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ABSTRACT

When gathering data from multiple data sources, users need
uniform, transparent access to data. Also, when extracting
data from several independent, often only partially sound
and complete data sources, it is useful to present users with
meta-information about the confidence in the answer to a
query, based on the number and quality of the sources that
participated in constructing the answer. We consider the
problem of querying collections of sources with incomplete
and partially sound data. We provide a method for checking
the comnsistency of a source collection, we give a tableaux-
based characterization for the set of possible worlds consis-
tent with a given source collection and we propose a proba-
bilistic semantics for query answers.

1. INTRODUCTION

When gathering data from multiple, independent data sources,

users need an integrated view of the data. On the data ac-
cess level, users want uniform access to the data; they should
not need to worry where the relevant data sources are, what
protocols for data access they use, and how they model the
information. On the semantic level, users want to make
sense of the data, to have the data presented to them in a
uniform way. Also, when extracting data from several inde-
pendent, often overlapping and inconsistent, data sources, it
is useful to present users with meta-information about the
confidence in the answer to a query, based on the number
and quality of the sources that participated in constructing
the answer.

In this paper, we examine some issues related to the integra-
tion of data from multiple sources, in the presence of com-
pleteness and soundness information. We provide a method
for checking the consistency of a source collection and we
propose a probabilistic semantics for query answers. This
research generalizes the work of Grahne and Mendelzon [6]
by considering arbitrary completeness and soundness esti-
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mates (values in [0,1] as opposed to just 0 or 1).

1.1 Motivating Example

Consider a system that integrates information from several
data sources. As a concrete case, take for example the
Global Historical Climatology Network [4]. This organiza-
tion collects and assembles climatic data from about 6,000
temperature stations, 7,500 precipitation stations, and 2,000
pressure stations. The earliest station data is from 1697(!)
and the most recent from 1990. The domain is modeled
by a global relational schema, containing one relation for
each type of measurement (temperature, pressure, precipi-
tation, etc.) and several additional relations storing station
locations and other geographic information. For example,
mean monthly temperature is recorded in a relation Temper-
ature(station, year, month, value). Conceptually, we would
like the Temperature relation to contain all the mean tem-
peratures for all stations and all months between 1697 and
1990. In reality, only partial information is assembled from
several data sources. For example, a data source S1 contains
station data for Canada since 1900, another source, S>, data
for American stations since 1800, another, Ss, only data for
station number ‘438432’, and so on. Assume also that all
station location information is maintained in a relation Sta-
tion(id, latitude, longitude, country) by a single source Sp.
We can model the contents of these sources by a view over
the global schema (we use the conjunctive query notation
from [2]):

So : Vo(s, lat,lon, c) < Station(s,lat,lon, c)
S1: Vai(s,y,m,v) « Temperature(s,y, m,v),
Station(s, lat, lon, “Canada”), After(y, 1900)
Sa : Va(s,y,m,v) < Temperature(s,y, m,v),
Station(s, lat, lon, “US”), After(y, 1800)
S3 : V3(438432,y, m, v) < Temperature(438432, y, m,v)

where we assume After is a built-in global relation.

‘We consider the above view definitions as describing the in-
tended content of the sources, and assume the actual content
to be an approximation of it. For example, Si might very
well contain only some of the temperatures and also some
of the values in S; might be incorrect. If all the tuples in
S1 are correct, we say that the source is sound. If source Sy
contains all Canadian station data since 1900 we say that
the source is complete. These notions are relative to the
(unknown) complete relation Temperature (and to the com-



plete relations Station and After). In many situations, it is
the case that a source cannot claim either, but it can pro-
vide estimates of how much of the information is covered
(completeness) and how much of the information is accu-
rate (soundness). We formally introduce these notions in
Section 2.

1.2 RelatedWork

The data integration problem has received considerable at-
tention in the database community. Starting from the older
problem of answering queries using materialized views [11],
a formalism that treats individual sources as views over a
global schema has been developed for data integration. The
Information Manifold project [9] gives an algorithm for com-
puting answers to queries posed over the global schema.

Motro assumes the existence of a “real world” global database
and considers data sources as approximations of it [12]. Start-
ing from this assumption, he introduces the notions of sound
and complete answers to a query: an answer given by the
multidatabase system to a query q is sound if it is included
in the (hypothetical) answer to the same query computed
over the real world database and complete if it includes the
answer computed over the real world database.

Grahne and Mendelzon [6] take a different view: instead
of assuming the existence of a unique “real world” global
database, they consider the uncertainty introduced by mul-
tiple sources and define a set of possible global databases
consistent with a collection of sources. In their work, they
consider a collection of sources where some of them are
sound, some are complete, and some are both sound and
complete, and give upper and lower approximations to query
answers (also known as the certain and the possible answers).
In particular, they prove that the answer computed by the
Information Manifold algorithm coincides with the certain
answer. Abiteboul and Duschka [1] consider the special case
when all sources are sound or all are sound and complete.

Levy considers sources that are known to be complete for
some subset of their domain and shows how they can be used
to compute exact answers [10]. Also relevant is Florescu et
al.’s work [3] in using probabilistic knowledge in data inte-
gration: there, information about the completeness and rel-
ative overlap of data sources is used in ordering the accesses
to sources in order to maximize the likelihood of obtaining
answers early in the evaluation.

Gradel, Gurevich and Hirsch [5] model uncertainty by an 0b-
served database together with an error probability function.
This function assigns to each atomic fact the probability
that its truth value in the observed database differs from its
truth value in the actual database. OQur approach assumes
completeness and soundness information is available at the
source level and infers the confidence of individual tuples.

Kifer and Li [8] define a formalism for incorporating uncer-
tainty into expert systems. They introduce a general frame-
work for propagating confidence values in the evaluation of
a logic program. We define a similar method for computing
the confidence of answer tuples for relational algebra queries.

In this paper, we generalize Grahne and Mendelzon’s ap-

proach [6] to collections of sources with partial completeness
and soundness.

2. THE MODEL

2.1 Global Databasesand View Definitions
Let rel = {R1, R»,...} be an infinite set of global relation
names, and loc = {V, V1, Va,...} an infinite set of local re-
lation names. Also, consider a set dom = {ai,as,...} of
constants and a set var = {x1,x2,...} of variables. Associ-
ated with each relation name R is an integer k called the ar-
ity of R. An atom is an expression of the form R(es,...,ex)
where R is a relation name, k is the arity of R, and e1, ..., ek
are either constants or variables. A fact is an atom without
variables.

A global schema is a set R = {R1, Ra,...,Rn} of global
relation names. A global database D over R is a finite set of
facts, each fact being over some R; € R. For a fixed global
database D and relation name R;, we denote by D(R;) the
collection of all the facts over R; in D, sometimes referred
to as the eztension of R; in D.

‘We model the contents of a data source by a view definition
¢ of the form:

head(ip) + body(p),

where head(p) is an atom over a local relation name V' and
body(p) is a sequence b1, bs, ..., b, of atoms over global re-
lation names. We assume that all queries are safe (all vari-
ables in the head also occur in the body). For a fixed global
database D, the result of applying ¢ to D, denoted ¢(D) is
a collection of facts over V.

A view extension for a view ¢ is a finite set of atoms over the
local relation name V' in the head of the view definition ¢.
We will denote such a view extension by v. A view extension
corresponds to the current contents of a data source.

2.2 Completenessnd Soundnes®f DataSources

Consider a source S defined by a view ¢ and containing the
view extension v. For a given global database D we say that
the source S is sound with respect to D if v C ¢(D), and
that it is complete with respect to D if v D (D). If a source
is both sound and complete, we say that the source is ezact
with respect to D.

The following two definitions formally introduce the com-
pleteness and soundness measures.

DEFINITION 2.1. [Completeness] The completeness of source

S with respect to a database D is the fraction of the tuples
wn (D) that are in v:

_|lvne(D)|
e0(8) = ooy

DEFINITION 2.2. [Soundness] The soundness of source v
with respect to a database D is the fraction of tuples in v
which are present in p(D):

lvN (D)
||

sn(S) =



The completeness measure can be used in query evaluation
to select sources that are most likely to contain relevant
information. The soundness parameter can be used for as-
sessing the confidence we can place in the answers provided
by individual data sources and to evaluate the confidence of
an answer assembled from several sources.

These parameters can be hard to estimate in practice, given
that a sound and complete database is usually not avail-
able. Nevertheless, in many instances, one can use various
domain-specific methods to estimate lower bounds on the
soundness and completeness of a data source. For example,
in accounting information systems, data analysts use statis-
tical methods for determining whether data is free of specific
types of errors at a given level of confidence [7]. The method-
ology includes analyzing the data processing flow and possi-
ble sources of errors at various points and checking samples
of sufficient size (the sample size is inferred from the de-
sired confidence using statistical models). Also, in the case
of the climatology data, one can compute the exact size of a
complete database D (number of stations x total number of
months), the size of each p;(D), and can also use statistical
methods to detect which temperatures are abnormally high
(or low) for specific stations and months®. This situation can
be generalized to any relation R(Ai,...,Ar) where there
exists a functional dependency Ai,...,A; = Ait1,..., Ag
and the domains of the determining attributes Ai,..., 4;
are known (and finite). This is a very common case for data
derived from measurements of physical variables.

The completeness and soundness measures are related to
the recall and precision measures used in Information Re-
trieval [13]. An information retrieval system — operating
on a (large) collection of documents — is able to produce,
in response to a user query, a subset of documents “rele-
vant” to that query. The effectiveness of such a system is
typically estimated by comparing the answers computed by
the system against the “correct” answers (as compiled by a
team of human experts). In that context, the recall is the
fraction of the documents from the “correct” answer that
are returned by the system, and the precision is the frac-
tion of the returned documents that are deemed correct. In
our context, the recall corresponds to completeness and the
precision to the soundness.

2.3 Source Descriptors
A data source is modeled by a source descriptor of the form
(p,v,¢,8, f,7), where

e o is a view definition;
e v is a view extension;
e ¢ €[0,1] is a lower bound for the completeness;

e s €[0,1] is a lower bound for the soundness;

3. CONSISTENCY OF ASOURCECOLLEC-
TION

Consider a source S characterized by source descriptor
(p,v, ¢, s), as defined in Section 2.

'These “suspect” values are available from [4].

By giving this source descriptor, a data provider sets an
implicit constraint over the possible global databases D:

D is such that ¢p(S) > ¢ and sp(S) > s.

In order to give meaning to answers assembled from multiple
sources, we first need to characterize the set of database in-
stances that are consistent with the completeness and sound-
ness measures claimed by a given collection of sources.

Consider a source collection § = Si,...,S,, where S; =
(t,ai,vi,ci,si), for 7 € [1,n].

The source collection S defines a set of possible databases,
denoted poss(S), as follows:
poss(S) = {D over sch(S) : cp(vi) > ¢ and sp(v;) > s,
for all S; € S}

where sch(S) is the schema of S, i.e. the set of all global
relation names occurring in the view definitions.

In the remainder of this section we consider the following
problem: given a source collection S, determine whether
poss(8S) is non-empty, in other words whether S is consis-
tent. More precisely, this problem can be stated as:

CONSISTENCY
INSTANCE: A source collection § = {Si1,...,Sn}, where
S; = (‘Pi,Uz‘,Ci,si), for i € [1,”].
QUESTION: Is there a global database D that satisfies the
following conditions:

(D)nwif o

i (D) N i > ¢ and |pi >
lpi (D) |vil
for all i € [1,n] ?

We begin with a preliminary result that limits the search
space for solutions to databases whose total size is bounded
by a constant.

LEMMA 3.1. Let § = {S1,...,Sn} be a source collec-
tion, where S; = (i, vi,ci,si), for i € {1,...,n}. Then,
poss(S) # O if and only if there exists a global database
D € poss(S) over sch(S) such that

|D| < maz,_rlbody(p:)]| - (S vi])

Proof: We only need to prove the “only if” direction. Take
an arbitrary global database G € poss(S). For each ¢ €
{1,...,n} construct G; C G as follows: for each fact u €
©i(G) N v;, choose a valuation 6, such that head(y;)0 = u
and all the facts in body(p;) are in G (there exists at least
one such valuation, according to the definition of applying
a view to a database); then, let

G; = {t: t in body(vi)bu,u € vi(G) Nv;}
Finally take



We have:
|D| < B7_1|Gi| = Eizi|body (i) [|vi| <

< maz; _tzlbody(¢i)| - (Ziz1vil)
We now need to prove that D is in poss(S). For every i, we

have:

i(D) Ny 2 pi(Gi) Nwy = pi(G) Nw;

Because D C G, we also have that:
@i(D) Nwi C ¢i(G) N
and therefore
wi(D)Nwv; = ¢;(G) Ny;
This enables us to infer that:
_ lei(D) Nwi| _ |@i(G) Nwil

sp(vi) = ol = o] = sc(vi) > si
and
N D) o] Jei(G) Nwil §_ [ei(G) Nwil _
Sl 7)) R P )| i P ()]
=ca(v) > ¢

This proves that D € poss(S) and concludes the lemma’s
proof.

We are now ready to prove the following theorem:

THEOREM 3.2. CONSISTENCY is NP-complete (in the
size of the view extensions).

Proof:

i) To prove that the problem is in NP let

m = maz,_i;|body(p:)|, k = maz{arity(R) : R € sch(S)}
and p = X7 ;|v;|]- The previous lemma limits the search
space for a possible database to global databases with at
most mp atoms involving at most mpk constants. We can
fix a set domg of mpk constants ahead of time (including
all the constants in view extensions). It is easy to see that
if there exists a possible database in the search space men-
tioned earlier, there exists an equivalent possible database
(modulo a bijection on dom) that has constants only from
domyg. Therefore, we can pick in nondeterministic polyno-
mial time a database D over sch(S) with constants in domyg
and then check in polynomial time whether D € poss(S) (by
computing, for each i, ¢;(D) and checking the requirements
on relative completeness ¢p (v;) and soundness sp(v;)). This
proves that the source collection consistency problem is in
NP.

ii) To prove NP-completeness, we construct a reduction from
a special case HS* of the HITTING SET (HS) problem [?],
which we later prove to be NP-complete as well. We state
both problems here:

HITTING SET (HS)

INSTANCE: Collection C = {A1, As,..., A} of subsets of
a finite set S and positive integer K < |S|.

QUESTION: Is there a subset A C S such that |A] < K
and A contains at least one element from each subset in C?

HITTING SET* (HS*)

INSTANCE: Collection C = {A1, A, ..., A} of subsets of
a finite set S such that A, is a singleton, positive integer
K <|S|.

QUESTION: Is there a subset A C S such that |[A| < K
and A contains at least one element from each subset in C?

We transform an instance of HS* to an instance of CON-
SISTENCY as follows:

Let R be a fixed global relation name of arity 1. For every
i € [1,n], build a source S; = (i, vi, ci, 8;) where:

o ¢ : Vi(z) < R(x);

o v = {Vi(@) i a € A
e ¢; =1/K;

o s; =1/| Al

We claim that a solution D of CONSISTENCY can be easily
transformed into a solution A of HS* with the following
mapping: A= {a € S: R(a) € D}.

To verify that, we need to show that ANA; # @ and |A| < K.

Since D is a solution to CONSISTENCY, we know that:

But since ¢;(D) = {Vi(a) : a € A} and v; = {Vi(a) : a €
A;}, we can rewrite the above inequality to:

|ANA; 1 .
— >s;=——, forall ¢ € [1,n]
|Ail |4l

Hence [AN A;| > 1 for all ¢ € [1,n].

Also, we know that:

lpn (D) N wn|

ni/ e,
len (D)D)
which can be similarly rewritten to:

[AN A, e L
ar =R
But since A, is a singleton and |[A N A,| > 1 we infer that

|AN Ap| =1, therefore the above inequality becomes |A| <
K, which qualifies A as a solution to HS™.

Conversely, we need to show that if HS* has a solution, than
so does CONSISTENCY. Consider an arbitrary solution A’



to HS*. We claim that D = R(A4') = {R(a) : a € A'} is
a solution to CONSISTENCY. To verify that, we need to
show that for all ¢ € [1, n],

' . ' .
|A|2/|A_l| > ¢; and _|A|2'I41|_ > 8
Since A’ N A; # 0, we get
|A’ n Ail 1 1
12 A6 > —¢
AT " TE =S
and
|A’ n A,| 1
_ > = 3;
[As] 7 A
Done.

To conclude the proof, we need to prove that HS* is NP-
complete. Since HS™ is a special case of HS, it is in NP. We
prove its completeness by showing that HS reduces to it.

LEMMA 3.3. HS reduces to HSx*

Proof

Consider an instance I of HS. We construct an instance I*
for HS* by taking S* = S U {a} where a ¢ S is a new
element, C* = {41, 4s,...,An, Any1}, where Any1 = {a},
and K* = K +1.

We need to show that I has a solution if and only if I* has
a solution.

Take an arbitrary solution to I, A*. As a solution, A* is
guaranteed to contain at least one element from each subset
in C*, in particular A,+1 = {a}, so A* contains a. We
consider A = S\ {a}. For all : € 1,n we have AN A; =
A*NA; £0. Also, [A| = A -1<(K+1)—-1=K.

Conversely, if A is an arbitrary solution to I, we construct
A* = SU{a}. Foralli € 1,n we have A*NA; = ANA; # 0.
Also, A* N Apt+1 # 0 by construction. Finally, |[A*| = |A| +
1< K +1. QED.

By examining the proof of Theorem 3.2, we notice that the
NP-hardness was shown by reducing an NP-complete prob-
lem to a special case of the consistency problem, thus en-
abling us to formulate the following Corollary.

COROLLARY 3.4. The CONSISTENCY problem remains
NP-complete even if all the view definitions are identities
over the same global relation.

4. POSSIBLE DATABASES

In the previous section, we considered the problem of deter-
mining whether the set of possible databases poss(S) gener-
ated by a source collection § is empty or not. Once we have
determined that a given source collection is consistent, the
next natural step would be to characterize the set of possi-
ble databases. In this section, we provide a representation
of the set of possible databases in terms of tableaux [2, 6].

We start by introducing some necessary auxiliary concepts.

A tableau over a global schema R is a finite set of atoms
over the relation names in R.

A constraint over R is a pair (U, ©) where U is a tableau over
R and © is a set of substitutions of the form {z1/e1,...,zp/ep}
where all the x;-s appear in U, and the e;-s are either con-
stants or variables.

A wvaluation is a partial mapping from var U dom to dom
that is the identity on dom. A valuation o is said to be
compatible with a substitution § = {zi/e1,...,xp/ep} if
o(x;) = o(es), for all ¢ € [1, p].

A constraint (U, ©) is said to be satisfied by a database
instance D if every time the tableau U can be embedded in
D via a valuation o, there is a substitution § in O that is
compatible with o.

A database template T over R is a tuple (Th,...,Tn,C)
where each T; is a tableau over R and C is a finite set of
constraints over R.

EXAMPLE 4.1. Let T = (T1,T»,C), where
T = {R(a7 $)7 S(b7 C)a S(ba CI)};
T, = {R(ala bl): S(b7 C)}; and
C = {({R(a,z)}, {{z/b}, {z/b'})}. This database template
contains two tableauz, and one constraint with two substitu-
tions.

A database template is a compact representation for the set
of all database instances that can be obtained by replacing
the variables in tableaux with constants in such a way that
all the constraints are satisfied. The following definition
formalizes this.

DEFINITION 4.1. A database template T on schema R
represents the following set of global databases:

rep(T) = {D: there is a valuation ¥ and a tableau T; in T
such that ¥(T;) C D, and for all (U,0) € C in T
and valuations o such that o(U) C D there is a
6 € © such that o and 8 are compatible}

EXAMPLE 4.2. Consider the database template T = (T1,T>,C)
from Ezample 4.1. This template represents the following
three global databases {R(a,b),S(b,c),S(b, ')},

{R(a,b"), S(b,c),S(b,c)}, {R(a',b"), S(b,c)} and any of their
supersets satisfying the constraint that whenever a occurs on
the first position of an R atom, then the second component
has to be b orb'. For instance, {R(a,b), R(a,b’), S(b,c), S(b,c')}
is a database in rep(T), while {R(a,c), R(a,b'), S(b,c), S(b, ')}
is not in rep(T) (because the atom R(a,c) violates the con-
straint).

Going back to our source collection problem, consider a
source collection § = {S1,...,Sn}, where S; = (s, vi, ¢i, i),



for s € {1,...,n}. We would like to express the set of possi-
ble databases poss(S) as a set of databases represented by
some template 7.

Denote by k; = |v;|, w; = |pi(D)|, and t; = |¢:(D)Nw;| (the
w;-s and ¢;-s are unknowns). From the definition of poss(S)
we infer the following inequations:

cp(vi) = t—z > ci (1)
ti
sp(vi) = - 2 s (2)
ki
From (2) we get:
t; > sik; (3)

This means that in order to determine all the possible databases
we can consider all combinations of subsets u; C v; such that
|us| > sik; in turn, and take the union of all the solutions.
For each i, the selected subset u; is seen as ¢;(D) Nv;, that
is, the set of sound atoms in the view extension v;.

To simplify the notation, let U = (u1,...,u,) be a fixed
combination of subsets. For this combination U of subsets,
(1) gives an upper bound for the size of the set ¢;(D):

lpi(D)| = wi < 3 (4)

Ci

From the above considerations we infer that any global database
D for which the result of applying the view definition ¢; to

D is a superset of u; of size not greater than t;/c; is a pos-
sible database.

In order to find all the solutions D, we shall first construct
a database template over the global schema, R. We define
a function (TY,CY) from source descriptions to database
templates over R, where U is a given combination of subsets.
Given a source description S; = (s, vs, ¢i, Si), we set

TY(S;) = {t : t in body(y:)d and head(yp;)d = u, for some
u € u; and assignment 6}.

Denote by m; = [t;/ci]. We can express the cardinality
constraint 4 by requiring that in any enumeration of m; + 1
atoms of ¢;(D) of the form:

Vq;(il‘il, .. .,x’i,li)
V}(.’cé,l, ey x%,li
‘/i(x;:ni,la . '1"1":'ni,l,-)

% 2
‘/i(xmi-{—l,lv e $mi+1,li)

there be at least two identical atoms. This in turn can be
expressed by requiring that any valuation that embeds the
above atoms in ¢;(D) must be compatible with one substi-
tution of the form

6]’,7“ = {x;,l/mi,la LR 1$;,li /mi,li}a Wherepa e [1’m1+1]ap 7é T

Therefore, we can capture the cardinality constraint 4 by
setting CY(S;) = (VY (S:), @Y (S;)) where

VU(S;) = {t : tin body(p;)0 and head(p;)0 = Vi(z! 4, ... ,mi,li),
for some s € [1, m; + 1] and assignment 6}

and
GU(Sl) = {aPﬂ' p,r € []‘)ml + 1];p ?é T'}-

Finally, we set

8 = |J 7%(S)

S;ES

cv(8)={CY(S:): Si € 8}
and

7Y(8) = (T7(8),¢"(S))

This collection of database templates has the following de-
sirable property:

THEOREM 4.1.
poss(8) = U rep(TY(S))

veu

where U = {U = (u1,-..,un) : ui C v 8.t |us| > silvil, i €
[1,n]} is the set of all allowable combinations of subsets of
the view extensions.

Proof.

Take D in (J;¢y rep(TV(S)). This means that there is a
U € U such that D € rep(TY(S)). Then there is a valuation
v such that v(TY(S)) C D where T = Us,es TY(S;) and
D satisfies the constraints (Jg, s CY(S;). Now consider an
arbitrary source S; in §, and let u be a fact in u;. Then there
is an assignment 0 such that head(y;)8 = u and all atoms
in body(p;)8 are in T. By applying v it follows that all facts
in v(body(p;)f) are in D. This means that v(head(p;)0)) =
head(p;)8 = u is in ¢;(D), and therefore u; C ¢;(D). Since
u; is a subset of v; and has at least s;|v;| elements, it follows
that the soundness of v; w.r.t. D is at least s;. To prove
that the completeness of v; w.r.t. D is at least ¢;, suppose
the opposite is true, that is:

[vi N pi(D)
i (D)
This would imply that

<c¢

(o)) > D2 bl
2

Ci



But this would mean that D violates the constraint CU (S;).
Therefore, D makes each source S; at least ¢; complete and
at least s; sound, which qualifies it as an element of poss(S).

Conversely, take D in poss(S). For each ¢ € [1,n], let
u; = @;(D) Nwv;. Since each source S; is at least s; sound
w.r.t. D it follows that each u; has at least s;k; elements.
Therefore U = (u1,...,uy) is in U, so, if we prove that D €
rep(TY(S)), we are done. From the construction of TV it
follows that there is a valuation v such that v(TY(S)) C D.
We only need to show that D doesn’t violate any of the con-
straints in CY(S). Suppose, therefore that D violates one
of these constraints, say CY(S;) = (VY(S;),0Y(S;)). This
means that there exists a valuation v’ such that v’ (VY (S;)) C
D, and v’ is not compatible with any of the § € ©Y(S;). This
means that the set W; = {t : t = head(y;)8, s.t. body(y;)8 €
w(VY(S:))} has at least m; + 1 elements and since (D) D
Wi, this means that

lp(D) > ms +1 = | 1l 4 q 5 Tul _ leD) o]
= i e o o
and therefore
i(D i
lei@)nvi|
le(D)

which is in contradiction with the hypothesis that D is in
poss(S). QED.

Theorem 4.1 gives a finite representation of the set of pos-
sible global databases in terms of the set of databases rep-
resented by a collection of database templates.

5. ANSWERING QUERIES

Consider the same framework as before: a source collec-
tion & = {S1,...,Sn}, where S; = (p;,v;,ci, i), for i €
{1,...,n}. In the previous section we studied the problem
of computing the set poss(S) of possible databases defined
by the given source collection. The next step is to study the
semantics of query answering over a source collection.

Consider a conjunctive query over the relation names in R:

Q : head(Q) + body(Q)

where, by convention, head(Q) is an atom over a fixed atom
name ans, and body(Q) is a sequence b1, bs, . . ., by, of atoms
over global relation names. As usual, we assume that all
queries are safe (all variables in the head also occur in the
body). For a fixed global database D, the result of applying
Q to D, denoted Q(D) is a set of facts over ans.

We have seen that, in general, a consistent source collec-
tion doesn’t uniquely define a global database, but rather
a set of possible databases, which we denoted poss(S). It
is therefore natural to define the result of applying a query
Q@ to a given source collection S to be the set of the results
obtained by applying @ to each of the possible databases:

Q(5) ={Q(D) : D € poss(S5)}

From a practical point of view, presenting the result as a
collection of possible results is not very useful, and in most
cases not feasible (as poss(S) is generally large). In order to

avoid this, two approximations have been proposed in the
literature:

Q.8)= [ QD
Deposs(S)
and
)= |J ew
Deposs(S)

The lower approximation Q.(S) is also known as the cer-
tain answer, because it contains exactly those facts that
are common to all the answers for any possible database
(i.e. the certain facts). The upper approximation Q*(S) is
called the possible answer, because it contains the collection
of all the facts that appear in the answers for all the possible
databases.

One natural question arises: could we say more about the
individual atoms in the possible answer? We know that the
facts in the certain answer (if any) are guaranteed to belong
to the result of applying the query to any of the possible
databases. How about the other atoms in the possible an-
swer, are they “equally possible”? Intuitively, because of
the different soundness and completeness bounds on each of
the sources, some atoms in the possible answer would have
been obtained in more of the possible worlds than others.
To capture this intuition, we define the confidence of an fact
t with respect to a query @) as the probability that ¢ is in
the result of applying @ to a database instance D chosen at
random from the collection poss(S):

confidenceq(t) = Pr(t € Q(D)|D € poss(S))

If the domain dom is finite, the above conditional probabil-
ity can be computed (at least in principle) by generating all
the possible global databases (in exponential time). In gen-
eral, computing this confidence value is NP-hard (because
it includes the consistency problem as a sub-problem).

5.1 Computing the Confidenceof BaseFacts
In this section we consider the special case when all the view
definitions are identities over the same global relation name
R and the domain dom is finite. We describe an algorithmic
method for computing the confidence value for any fact in
poss(S) (with respect to the identity query).

Let § = {S1,...,Sn}, where S; = (i, vs, ¢, 83,

¢i : Vi(z1,...,2x) = R(z1,...,zx) for ¢ € {1,...,n}. We
want to determine all the global databases D in poss(S). In
this case a global database is a set of facts over R.

‘We can construct an enumeration of all the facts over R with
constants in dom:

t1 = R(C1, e ,C1,C1)

ta = R(c1,...,¢1,¢2)

ts3 = R(C1, e ,C1,03)

tn = R(Cry---yCryCr)

where {ci1,...,¢,} is an enumeration of dom and N =

Tarity(R).

To each such fact ¢;, we associate a variable z; taking values
in {0,1} with the following interpretation: z; = 1 if and



only if t; € D. A set D of facts over R is in poss(S) if and
only if, for every ¢ € [1,n]:

lpi(D) N vi] )
oD . = Ci
lpi(D) N vil ~ s
Jv; | =7
that is:
i (D) Nwil > ¢ - |@i(D)]
lei (D) Nvil > si - |vi

which can be written as:

N
{ E‘Pi(ti)evi Ti 2 ¢ Ei:l Ti

pilti)ev; Ti 2 si|vi|

and finally:

Ew(ti)ivi cii 2 0

{ Baeane) -

pilt;)ev; T 2 Si'”"l

We also impose the following constraints on each variable
z;: 0 <z; <1, z; integer.

By collecting the above inequalities and variable constraints
for every i € [1,n], we obtain a linear system I' with 4N
inequalities and N variables. To compute the confidence
of a particular fact ¢,, it is enough to determine N,;(T'),
the number of integer solutions of S, and Ny (I'[z/1]) the
number of solutions for the system obtained by replacing
the variable z, with the constant 1. Then, the confidence of
tp is:

Nsot(L[zp/1])

Nsol(F)

Please note the above fraction is defined for any consistent
source collection (Ngoi(T') = |poss(S)| is non-zero if and only

if poss(S) # 0).

confidence(t,) =

ExAMPLE 5.1. Consider a collection with two sources S =
{51,52}, with S1 = (IdR,{R(a),R(b)},0.5,O.5) and S =
(Idr,{R(b),R(c)},0.5,0.5) (where Idr is the identity on R).
Assume a finite domain dom = {a,b,c,d,...,dn}. Then,
to compute the tuple confidence for a tuple R(a), one needs
to compute the number of solutions for the following system
T of inequalities:

Ta+Tp —Te—Tdy — " — Tdp, 2 0
To+ap2>1
To+Te—Ta—Tdy — " — Tdyy, >0
Tp+z.>1

and of the systems I'[zq /1].

After solving the above system, we derive the following val-
ues for the confidences:
m+ 2

confidence(R(a)) = confidence(R(c)) = m L3

_2m+2

confidence(R(b)) = om + 3

confidence(R(d;)) = ,1<i<m

2m + 3

By ezamining the behavior for large values of m (m — oo),
we observe that R(b) has confidence almost 1, R(a) and R(b)
have confidence about 1/2 and all the other tuples R(d;)
have confidence close to 0. This corresponds to our intu-
ition: R(b) has greater confidence since it is present in both
sources, R(a) and R(b) have a smaller confidence because
each of them appears in only one source, and the other pos-
sible tuples have low confidence because they are not backed
up by any source.

5.2 Computing the Confidenceof Answer Tu-

ples
Consider a query @ over the global relations in sch(S). For
every tuple in the possible answer Q*(S), its confidence is
given by:

confidenceg(t) = Pr(t € Q(D)|D € poss(S))

In this section we introduce a method for deriving the confi-
dence of any tuple in the possible answer from the confidence
of the base facts in poss(S).

Notation: If {p;};c[1,n] are the probabilities of N mutually
independent events { E; };c[1,v7, we denote by @B, c(; v pi the

probability of the union (J;c(; i, that is:

@D pi=1-mwL(0-p)

i€[1,N]

DEFINITION 5.1. For every relational query Q and every
tuple t in Q*(S), we define a number confg(t) € [0,1] as
follows:

e if Q@ = R, where R s a relation name, we let

confg (t) = confidencer(t)
o if Q =man@Q’, we let

confg(t) = @

t'eQ'(8) S.t mapt' =t
o ifQ=04Q", we let
confg(t) = confy (t)

e if Q=0Q xQ", we let
confg (t) = confey: (') - confgr ()

confgy (t')

where t' and t” are such ast =t xt”;

THEOREM b5.1. Let @ be a relational query over sch(S).
Then, for every tuple t in Q*(S)

confidenceg(t) = confg(t)

Proof By structural induction on @, using standard prob-
ability laws.



6. DISCUSSION

We examined some computational issues arising when pro-
cessing queries over source collections with incomplete and
partially sound data sources.

We first considered the source collection consistency prob-
lem: given a source collection, determine whether there
exists a possible global database which is consistent with
all the claims of soundness and completeness of individual
sources. We showed this problem to be NP-complete in the
size of the data in the sources (the view extensions). In our
analysis, we do not consider sources that report wrong es-
timates of soundness and completeness (either on purpose
or because of lack of information). One interesting future
direction would be to explore how a notion of consensus can
be defined and used to detect the most trustworthy sources.

Then, we gave a finite representation of the set of possible
databases in terms of tableaux and constraints. A future
direction would be to use this representation to compute a
finite representation of the answer to any query, along the
lines of [6].

Finally, we examined the semantics of query answering over
source collections with completeness and soundness meta-
data. We adapted the well-known notions of certain answer
and possible answer to our framework. In addition to these,
we introduced a notion of tuple confidence, and we described
a method to compute it in the special case when all the views
are identities and the domain is finite.

As a final remark, we note that the results in the special case
when the view definitions are all identities over the same re-
lation name are not dependent on the data model; all the
results can be expressed in terms of sets and can therefore be
applied in other domains, for any situation dealing with mul-
tiple, incomplete and partially incorrect (obsolete), copies of
a set of objects. Examples of such situations include: mul-
tiple caches of a set of objects (e.g. Web pages, memory
locations), multiple mirror-sites of a given site, etc.
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