm is smaller, replace A[s].c by that cost
(Example 4.1) and set A[s].b = 1.

2. For each nonempty s ⊂ S (in increasing order)
/* s is the right child of an && in a plan */
For each nonempty s′ ⊂ S (in increasing order) such
that s ∩ s′ = ∅ /* s′ is the left child */
if (the c-metric of s′ is dominated by the c-metric of
the leftmost &-term in s) then
{/* do nothing; suboptimal by Lemma 4.1 */}
else if (A[s′].p ≤ 1/2 and the d-metric of s′ is domi-
nated by the d-metric of some other &-term in s) then
{/* do nothing; suboptimal by Lemma 4.2 */}
else {
Calculate the cost c for the combined plan (s′ && s)
using Equation 1. If c < A[s′ ∪ s].c then:

(a) Replace A[s′ ∪ s].c with c.

(b) Replace A[s′ ∪ s].L with s′.

(c) Replace A[s′ ∪ s].R with s. }

At the end of the algorithm, A[S].c contains the optimal cost,
and its corresponding plan can be recursively derived by com-
bining the &-conjunction A[S].L to the plan for A[S].R via
&&. 2

Because the loops over the subsets of S are performed in
increasing order, any newly-generated partial plan will be
considered as part of larger plans later on, within the same
loop. One never has to revisit plans that have already been
considered.

The utility of the metric tests is that we avoid generating a
large number of intermediate-quality plans that improve on
the currently computed best cost, without being optimal. In
practice, we need to verify that the reduction of the search
space afforded by these tests outweighs the costs of the tests
themselves.

The complexity of this algorithm is O(4k) which, while expo-
nential, is asymptotically much better than generating and
testing all normal-form plans (Section 4.1). Note that the
algorithm simultaneously solves the optimization problem
for all subsets of S too, so that one run of the algorithm can
cover many potential loop structures.

Since we are typically interested in small values of k, the ex-
ponential complexity is not a barrier to its use in practice.
We implemented the optimization algorithm in C++ and ran
it on both the Pentium III and the UltraSparc. The opti-
mization time itself was always less than 0.01 seconds when
k ≤ 9, for various probability values. We investigate how
well the output of the optimization algorithm matched ac-
tual performance time in Section 5.1.



4.5 A Heuristic Optimization Algorithm
While the optimization algorithm of the previous section is
guaranteed to find the optimal solution, it still has expo-
nential complexity. Thus, if we were to be presented with
an optimization problem having a sufficiently large number
of conditions, it would not be practical. Additionally, when
the number of records to be processed is only moderate, we
would want to spend just a small amount of time on op-
timization; the method of the previous section may be too
expensive compared with the expected gains in evaluation
time.

To address this problem, we present a heuristic method that
takes linear space and has complexity O(k log k) in the av-
erage case, and O(k2) in the worst case. While the heuristic
method is not guaranteed to find the optimal solution, we
will demonstrate experimentally that it finds good solutions.

We begin by ordering the terms of the conjunction in as-

cending order according to the metric
selectivity−1

cost-per-tuple
. Our

intuition is that, as for the expensive predicate case, ordering
predicates in this way will be generally effective. However,
this is just the start of the process: we still need to decide
how to evaluate the conjunction using the three kinds of
plans described above.

We treat the conjunction of k conditions as if it were to be
evaluated using a Logical-And plan. We then move from
left to right within the plan, evaluating the cost of the plan
formed by replacing an & by an &&. We keep moving from left
to right as long as the measured cost decreases. As soon as
the measured cost increases, or we reach the end of the list,
we terminate the left-to-right traversal. If we didn’t reach
the end of the list, we then spawn two recursive subopti-
mization processes, one for the left half of the expression,
and one for the right. As a final tweak (not within the re-
cursion), we replace the rightmost Logical-And subplan by
a No-Branch subplan if the latter has lower cost.

For example, consider the basic terms ordered according to
the metric above as E1, E2, . . . , Ek. We evaluate the cost of
E1&&(E2& . . . &Ek), then (E1&E2)&&(E3& . . . &Ek), and
so on, until the plan (E1& . . . &Ei)&&(Ei+1& . . . &Ek) is
less costly than (E1& . . . &Ei+1)&&(Ei+2& . . . &Ek). We
then recursively apply the heuristic to the subexpressions
(E1& . . . &Ei) and (Ei+1& . . . &Ek) to get plans P1 and P2

respectively. The final returned plan is P1&&P2, with a
possible modification of P2 to use a No-Branch plan for its
rightmost term.

The analysis of this algorithm is very similar to the analysis
of quicksort. It takes linear space, worst-case quadratic time,
and k log k time on average assuming randomly distributed
termination points in the left-to-right traversal.

The intuition behind the method is that once we have de-
composed a plan P into one of the form P1&&P2, then P1

and P2 can be optimized independently; they do not de-
pend on each other. The placement of the top-level &&
within P is done heuristically, assuming that the plan for
the right-hand-side is the Logical-And plan. At the cost of
adding complexity, one could consider alternative plans for

the right-hand-side in order to determine a better partition-
ing point.

We shall study the quality of plans generated by the heuris-
tic optimization method experimentally in Section 5.1. In
terms of optimization time, our implementation on both the
Pentium III and the UltraSparc takes less than 0.01 seconds
consistently for k ≤ 60. For k = 4 the optimization time
was consistently less than 16 microseconds.

5. CASE STUDY
To demonstrate that our solution constitutes a feasible solu-
tion to realistic classes of problems, we describe a case study
in which we apply these techniques in the context of a proto-
type event-based notification system called “Le Subscribe”
[16, 8].

Le Subscribe aims to store millions of subscriptions, and to
match hundreds of events per second against these subscrip-
tions. Each subscription specifies a conjunction of simple
conditions to apply to events, such as numeric equalities and
inequalities. Where possible, subscriptions are partitioned
into clusters based on equality conditions in the subscrip-
tions. When an event arrives, it needs to be matched against
clusters that agree with the event on the value of the parti-
tioning attribute(s), as well as against subscriptions having
no equality conditions.

Subscriptions are grouped based on the number of condi-
tions. So, subscriptions with two conditions are grouped
together for example. A group with k conditions is stored
as a collection of k one-dimensional arrays r1[i], . . . , rk[i].
The ith entry in each array is a condition from the ith sub-
scription.

Conditions are simply pointers to memory locations contain-
ing boolean values. Whenever an event arrives, the global
set of boolean values is updated to reflect the characteristics
of the event. That way, repetitive checking of conditions by
thousands of subscriptions is avoided. The overall perfor-
mance of the matching system is measured by how many
events per second can be matched for a given number of
subscriptions.

Matching against a group of subscriptions takes place using
a sequential scan of the corresponding arrays. For a dis-
cussion of how Le Subscribe employs prefetching, see [8].
Subscriptions do not change rapidly. Thus one can obtain
good estimates of selectivity for each ri by either estimating
the distribution of events, or by keeping track of historical
selectivities.

It is important to realize that the selectivities in each clus-
ter are unlikely to be extremely small, since most (if not
all) of the equality conditions would have already been ap-
plied in the partitioning step. The remaining inequalities
(such as price<100) may have selectivities distributed (not
necessarily uniformly) across the whole [0, 1] range.

The simplicity of the subscription language means that the
functions fj are both cheap and small in number. Further,
the functions that are actually executed in the inner loop
are just pointer lookups: the code will look like if (*r1[i]



&& *r2[i] .... This implementation is very similar to our
dimension-table preprocessing example (context 3) in Sec-
tion 3.1, with every function being treated in the same way.

We can reap two immediate benefits in terms of function
specialization here. The first benefit is that all of the func-
tions can be inlined, yielding very efficient code. The sec-
ond, more subtle benefit is that we can get away with fewer
pieces of code to implement all of the various candidate
plans, because of the symmetry of the functions. For ex-
ample, we can use the same subroutine to execute both the
test if (*r1[i] && *r2[i]) ... and the “opposite” test
if (*r2[i] && *r1[i]) ... by simply switching the posi-
tions of r1 and r2 in the parameter list when calling the
subroutine.

The maximum number of subroutines we thus need to pre-
compute is equal to the number of distinct normal form
expressions when we consider all basic terms to be equiva-
lent. A simple induction shows that for n ≥ 1 basic terms
we have 2n−1 such expressions. If we allow the No-Branch
optimization, the number of expressions doubles, and the
total is 2n.

We expect in practice that the bulk of the subscriptions will
have at most 6 basic expressions per subscription [16, 8].
Since the code for the inner loop is quite small, it is feasible
to precompile all 21+22+. . .+26 = 126 code alternatives into
the system, without using any sophisticated run-time code
generation. For the small number of subscriptions having
more than our predefined limit, we can use a generic loop.
The generic loop will be more expensive per subscription
than the specialized ones, but with few subscriptions of that
form, the net cost will be small.

Based on the estimated selectivities, the best method for
each group within each cluster can be determined off-line
using the algorithm of Section 4.4. A function pointer can be
stored with the sub-list to indicate which of the various plans
should be used for this sub-list. (A permutation indicating
the order of the arguments is also required.)

5.1 Validation
We validate our approach for an implementation consistent
with the event notification scenario above. All functions fi

are simple lookups in a corresponding character array ti of
size 1000. Values in this array are either 1 or 0, set randomly
according to a probability parameter pi. The selectivities of
each condition can thus be separately controlled.

We chose values for the cost model parameters that were
consistent with both published reports [6, 1] and with the
typical assembly code generated by gcc. The numbers for a
Pentium III, measured in machine cycles, are: r = 1, t = 2,
l = 1, m = 17, a = 2, f1 = . . . = fk = 1.

In our first experiment, we show how the optimizer and the
heuristic perform for four conditions when all probabilities
are the same. This is the same scenario described by Fig-
ure 1. We ran many scans against a single cluster in mem-
ory, so that there is no cache miss penalty. Figure 2 shows
the results for a 750 MHz Pentium III machine. The cost
prediction of the optimizer is given as the solid line in the
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Figure 2: Prediction and actual performance.

graph; the dotted line is the heuristic prediction. The actual
performance numbers of all plans selected by the optimizer
on some range are plotted as points. The order of the leg-
end indicates the left-to-right ordering of ranges in which
that plan was selected by the optimizer. In particular, the
nobranch variant of the branching-and plan was optimal for
p ≤ 0.14; the nobranch variant of the (1&2) && (3&4) plan
was selected from p = 0.15 to p = 0.45; the nobranch version
of the (1&2&3) && 4 plan was chosen for p = 0.46 through
p = 0.52; for p ≥ 0.53, the nobranch plan was chosen.

For architecture-dependent reasons that we’ve already men-
tioned we don’t expect our cost models to be exact cost esti-
mates. Thus, we don’t expect a perfect match of predicted
cost with actual cost. The optimizer consistently overes-
timates the performance by about 20%. Nevertheless, the
optimizer’s choice is usually the best method for the given
range.

To quantify how well our model measures branch mispredic-
tion, we compared the model’s estimate of the number of
mispredicted branches per record with the actual number of
mispredictions. The actual number is obtained by using the
hardware counters available on Pentium III processors to
count the exact number of branch mispredictions; we used
the “rabbit” tool to perform the actual counting [11]. The
results for the branching-and plan, the plan having the most
branches, are given in Figure 3. The closeness of the curves
indicates that we are doing a good job of modeling branch
misprediction.

The heuristic performs well except for high probabilities,
when the no-branch algorithm is best. This observation
suggests a simple modification to the heuristic algorithm:
compare the result of the heuristic algorithm with the no-
branch algorithm as a final step before choosing a plan.

In our second example, we consider a four-way conjunction
in which the selectivities are unequal. The selectivity of the
first condition is varied between 0 and 1, and is plotted on
the x-axis. We let the second condition have a selectivity of
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0.25, the third a selectivity of 0.5, and the fourth a selectiv-
ity of 0.75. Figure 4 shows the results. There are three plans
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chosen by the optimizer in different ranges; the boundaries
of those ranges are clear from the bumps in the optimizer
selection curve. We see that when condition 1 is very se-
lective, it appears on its own at the beginning of the test.
When is it moderately selective, it is combined with the sec-
ond condition. When it is not very selective, it appears at
the right of the test. The heuristic performs adequately, al-
though it gives plans about 10% worse than optimal for high
probabilities.

5.2 Impact
We now try to measure the degree to which our techniques
would affect the overall performance of subscription match-
ing for Le Subscribe. Consider an example based on [8]
in which there are six million subscriptions, and for which
a number L of those subscriptions contain just inequality
predicates. Because these subscriptions cannot be hash-

partitioned, Le Subscribe would sequentially scan all L sub-
scriptions for each event.

Using the parameter settings of [8], a default method would
need between 12 and 45 nanoseconds per event per record.
When L exceeds 150,000, i.e., 2.5% of the subscriptions, the
cost of processing this subscription array (which is linear in
L) dominates the overall cost. Our optimization techniques
allow significant improvements (up to a factor of two) in this
component of the cost. As a result, significant improvements
in event throughput can be realized.

6. CONCLUSIONS
We have considered the problem of applying a conjunction
of selection conditions to a large number of records in main
memory. We have proposed a framework in which plans
come from a space of plans representing combinations of
three basic techniques. We have developed a cost model
for plans that takes branch misprediction into account. We
have developed a cost-based optimization technique using
dynamic programming, for choosing among a space of plans,
and have also developed a heuristic method of lower com-
plexity. We have implemented an experimental case study
based on a real-world event-notification system, and shown
that significant performance gains can be achieved in that
context.

The extent to which these kinds of performance gains can
also be achieved in other kinds of query processing systems
is highly dependent on the nature of their “inner loops.”
It is conceivable that many systems, including conventional
database systems, have a relatively high overhead even for
basic operations. For example, in order to handle arbitrary
data types (possibly allowing null values) in a general way
there may need to be some extra code in the inner loop.
The benefits of our optimizations are significant only when
the inner loops are tight, i.e., when the branch prediction
overhead is a significant fraction of the total cost of the inner
loop.
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APPENDIX
A. COMPILING IF STATEMENTS
In C, there is a distinction between the use of & and && in
conditional tests. This is best understood by considering
the translation of a C code fragment into assembly code.
We show two C code fragments, one for each of & and &&,
and show the corresponding pseudo-assembly code next to
it. Assume that the integer variables a and b are in registers
ra and rb respectively.

if (a&b) { load rc,ra

<innercode> and rc,rb

} compare rc,0

<body> branch-eq bodylabel

<innercode>

bodylabel:

<body>

if (a&&b) { compare ra,0

<innercode> branch-eq bodylabel

} compare rb,0

<body> branch-eq bodylabel

<innercode>

bodylabel:

<body>

For &&, if the first argument is zero, we branch immediately
to the body code, without checking the second argument.
For &, we perform a logical and of the two arguments, and
then check for zero. The & code has one conditional branch,
while the && code has two. The code for & could potentially
be optimized. For example, if there is no further need for one
of a or b after the test, we could use one of those registers and
omit the load into rc. On many machines, the logical and
instruction automatically sets the condition codes, meaning
that a separate compare with zero is not needed.



B. NON-INDEPENDENT SELECTIVITIES
For selectivities that are not independent, the dynamic pro-
gramming method of Section 4.4 still applies. When op-
timizing the subplan for a subset S of the attributes, one
assumes that all branches in the complement of S have suc-
ceeded. Thus for an attribute Ai ∈ S, we use the conditional
selectivity pi|S̄, i.e., the selectivity that the test on Ai suc-
ceeds given that the tests on all attributes in the complement
of S have succeeded.

Note that for non-independent selectivities, sub-optimization
steps no longer generate optimal sub-plans for fewer at-
tributes, since the selectivities are conditioned on attributes
not appearing in the subplan. Also, it may be difficult to
represent all of the conditional selectivities: there are expo-
nentially many of them corresponding to different combina-
tions of attributes S.

C. SUN RESULTS
The results for the experiment of Section 3.2 on a Sun Ul-
traSparc are given in Figure 5. Unlike the Pentium, as the
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Figure 5: Three implementations: Sun.

selectivity approaches 1, the performance of the && plan con-
tinues to worsen. The reason for this behavior is that the
Sun can execute multiple instructions at a time. For the &

algorithm and the nobranch algorithm, there are plenty of
opportunities for executing multiple instructions in paral-
lel. Instructions for the second test can be overlapped with
instructions for the first, for example. However, in the &&

algorithm there is much more dependence on the control
flow, resulting in less effective parallelism. Taking such ef-
fects into account is a direction for future research. Note
that even the first step of our approach (pulling up all in-
stances of && to the top level in Section 4.1) is not necessarily
justified if subexpressions can be evaluated in parallel on a
superscalar processor.

D. PREFETCHING AND FUNCTIONS
We need to address two important performance barriers: the
cost of transferring data from RAM to the CPU cache, and
the cost of evaluating functions. In this section we outline
solutions to these barriers.

A potential performance problem is that we may have sig-
nificant latency due to cache misses on the r arrays. After
each cache-line’s worth of entries from each r array is used,
we have to wait until the next cache-line is brought into the
cache from RAM. Given the tightness of the inner loop, this
delay could be significant. This penalty can be reduced by
employing prefetching [22, 6]. One instructs the processor to
bring the r cache lines into the cache ahead of their actual
use, using an explicit assembly language prefetch instruc-
tion. On a Pentium 4, the hardware automatically prefetches
data ahead of its use for common access patterns, such as
sequential access.

If we were to naively implement the code as written, we
would need to execute a function call for each function eval-
uation. If the functions are known at compile time, they can
be inlined, avoiding this overhead. Thus, if we know that
certain “canned” queries are frequently posed, we can com-
pile a single specialized loop for each one if we can derive
estimates for the function cost and selectivity for the opti-
mization algorithm. Since the loop code is small, we can
probably tolerate thousands of such queries with a small
expansion in the executable code size.

However, for ad-hoc queries we need to be able to allow
the functions to be specified at run-time. There are two
complementary problems. First, executing a function call
(and potentially dereferencing a function pointer as well)
may be a significant performance overhead in a tight inner
loop. Secondly, we don’t know the selectivities and function
costs until query time, and these statistics are important for
the selection of the appropriate inner-loop plan. There are
several potential solutions to this problem. We outline one
below.

When responding to an ad-hoc query, we still may have time
to perform the optimization described above, compile a new
version of the loop, with the appropriate combination of &&s
and &s, and link it into the running code. Systems such as
Tempo [5, 15] allow such run-time compilation. Run-time
code specialization of this sort would be beneficial only if
the optimization time plus the compilation time are smaller
than the improvement in the running-time of the resulting
plan. As we saw in Sections 4.4 and 4.5, the optimization
time is relatively small. The code to be compiled is also
relatively small. For scans of large tables, such an approach
may indeed pay off.


