
On XML Integrity Constraints in the Presence of DTDs

Wenfei Fan

Bell Labs and Temple University

600 Mountain Avenue

Murray Hill, NJ 07974, USA

wenfei@research.bell-labs.com

Leonid Libkin
�

Department of Computer Science

University of Toronto

Toronto ON M5S 3H5, Canada

libkin@cs.toronto.edu

Abstract

The paper investigates XML document speci�cations
with DTDs and integrity constraints, such as keys and
foreign keys. We study the consistency problem of
checking whether a given speci�cation is meaningful:
that is, whether there exists an XML document that
both conforms to the DTD and satis�es the constraints.
We show that DTDs interact with constraints in a
highly intricate way and as a result, the consistency
problem in general is undecidable. When it comes to
unary keys and foreign keys, the consistency problem is
shown to be NP-complete. This is done by coding DTDs
and integrity constraints with linear constraints on the
integers. We consider the variations of the problem (by
both restricting and enlarging the class of constraints),
and identify a number of tractable cases, as well as a
number of additional NP-complete ones. By incorpo-
rating negations of constraints, we establish complexity
bounds on the implication problem, which is shown to
be coNP-complete for unary keys and foreign keys.

1 Introduction

Although a number of dependency formalisms were de-
veloped for relational databases, functional and inclu-
sion dependencies are the ones used most often. More
precisely, only two subclasses of functional and inclu-
sion dependencies, namely, keys and foreign keys, are
commonly found in practice. Both are fundamental to
conceptual database design, and are supported by the
SQL standard [23]. They provide a mechanism by which
one can uniquely identify a tuple in a relation and refer
to a tuple from another relation. They have proved use-

�Research a�liation: Bell Laboratories.

ful in update anomaly prevention, query optimization
and index design [1, 30].

XML (eXtensible Markup Language [6]) has become the
prime standard for data exchange on the Web. XML
data typically originates in databases. If XML is to rep-
resent data currently residing in databases, it should
support keys and foreign keys, which are an essential
part of the semantics of the data. A number of key and
foreign key speci�cations have been proposed for XML,
e.g., the XML standard (DTD) [6], XML Data [21] and
XML Schema [29]. Keys and foreign keys for XML are
important in, among other things, query optimization
[27], data integration [16], and in data exchange for con-
verting databases to an XML encoding.

XML data usually comes with a DTD that speci�es how
a document is organized. Thus, a speci�cation of an
XML document may consist of both a DTD and a set
of integrity constraints, such as keys and foreign keys.
A legitimate question then is whether such a speci�ca-
tion is consistent, or meaningful: that is, whether there
exists a (�nite) XML document that both satis�es the
constraints and conforms to the DTD.

In the relational database setting, such a question
would have a trivial answer: one can write arbitrary
(primary) key and foreign key speci�cations in SQL,
without worrying about consistency. However, DTDs
(and other schema speci�cations for XML) are more
complex than relational schemas: in fact, XML docu-
ments are typically modeled as node-labeled trees, e.g.,
in XSL [11, 31], XQL [28], XML Schema [29], XPath
[12] and DOM [3]. Consequently, DTDs may interact
with keys and foreign keys in a rather nontrivial way,
as will be seen shortly. Thus, we shall study the follow-
ing family of problems, where C ranges over classes of
integrity constraints:

XML SPECIFICATION CONSISTENCY (C)

INPUT: A DTD D, a set � of C-constraints.

QUESTION: Is there an XML document that
conforms to D and satis�es �?

Throughout the paper, we only consider �nite docu-
ments (trees). We shall study the following four classes
of constraints:

� CK ;FK : a class of keys and foreign keys de�ned in
terms of XML attributes;

� CUnaryK ;FK : unary keys and foreign keys in CK ;FK , i.e.,
those de�ned in terms of a single attribute;

� CUnaryK:;IC : unary keys, unary inclusion constraints
and negations of unary keys;

� CUnaryK:;IC: : unary keys, unary inclusion constraints
and their negations.

It should be mentioned that unary keys and foreign keys
considered in this paper are similar to but more general
than XML ID and IDREF speci�cations.

The complement of a special case of the consistency

problem for CUnaryK:;IC (resp. CUnaryK:;IC:) is the implication
problem: given any DTD D and any �nite set � of
unary keys and inclusion constraints, whether is it the
case that all XML trees satisfying � and conforming to
D must also satisfy some other unary key (resp. unary
key or inclusion constraint)? This question is impor-
tant in, among other things, data integration. For ex-
ample, one may want to know whether a constraint '
holds in a mediator interface, which may use XML as
a uniform data format [4, 26]. This cannot be veri�ed
directly since the mediator interface does not contain
data. One way to verify ' is to show that it is implied
by constraints that are known to hold [16].

These problems, however, turn out to be far more in-
triguing than their counterparts in relational databases.
In the XML setting, DTDs do interact with keys and
foreign keys, and this interaction may lead to problems
with XML speci�cations.

Examples. To illustrate the interaction between XML
DTDs and key/foreign key constraints, consider a DTD
D1, which speci�es a (nonempty) collection of teachers:

<!ELEMENT teachers (teacher+)>
<!ELEMENT teacher (teach, research)>
<!ELEMENT teach (subject, subject)>

It says that a teacher teaches two subjects. Here we
omit the descriptions of elements whose type is string
(e.g., PCDATA in XML).

Assume that each teacher has an attribute name and
each subject has an attribute taught by. Attributes
are single-valued. That is, if an attribute l is de�ned
for an element type � in a DTD, then in a document
conforming to the DTD, each element of type � must
have a unique l attribute with a string value. Consider

teachers

teacher teacher

@name
"Joe"

teach

subject

research

"Web DB"subject

@taught_by
"Joe"

"XML" @taught_by
"Joe"

"DB"

Figure 1: An XML tree conforming to D1

a set of unary key and foreign key constraints, �1:

teacher:name ! teacher;

subject:taught by ! subject;

subject:taught by � teacher:name:

That is, name is a key of teacher elements, taught by
is a key of subject elements and it is also a foreign
key referencing name of teacher elements. More specif-
ically, referring to an XML tree T , the �rst constraint
asserts that two distinct teacher nodes in T cannot
have the same name attribute value: the (string) value
of name attribute uniquely identi�es a teacher node.
It should be mentioned that two notions of equality
are used in the de�nition of keys: we assume string
value equality when comparing name attribute values,
and node identity when it comes to comparing teacher
elements. The second key states that taught by at-
tribute uniquely identi�es a subject node in T . The
third constraint asserts that for any subject node x,
there is a teacher node y in T such that the taught by
attribute value of x equals to the name attribute value
of y. Since name is a key of teacher, the taught by at-
tribute of any subject node refers to a teacher node.

Obviously, there exists an XML tree conforming to D1,
as shown in Figure 1. However, there is no XML tree
that both conforms to D1 and satis�es �1. To see this,
let us �rst de�ne some notations. Given an XML tree
T and an element type � , we use ext(�) to denote the
set of all the nodes labeled � in T . Similarly, given an
attribute l of � , we use ext(�:l) to denote the set of l
attribute values of all � elements. Then immediately
from �1 follows a set of dependencies:

jext(teacher:name)j = jext(teacher)j;

jext(subject:taught by)j = jext(subject)j;

jext(subject:taught by)j � jext(teacher:name)j;

where j � j is the cardinality of a set. Therefore, we have

jext(subject)j � jext(teacher)j: (1)

On the other hand, the DTD D1 requires that each
teacher must teach two subjects. Since no sharing of
nodes is allowed in XML trees and the collection of
teacher elements is nonempty, from D1 follows:

1 < 2 jext(teacher)j = jext(subject)j: (2)

Thus jext(teacher)j < jext(subject)j. Obviously, (1)
and (2) contradict with each other and therefore, there
exists no XML tree that both satis�es �1 and conforms
to D1. In particular, the XML tree in Figure 1 violates
the key subject:taught by ! subject.

This example demonstrates that a DTD may impose
dependencies on the cardinalities of certain sets of ob-
jects in XML trees. These cardinality constraints in-
teract with keys and foreign keys. More speci�cally,
keys and foreign keys enforce classes of cardinality con-
straints that interact with those imposed by DTD. This
makes the consistency analysis of keys and foreign keys
for XML far more intriguing than that for relational
databases. Because of the interaction, simple key and
foreign key constraints (e.g., �1) may not be satis�able
by XML trees conforming to certain DTDs (e.g., D1).

Note that some XML DTDs do not have �nite XML
trees conforming to them even in the absence of keys
and foreign keys. For instance, there exists no �nite
tree conforming to the DTD D2 given below:

<!ELEMENT db (foo)>
<!ELEMENT foo (foo)>

Contributions. The main contributions of the paper
are the following:

1. For the class CK ;FK of keys and foreign keys, we
show that both the consistency and the implica-
tion problems are undecidable.

2. These negative results suggest that we look at the

restriction CUnaryK ;FK of unary keys and foreign keys

(which are most typical in XML documents). We
provide a coding of DTDs and these unary con-
straints by linear constraints on the integers. This
enables us to show that the consistency problem

for CUnaryK ;FK (even under the restriction to primary

keys) is NP-complete. We further show that the

problem is still in NP for an extension CUnaryK:;IC ,
which also allows negations of key constraints.

3. Using a di�erent coding of constraints, we show
that the consistency problem remains in NP for
CUnaryK:;IC: , the class of unary keys, unary inclu-
sion constraints and their negations. Among other
things, this shows that the implication problem
for unary keys and unary foreign keys is coNP-
complete.

4. We also identify several tractable cases of the con-
sistency problem, i.e., practical situations where
the consistency problem is decidable in PTIME.

The undecidability of the consistency problem con-
trasts sharply with its trivial counterpart in relational
databases. The coding of DTDs and unary constraints
with linear integer constraints reveals some insight into
the interaction between DTDs and unary constraints.
Moreover, it allows us to use the techniques from linear
integer programming in the study of XML constraints.

It should be mentioned that the undecidability and NP-
hardness results carry over to other schema and con-
straint speci�cations for XML, e.g., XML Schema.

Related work. Keys, foreign keys and the more gen-
eral inclusion and functional dependencies have been
well studied for relational databases (cf. [1]). In partic-
ular, the implication problem for unary inclusion and
functional dependencies is in linear time [13]. In con-
trast, we shall show that the XML counterpart of this
problem is coNP-complete.

Key and foreign key speci�cations for XML have been
proposed in the XML standard [6], XML Data [21] and
XML Schema [29]. The need for studying XML con-
straints has also been advocated in [32]. DTDs in the
XML standard allow one to specify limited (primary)
unary keys and foreign keys with ID and IDREF at-
tributes. However, they are not scoped: one has no
control over what IDREF attributes point to. XML
Data and XML Schema support more expressive spec-
i�cations for keys and foreign keys with, e.g., XPath
expressions. However, the consistency problems asso-
ciated with constraints de�ned in these languages have
not been studied. We consider simple XML keys and
foreign keys in this paper to focus on the nature of the
interaction between DTDs and constraints. The im-
plication problem for a class of keys and foreign keys
was investigated in [15], but in the absence of DTDs
(in a graph model for XML), which trivializes the con-
sistency analysis. To the best of our knowledge, no
previous work has considered the interaction between
DTDs, and keys and foreign keys for XML (in the tree
model).

A variety of path constraints have been studied for
semistructured and XML data [2, 9]. The interaction
between path constraints and database schemas was in-
vestigated in [8]. Path constraints specify inclusions
among certain sets of objects in edge-labeled graphs,
and are not capable of expressing keys. Various gen-
eralizations of functional dependencies have also been
studied, see, for example, [18, 19]. But these general-
izations were investigated in database settings, which
are quite di�erent from the tree model for XML data
considered in this paper. Moreover, they cannot express
foreign keys.

Organization. The rest of the paper is organized as
follows. Section 2 de�nes four classes of XML con-
straints, namely, CK ;FK , C

Unary
K ;FK , CUnaryK:;IC and CUnaryK:;IC: .

Section 3 establishes the undecidability of the consis-
tency problem for CK ;FK , the class of keys and foreign

keys. Section 4 provides an encoding for DTDs and
unary constraints with linear equalities and inequali-
ties, and shows that the consistency problems are NP-

complete for CUnaryK ;FK and CUnaryK:;IC . Section 5 further

shows that the problem remains in NP for CUnaryK:;IC: ,
the class of unary keys, inclusion constraints and their
negations. Section 6 summarizes the main results of the
paper and identi�es directions for further work. All the
proofs are given in the full version of the paper [14].

2 DTDs, keys and foreign keys

In this section, we �rst present a formalism of XML
DTDs [6] and the XML tree model. We then de�ne
four classes of XML constraints.

2.1 DTDs and XML trees

We extend the usual formalism of DTDs (as extended
context free grammars [5, 10, 24]) by incorporating at-
tributes.

De�nition 2.1: A DTD (Document Type De�nition)
is de�ned to be D = (E; A; P; R; r), where:

� E is a �nite set of element types ;

� A is a �nite set of attributes , disjoint from E;

� P is a mapping from E to element type de�nitions:
P (�) is a regular expression � de�ned as follows:

� ::= S j � 0 j � j �j� j �; � j ��

where S denotes string type, � 0 2 E, � is the empty
sequence, and \j", \;" and \�" denote union, con-
catenation, and the Kleene closure, respectively;

� R is a mapping from E to P(A), the power-set of
A; if l 2 R(�) then we say l is de�ned for � ;

� r 2 E and is called the element type of the root .

We normally denote element types by � and attributes
by l. Without loss of generality, assume that r does not
occur in P (�) for any � 2 E. We also assume that each
� in E is connected to r, i.e., either � occurs in P (r), or
it occurs in P (� 0) for some � 0 that is connected to r. 2

We consider single-valued attributes only. That is, if
l 2 R(�) then every element of type � has a unique l
attribute and the value of the l attribute is a string.

As an example, let us consider the teacher DTD D1

given in Section 1. In our formalism, D1 can be repre-
sented as (E1; A1; P1; R1; r1), where

E1 = fteachers; teacher; teach; research; subjectg

A1 = fname; taught byg

P1(teachers) = teacher; teacher�

P1(teacher) = teach; research
P1(teach) = subject; subject
P1(subject) = P1(research) = S

R1(teacher) = fnameg
R1(subject) = ftaught byg
R1(teachers) = R1(teach) = R1(research) = ;

r1 = teachers

An XML document is typically modeled as a node-
labeled ordered tree. Given a DTD, we de�ne the notion
of documents that conform to it as follows.

De�nition 2.2: Let D = (E; A; P; R; r) be a DTD.
An XML tree T valid w.r.t. D (conforming to D) is
de�ned to be T = (V; lab; ele; att; val; root), where

� V is a �nite set of vertices (nodes);

� lab is a mapping from V to E [A [fSg;

� ele is a partial function from V to sequences of V
vertices such that for any v 2 V , ele(v) is de�ned
i� lab(v) = � and � 2 E, and moreover, if P (�) is
� and ele(v) = [v1; :::; vn], then lab(v1):::lab(vn)
must be in the regular language de�ned by �;

� att is a partial function from V �A to V such that
for any v 2 V and l 2 A, att(v; l) is de�ned i�
lab(v) = � , � 2 E and l 2 R(�);

� val is a partial function from V to string values
such that for any node v 2 V , val(v) is a string i�
lab(v) = S or lab(v) 2 A;

� root is a distinguished vertex in V and is called
the root of T . Without loss of generality, assume
lab(root) = r and in addition, that there is a
unique node in T labeled r.

For any node v 2 V , if ele(v) is de�ned then the nodes
v0 in ele(v) are called the subelements of v. For any
l 2 A, if att(v; l) = v0 then v0 is called an attribute of
v. In either case we say that there is a parent-child edge
from v to v0. The subelements and attributes of v are
called its children. An XML tree has a tree structure,
i.e., for each v 2 V , there is a unique path of parent-
child edges from root r to v. We write T j= D when T
is valid w.r.t. D. 2

Intuitively, V is the set of vertices of the tree T . The
mapping lab labels every node of V with a symbol from
E[A[fSg. Vertices labeled with element types of E are
internal nodes of T , and those labeled S or attributes
of A are leaves. If a node x is labeled � in E, then the
functions ele and att de�ne the children of x, which are
partitioned into subelements and attributes according to
P (�) and R(�) in DTD D. The subelements of node x
are ordered and their labels observe the regular expres-
sion P (�). In contrast, its attributes are unordered and
are identi�ed by their labels (names). The function val

assigns string values to attributes and to nodes labeled
S. Since T has a tree structure, sharing of nodes is not
allowed in T .

In this paper, we only consider �nite XML trees, i.e.,
XML trees with a �nite set of vertices.

For example, Figure 1 depicts an XML tree valid w.r.t.
the DTD D1 given in Section 1.

We need the following notations: for any � 2 E [fSg,
ext(�) denotes the set of all the nodes in T labeled � .
For any node x in T labeled by � and for any attribute
l 2 R(�), we write x:l for val(att(x; l)), i.e., the value
of the attribute l of node x. We de�ne ext(�:l) to be
fx:l j x 2 ext(�)g, which is a set of strings. For each
� element x in T and a sequence X = [l1; : : : ; ln] of
attributes in R(�), we use x[X] to denote the sequence
of X-attribute values of x, i.e., x[X] = [x:l1; : : : ; x:ln].
For a set S, jSj denotes its cardinality.

2.2 XML constraints

We next de�ne our constraint languages for XML. We
begin with the class of multi-attribute keys and foreign
keys, denoted by CK ;FK .

Let D = (E; A; P; R; r) be a DTD. A constraint ' of
CK ;FK over D has one of the following forms:

� key: � [X] ! � , where � 2 E and X is a set of
attributes in R(�). It indicates that the set X of
attributes is a key of elements of � .

� foreign key: �1[X] � �2[Y] and �2[Y]! �2, where
�1; �2 2 E, X;Y are nonempty sequences of at-
tributes in R(�1), R(�2), respectively, and more-
over, X and Y have the same length. This con-
straint indicates that X is a foreign key of �1 ele-
ments referencing key Y of �2 elements.

A constraint of the form �1[X] � �2[Y] is called an inclu-
sion constraint. Observe that a foreign key is actually
a pair of constraints, namely, an inclusion constraint
�1[X] � �2[Y] and a key �2[Y] ! �2. Note that inclu-
sion constraints do not require the presence of keys.

To illustrate keys and foreign keys of CK ;FK , let us con-
sider a DTD D3 = (E3; A3; P3; R3; r3), where

E3 = fschool; student; course; enroll; name; subjectg

A3 = fstudent id; course no; deptg

P3(school) = course�; student�; enroll�

P3(course) = subject
P3(student) = name
P3(enroll) = P3(name) = P3(subject) = S

R3(course) = fdept; course nog
R3(student)= fstudent idg
R3(enroll) = fstudent id; dept; course nog

R3(school) = R3(name) = R3(subject) = ;

r3 = school

Typical CK ;FK constraints over D3 include:

(1) student[student id] ! student,
(2) course[dept; course no] ! course,
(3) enroll[student id; dept; course no] ! enroll,
(4) enroll[student id] � student[student id],
(5) enroll[dept; course no] � course[dept; course no].

The �rst three constraints are keys in CK ;FK , the last
two are inclusion constraints, and the pairs (4, 1) and
(5, 2) are foreign keys in CK ;FK .

An XML tree T satis�es a CK ;FK constraint ', denoted
by T j= ', i�

� if ' is a key � [X]! � , then in T ,

8x y 2 ext(�) (
^

l2X

(x:l = y:l)! x = y):

That is, two distinct � nodes in T cannot have the
same X-attribute values;

� if ' is a foreign key consisting of �1[X] � �2[Y]
and �2[Y]! �2, then T j= �2[Y]! �2 and

8x 2 ext(�1) 9 y 2 ext(�2) (x[X] = y[Y]):

That is, the sequence of X-attribute values of ev-
ery �1 node in T must match the sequence of Y -
attribute values of some �2 node in T . In addition,
Y is a key of �2.

Two notions of equality are used to de�ne keys: string
value equality is assumed in x:l = y:l (when comparing
attribute values), and x = y is true if and only if x
and y are the same node (when comparing elements).
This is di�erent from the semantics of keys in relational
databases.

It should be noted that given any DTD D, there are
�nitely many CK ;FK constraints over D.

The class of unary keys and foreign keys for XML, de-

noted by CUnaryK ;FK , is a sublanguage of CK ;FK . A CUnaryK ;FK

constraint is a CK ;FK constraint de�ned with a single

attribute. More speci�cally, a constraint ' of CUnaryK ;FK

over DTD D is either

� key: �:l ! � , where � 2 E and l 2 R(�); or

� foreign key: �1:l1 � �2:l2 and �2:l2 ! �2, where
�1; �2 2 E, l1 2 R(�1), and l2 2 R(�2).

For example, the constraints of �1 given in Section 1

are CUnaryK ;FK constraints over the DTD D1.

A unary inclusion constraint is a constraint of the
form �1:l1 � �2:l2. With unary inclusion constraints
we de�ne two extensions of CUnaryK ;FK as follows. One is

CUnaryK:;IC , the class consisting of unary keys, unary in-
clusion constraints and negations of unary keys. The
other, CUnaryK:;IC: , consists of unary keys, unary inclusion
constraints and their negations.

Finally, we describe the consistency and implication
problems associated with XML constraints. Let C be
one of CK ;FK , C

Unary
K ;FK , CUnaryK:;IC or CUnaryK:;IC: , D a DTD, �

a set of C constraints over D and T an XML tree valid
w.r.t. D. We write T j= � when T j= � for all � 2 �.
Let ' be another C constraint. We say that � implies '
over D, denoted by (D;�) ` ', if for any XML tree T
such that T j= D and T j= �, it must be the case that
T j= '. It should be noted when ' is a foreign key, '
consists of an inclusion constraint �1 and a key �2. In
this case (D;�) ` ' in fact means that (D;�) ` �1^�2.

The central technical problem investigated in this paper
is the consistency problem. The consistency problem for
C is to determine, given any DTD D and any set � of
C constraints over D, whether there is an XML tree T
such that T j= � and T j= D.

The implication problem for C is to determine, given
any DTD D and any set � [f'g of keys and foreign
keys of C over D, whether (D;�) ` '.

3 General keys and foreign keys

In this section we study CK ;FK , the class of multi-
attribute keys and foreign keys. Our main result is
negative:

Theorem 3.1: The consistency problem for CK ;FK

constraints is undecidable. 2

Proof sketch: The proof consists of two steps. First,
we show that in relational databases, the implication
problem for keys by keys and foreign keys is undecid-
able. That is the problem to determine, given a rela-
tional schema R, a set � of keys and foreign keys over
R and a key ', whether � ` '. This can be veri�ed
by reduction from implication problem for functional
and inclusion dependencies, which is undecidable (see,
e.g., [1]). Second, we provide a reduction from (the com-
plement of) the implication problem to the consistency
problem for CK ;FK constraints. More speci�cally, let R
= (R1; : : : ; Rn) be a relational schema, � be a set of
keys and foreign keys over R, and ' = R[X] ! R be
a key over R, where R is Rs for some s 2 [1; n]. Let
Y = Att(R) n X , where Att(R) denotes the set of all
attributes of R. We encode R, � and ' in terms of
a DTD D and a set � of CK ;FK constraints over D as
follows. Let D = (E; A; P; RA; r), where

E = fRi j i 2 [1; n]g [fti j i 2 [1; n]g [fr; DY ; EXg

A =
[

i2[1;n]

Att(Ri)

P (r) = R1; : : : ; Rn; DY ; DY ; EX

P (Ri) = t�i for i 2 [1; n]
P (ti) = � for i 2 [1; n]
P (DY) = P (EX) = �

RA(ti) = Att(Ri) for i 2 [1; n]
RA(DY) = X [Y
RA(EX) = X
RA(r) = RA(Ri) = ; for i 2 [1; n]

In particular, we denote P (R) = t�' for the relation R
in '. Note that R = Rs and t' = ts for some s 2 [1; n].

We encode � and ' with � = �� [�', where �� is
de�ned as follows:

(1) For every key Ri[Z]! Ri in �, ti[Z]! ti is in ��.

(2) For any foreign key Ri[Z] � Rj [Z
0] and Rj [Z

0]! Rj

in �, �� includes ti[Z] � tj [Z
0] and tj [Z

0]! tj .

The set �' consists of the following:

DY [Y]! DY , EX [X]! EX , t'[XY]! t',
DY [X] � EX [X], DY [X;Y] � t'[X;Y],

where [X;Y] denotes the concatenation of lists X and
Y , and t' is the grammar symbol in P (R) = t�'. Note
that Att(R) = X [Y and thus XY is a key of t'.

As depicted in Figure 2, in any XML tree valid w.r.t.
D, there are two distinct DY nodes d1 and d2 that have
all the attributes in X [Y , and a single EX node that
has all attributes in X . If T j= �', then

� d1[X] = d2[X] by DY [X] � EX [X] and the fact
jext(EX)j = 1,

� d1[Y] 6= d2[Y] by DY [Y]! DY .

These nodes will serve as a witness for :'. Given these,
we can show that

V
� ^ :' can be satis�ed by an in-

stance of R if and only if � can be satis�ed by an XML
tree valid w.r.t. D. See [14] for the detailed proof. 2

We next consider the implication problem.

Lemma 3.2: Let D be a DTD, � be any set of CK ;FK

constraints over D, '1 be any unary key and '2 be any
unary inclusion constraint, then the following problems
are undecidable: (1) (D;�) ` '1; (2) (D;�) ` '2. 2

Proof sketch: It su�ces to establish the undecidability
of the complements of the implication problems. This
can be done by reduction from the consistency problem
for CK ;FK (see [14]). 2

From Lemma 3.2 we immediately obtain:

. . .

r

ti titi

@XY @XY @X

@Att(Ri)

...

...

. . .

.

R1 RnRi ExDyDy

Figure 2: A tree used in the proof of Theorem 3.1

Corollary 3.3: For CK ;FK constraints, the implication
problem is undecidable. 2

While the general consistency and implication problems
are undecidable, it is possible to identify some decid-
able cases of low complexity. The �rst one is checking
whether a DTD has an XML tree valid w.r.t. it. This is
a special case of the consistency problem, namely, when
the given set of CK ;FK constraints is empty. A more in-
teresting special case of the consistency problem is the
consistency problem for keys in CK ;FK . That is to de-
termine, given any DTD D and any set � of keys in
CK ;FK over D, whether there exists an XML tree valid
w.r.t. D and satisfying �. Similarly, we consider the
implication problem for keys in CK ;FK : given any DTD
D and any set �[f'g of keys in CK ;FK overD, whether
(D;�) ` '. The next theorem tells that all these cases
are decidable (see [14] for the proof).

Theorem 3.4: The following problems are decidable in
linear time:

1. Given any DTD D, whether there exists an XML
tree valid w.r.t. D.

2. The consistency problem for keys in CK ;FK .

3. The implication problem for keys in CK ;FK .

2

Given Theorem 3.4, one would be tempted to think
that when only foreign keys are considered, the analy-
ses of consistency and implication could also be simpler.
However, it is not the case. Recall that a foreign key
of CK ;FK consists of an inclusion constraint and a key.
Thus we cannot exclude keys in the presence of foreign
keys. It is not hard to show that consistency and im-
plication of foreign keys in CK ;FK remain undecidable.

4 Unary keys and foreign keys

The undecidability of the consistency problem for gen-
eral keys and foreign keys motivates us to look for re-
stricted classes of constraints. One important class is

CUnaryK ;FK , the class of unary keys and foreign keys. A cur-
sory examination of existing XML speci�cations reveals
that most keys and foreign keys are single-attribute con-
straints, i.e., unary. In particular, in XML DTDs, one
can only specify unary constraints with ID and IDREF
attributes.

In this section, we �rst investigate the consistency prob-

lem for CUnaryK ;FK . To do so, we consider a larger class of
constraints. Let us refer to the class of unary keys and

unary inclusion constraints as CUnaryK ;IC . We develop an

encoding of DTDs and CUnaryK ;IC constraints with linear in-
teger constraints. This enables us to reduce the consis-

tency problem for CUnaryK ;FK to the linear integer program-
ming problem, one of the most studied NP-complete
problems. We then use the same technique to show that
the problem remains in NP when negations of keys are
allowed. Finally, we identify several tractable cases of
the consistency problems.

4.1 Coding DTDs, unary constraints

We show that CUnaryK ;IC constraints and DTDs can be
encoded with linear equalities and inequalities, called
cardinality constraints . The encoding allows us to re-
duce the consistency problem for CUnaryK ;IC constraints in

PTIME to the linear integer programming (LIP) prob-
lem: Given an m�n matrix A of integers and a column

vector ~b of m integers, does there exist a column vector

~x of n integers such that A~x � ~b? That is, for i 2 [1;m],

X

j2[1;n]

aij xj � bi;

where aij is the jth element of the ith row of A, xj
is the jth entry of ~x and bi is the ith entry of ~b. It
is known that LIP is NP-complete in the strong sense
[17]. In particular, when nonnegative integer solutions
are considered, [25] has shown that if the problem has
a solution, then it has another solution in which for all
j 2 [1; n], xj is no larger than n (ma)2m+1, where a is

the largest absolute value of elements in A and ~b.

More speci�cally, we show the following:

Theorem 4.1: There is a polynomial (O(s2 � log s)) al-

gorithm that, given a DTD D and a set � of CUnaryK ;IC

constraints, constructs an integer matrix A and an in-

teger vector ~b such that there exists an XML tree valid

w.r.t. D and satisfying � if and only if A~x � ~b has an
integer solution. 2

As an immediate result, we have:

Corollary 4.2: The consistency problem for CUnaryK ;FK

constraints is in NP. 2

The proof of Theorem 4.1 is a bit involved, and consists
of three main steps. Given a DTD D and a set � of
CUnaryK ;IC constraints over D, we de�ne in O(s2 � log s)
time (in the sizes of D and �) the following:

� a set C� of cardinality constraints such that there
is an XML tree valid w.r.t. D and satisfying � if
and only if there is an XML tree valid w.r.t. D and
satisfying C�; these constraints are of the forms:
jext(�1)j = jext(�1:l1)j, jext(�1:l1)j � jext(�2:l2)j,
where �1; �2 are element types and l1; l2 are their
attributes.

� a system 	D of cardinality constraints such that
there exists an XML tree valid w.r.t. D if and only
if 	D admits an integer solution; the cardinality
constraints in 	D are more complex than cardinal-
ity constraints studied in the context of relational
databases [20];

� �nally, a system of linear equalities and inequali-
ties 	(D;�) from C� and 	D such that there ex-
ists an XML tree valid w.r.t. D and satisfying �
if and only if 	(D;�) admits an integer solution.

All details of the encodings and the proofs of correctness
can be found in [14]. Here we illustrate the encoding
by an example. Consider a simpli�ed speci�cation for
our teacher example given in Section 1 (�1; �2 stand
for teacher, subject, and l1; l2 for name, taught by,
respectively).

DTD D = (E;A; P;R; r), where

E = fr; �1; �2g,

A = fl1; l2g

P (r) = �1; �1�, P (�1) = �2; �2, P (�2) = �,

R(�1) = fl1g, R(�2) = fl2g, R(r) = ;.

Constraints �:

�1:l1 ! �1, �2:l2 ! �2, �2:l2 � �1:l1.

We encode � with a set C�:

jext(�1)j = jext(�1:l1)j, jext(�2)j = jext(�2:l2)j,

jext(�1:l1)j � jext(�2:l2)j.

To encode D, we �rst eliminate the occurrence of the
Kleene star by introducing a new element type �t and
rewriting element type de�nitions:

P (r) = �1; �t; P (�t) = � j �1; �t:

It is shown that such rewriting does not a�ect DTD
conformance and constraint satisfaction (see [14]). We
then encode the modi�ed D with a system 	D:

 r: jext(r)j = x1�1 = x1�t ,

 �t : jext(�t)j = x1� + y, y = x2�1 = x2�t ,

 �1 : jext(�1)j = x1�2 = x2�2 ,

 �2 : jext(�2)j = x2� ,

�r: jext(r)j = 1,

��t : jext(�t)j = x1�t + x2�t ,

��1 : jext(�1)j = x1�1 + x2�1 ,

��2 : jext(�2)j = x1�2 + x2�2 ,

all unknowns � 0.

Here we treat jext(�)j; x; y as unknowns of the system,
and use � to encode P (�). Referring to an XML tree T
conforming to D, recall that jext(�)j denotes the num-
ber of all � nodes in T . Obviously jext(r)j = 1 because
T has a unique root. By P (r) = (�1; �t), the root must
have a �1 child and a �t child. Let x

1
�1

and x1�t denote
the numbers of �1 and �t children of the root, respec-
tively. Then we must have jext(r)j = x1�1 = x1�t , which
is what r says. Similarly, by P (�1) = (�2; �2), if we use
x1�2 ; x

2
�2

to denote the numbers of the �rst and second
�2 children of �1 nodes in T , respectively, then we must
have jext(�1)j = x1�2 = x2�2 . That is exactly what �1
speci�es. Recall P (�t) = (� j �1; �t). Each �t node in T
has either no children (�) or a �1 child and a �t child.
Let x1� and y denote the numbers of occasions when
�t nodes have empty children and nonempty children,
respectively, and more speci�cally, let x2�1 and x2�t de-
note the numbers of �1 and �t children of �t nodes in T ,
respectively. Then we must have that jext(�t)j equals
to the sum of x1� and y, and moreover, y = x2�1 = x2�t ,
which are what �t states. Observe that ext(�) includes
all � nodes in T no matter where they occur. This is
what ��t ; ��1 and ��2 assert.

We de�ne 	(D;�) to be C� [D, which is a sys-
tem of linear constraints on nonnegative integers. Here
	(D;�) does not admit an integer solution. More
speci�cally, from 	(D;�) we have that jext(�2)j =
2 jext(�1)j on the one hand, and jext(�2)j � jext(�1)j
on the other hand, while jext(�1)j � 1 (by r; �r; ��1).
Thus by Theorem 4.1, there is no XML tree T such
that T j= D and T j= �. This is consistent with the
observation of Section 1.

The encoding is not only interesting in its own right,

but also useful in the consistency analyses of CUnaryK ;FK

and CUnaryK:;IC constraints, as well as in resolving a special

case of CUnaryK ;FK constraint implication.

4.2 CUnaryK ;FK and CUnaryK:;IC constraints

Next, we establish the precise complexity bound on the
consistency problem for unary keys and foreign keys:

Theorem 4.3: The consistency problem for CUnaryK ;FK

constraints is NP-complete. 2

Proof sketch: Corollary 4.2 has shown that the problem
is in NP. We show that it is NP-hard by reduction from
a variant of LIP, namely,

A~x = ~b;

where for all i 2 [1;m], j 2 [1; n], aij coe�cients are
in f0; 1g, all bi elements are 1, and all xj components
are binary, i.e., in f0; 1g. It is known that the variant
is also NP-complete [17].

Given an instance A~x = ~b of the variant of LIP, we
de�ne a DTD D and a set � of CUnaryK ;FK constraints over
D such that there is an XML tree valid w.r.t. D and
satisfying � if and only if A~x = ~b admits a binary
solution. For i 2 [1;m], we use Fi to denote

X

j2[1;n]

aij xj .

We de�ne D to be (E; A; P; R; r), where

E = frg [fFi j i 2 [1;m]g
[fbi j i 2 [1;m]g
[fV Fi j i 2 [1;m]g
[fXij j i 2 [1;m]; j 2 [1; n]g
[fZij j i 2 [1;m]; j 2 [1; n]g

A = fvg [fAij j i 2 [1;m]; j 2 [1; n]g

P (r) = F1; :::; Fm; b1; :::; bm
P (Fi) = Xij1 ; :::; Xijl for all i 2 [1;m],

where Xij1 ; :::; Xijl is a subsequence of
Xi1; :::; Xim such that Xij is in P (Fi)
i� ai j in A is 1

P (Xij) = Zij j � for i 2 [1;m] and j 2 [1; n]
P (Zij) = V Fi for i 2 [1;m] and j 2 [1; n]
P (V Fi) = P (bi) = � for i 2 [1;m]

R(Zij) = fAijg for i 2 [1;m] and j 2 [1; n]
R(V Fi) = R(bi) = fvg for i 2 [1;m]
R(r) = R(Fi) = R(Xij) = ;

Intuitively, Xij indicates xj in Fi, and Zij denotes the
value of Xij : Xij has value 1 if and only if Xij has a Zij
child. The attribute Aij of Zij is used to ensure that
all occurrences of xj have the same value. The element
type V Fi indicates the value of Fi, and its attribute v
is to ensure that the value of Fi is 1. More speci�cally,

these are captured by the set � of CUnaryK ;FK constraints
over D. To ensure that all occurrences of xj have the
same value, the following are in �: for j 2 [1; n] and
i; l 2 [1;m],

Zij :Aij ! Zij ; Zij :Aij � Zlj :Alj :

These assert that Xij has value 1 if and only if Xlj

equals to 1. To ensure Fi = bi, we include the following
in �: for i 2 [1;m],

V Fi:v ! V Fi, bi:v ! bi,
V Fi:v � bi:v, bi:v � V Fi:v.

These assert that Fi node has a unique V Fi descendent,
and thus has value 1. An XML tree valid w.r.t. D has
the form shown in Figure 3.

F1 Fi Fm

.X ij

Z ij

@A i j VF i

r

b1 bm

@v

@v @v

.

. . .

Figure 3: A tree used in the proof of Theorem 4.3

It is easy to verify that the encoding can be done in

PTIME in m and n. Moreover, A~x = ~b admits a binary
solution if and only if there is an XML tree valid w.r.t.
D and satisfying �. Thus what given above is indeed a
PTIME reduction from the variant of LIP. 2

In relational databases, it is common to consider pri-
mary keys. That is, for each relation one can specify
at most one key, namely, the primary key of the rela-
tion. In the XML setting, the primary key restriction
requires that for each element type � 2 E, one can spec-
ify at most one key, i.e., there is at most one l 2 R(�)
such that �:l ! � . This is the case for \keys" speci�ed
with ID attributes, since in a DTD, at most one ID at-
tribute can be speci�ed for each element type. Under
the primary key restriction, the consistency problem for

CUnaryK ;FK is to determine, given any DTD D and �nite set

� of CUnaryK ;FK constraints in which there is at most one key

for each element type (given either as keys or as part of
foreign keys), whether there is an XML tree valid w.r.t.
D and satisfying �. One might think that the primary
key restriction would simplify the consistency analysis

of CUnaryK ;FK constraints. However, this is not the case.

Corollary 4.4: Under the primary key restriction, the

consistency problem for CUnaryK ;FK remains NP-complete.
2

Proof sketch: The reduction from LIP given in the proof
of Theorem 4.3 de�nes at most one key for each element
type. 2

A mild generalization of the encoding given above can
establish the complexity of the consistency problem for

CUnaryK:;IC , the class of unary keys, inclusion constraints

and negations of keys (see [14] for the encoding and a
proof for the following corollary).

Corollary 4.5: The consistency problem for CUnaryK:;IC

constraints is NP-complete. 2

It should be mentioned that the problem remains NP-
hard under the primary key restriction. This can be ver-
i�ed along the same lines as the proof of Corollary 4.4.

Corollary 4.5 also tells us the complexity of a special

case of the implication problem for CUnaryK ;FK , referred to

as implication problem for unary keys by CUnaryK ;FK con-
straints :

Theorem 4.6: The following is coNP-complete, even
under the primary key restriction: given any DTD D,

any set � of CUnaryK ;FK constraints and a unary key ' over

D, whether (D;�) ` '. 2

Proof sketch: Observe that (D;�) ` ' i� �[f:'g and
D are not consistent, i.e., there exists no XML tree T
such that T j= D, T j= � and T j= :'. Note that

� [f:'g is a set of CUnaryK:;IC constraints. Thus the im-

plication problem for unary keys by CUnaryK ;FK constraints
is the complement of a special case of the consistency

problem for CUnaryK:;IC , and hence in coNP. We show it is
coNP-hard by reduction from the complement of the

consistency problem for CUnaryK ;FK . See [14] for details. 2

Finally, we identify some PTIME decidable cases of
the consistency and implication problems. First, these
problems for unary keys only are decidable in linear
time, by Theorem 3.4. We next show that given a �xed
DTD D, the consistency and implication analyses be-
come simpler.

Corollary 4.7: For a �xed DTD, the following prob-
lems are decidable in PTIME:

� The consistency problems for CUnaryK ;FK and CUnaryK:;IC .

� Implication of unary keys by CUnaryK ;FK constraints.

2

Proof sketch: Recall the encoding given in the proof of
Theorem 4.1. Given a �xed DTD D, the number of
unknowns in C� is bounded by the size of D (O(s2),
where s is the size of D), and the number of unknowns
in 	D is determined by D and �xed. Thus the number
of unknowns in 	(D; �) is bounded. In other words,
the number of unknowns in the system of linear integer
constraints that encodes D and � is bounded. This fol-
lows from the proofs of Theorem 4.1 and Corollary 4.5
(see [14]). It is known that when the number of un-
knowns in a system of linear constraints is bounded,
checking whether the system admits an integer solution
can be done in PTIME [22]. As shown by Theorem 4.1
and Corollary 4.5, � can be satis�ed by an XML tree
valid w.r.t. D if and only if their encoding system ad-
mits an integer solution. The system can be computed
in PTIME in the size of D. Putting these together, we
have Corollary 4.7. 2

5 Incorporating negation

In Section 4, we have shown that the consistency prob-
lem for unary keys and foreign keys is NP-complete. In
this section, we extend the result by showing that the
problem remains in NP when negations of these unary
constraints are allowed. That is, the problem is NP-

complete for CUnaryK:;IC: , the class of unary keys, inclusion
constraints and their negations. This helps us settle

the implication problems for CUnaryK ;FK and the more gen-

eral CUnaryK ;IC , the class of unary keys and foreign keys,
and the class of unary keys and inclusion constraints,
respectively. This is one of the reasons that we are in-

terested in the consistency problem for CUnaryK:;IC: .

Theorem 5.1: The consistency problem for CUnaryK:;IC:

is NP-complete. 2

While this theorem subsumes Theorem 4.3, the reduc-
tion is quite di�erent from the nice encoding with in-

stances of LIP that we used for CUnaryK ;FK . In fact, while
typically NP-complete problems are easily shown to
be in NP, and only the reduction from a known NP-
complete problem is di�cult, for the consistency prob-

lem for CUnaryK:;IC: , the opposite is the case, and the proof

of membership in NP is a little involved (even assum-
ing the encoding of keys and inclusion constraints by
instances of LIP given in the previous section). We
cannot reduce the problem directly to LIP as before, be-
cause there is no direct connection between �i:li 6� �j :lj
and the cardinalities jext(�i)j, jext(�j)j, jext(�i:li)j and
jext(�j :lj)j in an XML tree.

We develop an NP algorithm for determining the con-
sistency of CUnaryK:;IC: constraints. The algorithm takes

advantage of another encoding of CUnaryK:;IC: constraints
with linear integer constraints, which characterizes a set
interpretation of unary inclusion constraints and their
negations. The encoding and the details of the proof
can be found in [14].

We next investigate implication problems.

Theorem 5.2: For each of CUnaryK ;IC and CUnaryK ;FK , the
implication problem is coNP-complete, even under the
primary key restriction. 2

Proof sketch: The problem for CUnaryK ;IC is to determine,

for a DTD D, a set � of CUnaryK ;IC constraints, and a

constraint ' (unary key or unary inclusion), whether
(D;�) ` '. Note that (D;�) ` ' i� there is no XML
tree T with T j= D ^

V
� ^ :', and � [f:'g is a

set of CUnaryK:;IC: constraints. Thus by Theorem 5.1, the

implication problem for CUnaryK ;IC is in coNP. It is shown
to be coNP-hard in the same way as in the proof of

Theorem 4.6. Similarly, we show that the implication

problem for CUnaryK ;IC is also coNP-complete (see [14]). 2

Finally, along the same lines as Corollary 4.7, we show
the following (see [14] for the proof):

Corollary 5.3: For a �xed DTD, the following prob-
lems can be determined in PTIME:

� The implication problem for CUnaryK ;FK .

� The consistency problem for CUnaryK:;IC: .

2

6 Conclusion

We have studied the consistency problems associated
with four classes of integrity constraints for XML. We
have shown that in contrast to its trivial counterpart
in relational databases, the consistency problem is un-
decidable for CK ;FK , the class of multi-attribute keys
and foreign keys. This demonstrates that the interac-
tion between DTDs and key/foreign key constraints is
rather intricate. This negative result motivated us to

study CUnaryK ;FK , the class of unary keys and foreign keys,
which are commonly used in practice. We have devel-
oped a characterization of DTDs and unary constraints
in terms of linear integer constraints. This establishes a
connection between DTDs, unary constraints and linear
integer programming, and allows us to use techniques
from combinatorial optimization in the study of XML
constraints. We have shown that the consistency prob-

lem for CUnaryK ;FK is NP-complete. Furthermore, the prob-

lem remains in NP for CUnaryK:;IC: , the class of unary keys,
unary inclusion constraints and their negations.

We have also investigated the implication problems for
XML keys and foreign keys. In particular, we have
shown that the problem is undecidable for CK ;FK and

it is coNP-complete for CUnaryK ;FK constraints. Several
PTIME decidable cases of the implication and consis-
tency problems have also been identi�ed. The main
results of the paper are summarized in Figure 4.

It is worth remarking that the undecidability and NP-
hardness results also hold for other schema speci�ca-
tions beyond DTDs, such as XML Schema [29] and the
generalization of DTDs proposed in [26].

This work is a �rst step towards understanding the in-
teraction between DTDs and integrity constraints. A
number of questions remain open. First, we have only
considered keys and foreign keys de�ned with XML at-
tributes. We expect to expand techniques developed
here for more general schema and constraint speci�-
cations, such as those proposed in XML Schema and
in a recent proposal for XML keys [7]. Second, other
constraints commonly found in databases, e.g., inverse
constraints, deserve further investigation. Third, a lot

of work remains to be done on identifying tractable yet
practical classes of constraints and on developing heuris-
tics for consistency analysis. Finally, a related project
is to use integrity constraints to distinguish good XML
design (speci�cation) from bad design, along the lines of
normalization of relational schemas. Coding with linear
integer constraints gives us decidability for some impli-
cation problems for XML constraints, which is a �rst
step towards a design theory for XML speci�cations.

Acknowledgments. We thank Michael Benedikt, Al-
berto Mendelzon, Frank Neven and J�erôme Sim�eon for
helpful discussions. Part of this work was done while
the second author was visiting INRIA.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. Regular path queries
with constraints. In PODS'97, pages 122{133.

[3] V. Apparao et al. Document Object Model (DOM)
Level 1 Speci�cation. W3C Recommendation, Oct.
1998.
http://www.w3.org/TR/REC-DOM-Level-1/.

[4] C. Baru, A. Gupta, B. Lud�ascher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu.
XML-based information mediation with MIX. In
SIGMOD'99, pages 597{599.

[5] C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data.
In ICDT'99, pages 296{313.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C
Recommendation, Feb. 1998.
http://www.w3.org/TR/REC-xml/.

[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Keys for XML. In WWW'10, 2001.

[8] P. Buneman, W. Fan, and S. Weinstein. Interaction
between path and type constraints. In PODS'99,
pages 56{67.

[9] P. Buneman, W. Fan, and S. Weinstein. Path con-
straints on semistructured and structured data. In
PODS'98, pages 129{138.

[10] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Representing and reasoning on XML documents:
A description logic approach. J. Logic and Com-
putation, 9(3):295{318, 1999.

[11] J. Clark. XSL Transformations (XSLT). W3C Rec-
ommendation, Nov. 1999.
http://www.w3.org/TR/xslt.

multi-attribute unary primary, unary DTD �xed, unary multi-attribute
keys, foreign keys keys, foreign keys keys, foreign keys keys, foreign keys keys only

consistency undecidable NP-complete NP-complete PTIME linear time

implication undecidable coNP-complete coNP-complete PTIME linear time

Figure 4: The main results of the paper

[12] J. Clark and S. DeRose. XML Path Language
(XPath). W3C Recommendation, Nov. 1999.
http://www.w3.org/TR/xpath.

[13] S. S. Cosmadakis, P. C. Kanellakis, and M. Y.
Vardi. Polynomial-time implication problems for
unary inclusion dependencies. J. ACM, 37(1):15{
46, Jan. 1990.

[14] W. Fan and L. Libkin. On XML integrity con-
straints in the presence of DTDs. Full version of
the paper:
http://www.cis.temple.edu/~fan/papers/xml/
pods01-full.ps.gz

[15] W. Fan and J. Sim�eon. Integrity constraints for
XML. In PODS'00, pages 23{34.

[16] D. Florescu, L. Raschid, and P. Valduriez. A
methodology for query reformulation in CIS using
semantic knowledge. Int'l J. Cooperative Informa-
tion Systems (IJCIS), 5(4):431{468, 1996.

[17] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[18] C. Hara and S. Davidson. Reasoning about nested
functional dependencies. In PODS'99, pages 91{
100.

[19] M. Ito and G. E. Weddell. Implication problems
for functional constraints on databases supporting
complex objects. JCSS, 50(1):165{187, 1995.

[20] P. C. Kanellakis. On the computational complexity
of cardinality constraints in relational databases.
Information Processing Letters, 11(2):98{101, Oct.
1980.

[21] A. Layman et al. XML-Data. W3C Note, Jan.
1998.
http://www.w3.org/TR/1998/NOTE-XML-data.

[22] H. W. Lenstra. Integer programming in a �xed
number of variables. Math. Oper. Res., 8:538{548,
1983.

[23] J. Melton and A. Simon. Understanding the New
SQL: A Complete Guide. Morgan Kaufman, 1993.

[24] F. Neven. Extensions of attribute grammars for
structured document queries. In DBPL'99.

[25] C. H. Papadimitriou. On the complexity of integer
programming. J. ACM, 28(4):765{768, 1981.

[26] Y. Papakonstantinou and V. Vianu. Type infer-
ence for views of semistructured data. In PODS'00,
pages 35{46.

[27] L. Popa. Object/Relational Query Optimization
with Chase and Backchase. PhD thesis, University
of Pennsylvania, 2000.

[28] J. Robie, J. Lapp, and D. Schach. XML Query
Language (XQL). Workshop on XML Query Lan-
guages, Dec. 1998.

[29] H. S. Thompson et al. XML Schema Part 1: Struc-
tures. W3C Working Draft, Apr. 2000.
http://www.w3.org/TR/xmlschema-1/.

[30] J. D. Ullman. Database and Knowledge Base Sys-
tems. Computer Science Press, 1988.

[31] P. Wadler. A formal semantics for patterns in XSL.
Technical report, Bell Labs, 2000.

[32] J. Widom. Data management for XML: Research
directions. In IEEE Data Engineering Bulletin,
22(3): 44-52, 1999.

