
Multiobjective Query Optimization

(Extended Abstract)

Christos H. Papadimitriou

Division of Computer Science

U. C. Berkeley

Berkeley, CA 94720

christos@cs.berkeley.edu

Mihalis Yannakakis

Bell Laboratories

Lucent Technologies

Murray Hill, NJ 07974

mihalis@research.bell-labs.com

Abstract

The optimization of queries in distributed database sys-
tems is known to be subject to delicate trade-o�s. For
example, the Mariposa database system allows users to
specify a desired delay-cost tradeo� (that is, to supply a
decreasing function u(d), specifying how much the user
is willing to pay in order to receive the query results
within time d); Mariposa divides a query graph into
horizontal \strides," analyzes each stride, and uses a
greedy heuristic to �nd the \best" plan for all strides.
We show that Mariposa's greedy heuristic can be ar-
bitrarily far from the desired optimum. Applying a re-
cent approach in multiobjective optimization algorithms
to this problem, we show that the optimum cost-delay
trade-o� (Pareto) curve in Mariposa's framework can
be approximated fast within any desired accuracy. We
also present a polynomial algorithm for the general mul-
tiobjective query optimization problem, which approx-
imates arbirarily well the optimum cost-delay tradeo�
(without the restriction of Mariposa's heuristic stride
subdivision).

1 Introduction

In Computer Science we have always been interested in
trade-o�s between various resources for the solution of
computational problems; however, it was only very re-
cently that trade-o�s have begun to be considered as
computational problems in their own right |probably
the result of the advent of the Internet and the en-
suing increasingly complex socio-economic context of

computation.1

Consider the query optimization problem, for exam-
ple, arguably the most important and complex problem
in databases. Trade-o�s between parallelism and com-
munication in query optimization have been studied in
[CHM, HM], and elsewhere. The Mariposa wide-area
database system [SAP+] was architected to make such
trade-o�s explicit in an advantageous way. Mariposa as-
sumes that a subquery can be executed in many diverse
database sites, and each site submits a \bid" for the
query, specifying a delay for delivering the result, and
an associated cost. The query optimizer then compares
these bids to a user-supplied cost-delay trade-o� (a non-
increasing function u(d), specifying for each value d of
the delay the amount of money the user is willing to
pay in order to receive the query's results within time d),
and attempts to determine the combination of subquery
executions that maximizes the savings from this user-
submitted curve. Mariposa's algorithm for this involves
subdividing a query graph (obtained from a single-site
optimizer) into horizontal \strides" that contain inde-
pendent subqueries, compiling a cost-delay trade-o� for
each stride from the bids for these subqueries, and then
combining the stride trade-o�s by a greedy heuristic.

Expecting a user to submit a desired trade-o� curve
seems to us a little unrealistic. A much better user inter-
face would be, instead, presenting to the user the costs
and delays of several query plans, for his/her choice.
Obviously, we only need to present query plans that
are undominated, in that each has the property that no
other plan is better in terms of both cost and delay.
The set of all undominated solutions is called in the
�eld of multiobjective (or multicriterion) optimization
a Pareto curve |it captures the informal concept of a
trade-o�. Obviously, presenting to the user such a set
of solutions to choose from is far superior to requiring
a user-supplied trade-o� and returning a solution that
is in some rather arbitrary sense \most advantageous"

1At the recent FOCS conference, there was a session devoted
almost exclusively to multi-objective optimization, the Internet,
and the relationship between the two[FOCS].



with respect to the trade-o� supplied, as Mariposa does.

By a fortunate coincidence, there has been recently
much progress in the problem of computing Pareto curves.
Even though there are often exponentially many solu-
tions on a Pareto curve, and even the problem of �nding
the solution that optimizes one objective subject to the
second being below a limit is NP-hard in very simple
settings (e.g., shortest paths in a graph in which each
edge has both a length and a delay), it is often possible
to obtain in polynomial time an approximate trade-o�,
which is arbitrarily close to the true Pareto curve [PY].

In this paper we apply this approach in multiob-
jective optimization to the query optimization problem.
First, we characterize the set of plans produced by Mari-
posa's greedy heuristic in terms of the Pareto curve, and
show that for convex budget functions (a variant of) the
heuristic �nds the optimal solution (Theorem 1). How-
ever, we observe that in general the heuristic can lead
us arbitrarily far from the best trade-o� (Theorem 4).
In contrast, we present an algorithm which, given the
trade-o�s from the strides as computed by Mariposa,
constructs, for any �, a set of query plans such that any
other plan is approximately dominated (up to a factor
�) by a plan in the constructed set (Theorem 5). This
approximate solution is called an �-Pareto curve.

But these results concern the optimization problem
as speci�ed by the Mariposa optimizer, after a heuris-
tic step in which the query has been partitioned into
horizontal strides. It would be much more interesting
if we could compute the approximate optimum trade-
o� of the given query graph ab ovo, essentially opti-
mizing also the partition into strides (of course, �nd-
ing the best query graph is a well-known hard prob-
lem, which is orthogonal to our interests here). We
develop a polynomial approximation algorithm for this
problem, based on dynamic programming (Theorem 7).
Our algorithm also works in the more complicated case
in which the computation can carried out in many sites,
and delays and costs due to communication must be
taken into account. Of course these algorithms are ap-
proximate; however, the approximation can become ar-
bitrarily accurate at a reasonable computational cost;
and the approximation is necessary, because the exact
Pareto curves are both huge in size, and contain points
that are hard to compute individually.

In Section 2 we describe the main relevant aspects of
Mariposa; we also review the basic concepts and certain
results from multi-objective optimization. In Section 3
we de�ne the query multiobjective optimization prob-
lem in the context of Mariposa's query optimizer. We
analyze the Mariposa heuristic in terms of the Pareto
curve, and describe a polynomial algorithm for obtain-
ing the �-Pareto curve for this problem. Finally, in Sec-
tion 4 we give the general algorithm for �nding the �-
Pareto curve for a given query tree.

2 Background

2.1 Query Optimization in Mariposa

In Mariposa, a single-site optimizer �rst transforms an
SQL query into a query graph. Then a fragmenter fur-
ther subdivides the nodes by taking into account the
way in which (fragments of) the base relations are stored
in the various sites; the fragmenter also groups indepen-
dent operations in the fragmented query graph into par-
allel strips called strides. Subqueries in a stride can be
executed in parallel, but all subqueries of a stride must
complete before the next stride can start (relaxing this
to allow some pipelining is stated as a future problem
in [SAP+]).

The atomic operations of the fragmented query plan
are then passed to a broker, who invites various sites
(assumed to belong to di�erent corporate entities) to
submit bids for each operation. A bid is a point in
the cost-delay plane (plus an expiration date, a detail
that we omit for simplicity). The broker combines the
bids and produces a Pareto curve for the stride (that is,
several plans, each with its own total cost and delay).

Last, a coordinator takes the Pareto curves for each
stride, and attempts to combine them optimally to ob-
tain the \optimum" execution plan. Among the possible
execution plans, each with its cost c and delay d, Mari-
posa seeks the one that has the following property: If
u(d) is the amount the user would be willing (according
to his/her trade-o� curve submitted with the query) to
pay for delay d, then the chosen query plan maximizes
the di�erence u(d)� c. In other words, Mariposa's goal
is to choose the point that maximizes the \vertical" dis-
tance from the user-supplied trade-o� (this seems rea-
sonable, yet rather arbitrary). This is the most intrigu-
ing and crucial algorithmic step in Mariposa's query op-
timizer.

Mariposa attempts to accomplish this optimization
by a greedy algorithm: The coordinator �rst determines
the plan of minimum delay: It is the combination of all
plans of minimum delay for each stride; its delay d0 is
the sum of all minimum delays, and its cost c0 is the
sum of all associated (maximum) costs. Thereafter, the
algorithm moves iteratively from one global plan to an-
other by substituting one component of the current plan
by another bid in the same stride, as follows. For each
stride, and for each bid for the stride, the algorithm
computes the cost gradient for the bid, i.e., the ratio
of the cost savings over the additional delay incurred if
we use this bid for the stride in place of the bid in the
current global plan. The algorithm �nds the the bid b
among all bids of all strides that has the maximum cost
gradient, and considers the new global plan obtained
from the current plan by using bid b for the correspond-
ing stride instead of the one in the current plan. If
the new global plan is not better than the original (i.e.



does not yield a better pro�t u(d) � c) then the algo-
rithm does not make the substitution and it terminates
with the current plan. Otherwise, the algorithm makes
the substitution, recomputes the cost gradients for the
stride that contains the bid b that was substituted, and
continues in the same manner with the new plan.

2.2 Multiobjective Optimization

Usually, an optimization problem is a way for associat-
ing with each instance x a set of feasible solutions F (x),
and, for each s 2 F (x), a cost c(s). More formally, an
optimization problem is a pair of polynomial algorithms
f; c, such that, for any instance x (say, an SQL query)
and candidate solution s (say, a query plan), f(x; s) is
a Boolean determining whether s 2 F (x) (i.e., it deter-
mines whether s is indeed a valid query plan for x), and
c(s) computes the cost of s (assumed to be a positive
integer, e.g., an estimate of the number of operations
needed to execute s).

A k-objective optimization problem is then a (k+1)-
tuple of polynomial functions f; c1; : : : ; ck, where for
each feasible solution s we have k di�erent ways ci of
evaluating its cost. That is, each solution s has an as-
sociated k-vector of costs c(s) =< c1(s); : : : ; ck(s) >
(a point in k-dimensional space). We say that a k-
vector c =< c1; : : : ; ck > dominates another k-vector
c0 =< c01; : : : ; c

0

k > if ci � c0i for all i = 1; : : : ; k (with
the inequality strict for some i). Similarly, we say that
a solution s dominates another solution s0 if c(s) dom-
inates c(s0). A feasible solution s 2 F (x), and its cost
vector c(s), is called undominated if there is no other
solution s0 that dominates it. Given an instance x of a
multiobjective optimization problem, the Pareto curve
of x, P (x), is the set of all undominated cost vectors
of solutions in F (x). It is customary to use the term
Pareto curve (in a slight abuse of notation) to refer also
to a set of solutions that realize this set of undominated
cost vectors. Intuitively, the points in the Pareto curve
capture the notion of a \trade-o�" between the various
resources ci.

For a typical multiobjective problem (even the short-
est path problem with two objectives), the Pareto curve
has an exponential number of points, and furthermore
it is NP-hard to compute a particular desired point in
it (say, the path with smallest �rst cost, and second
cost bounded by B). Thus, multiobjective optimiza-
tion seems computationally bleak. However, recently
it was observed [PY] that all multiobjective optimiza-
tion problems have a polynomially small �-approximate
Pareto curve: a set P�(x) of solutions that approxi-
mately dominate all other solutions up to a relative error
of �; that is, formally, for every solution s 2 F (x) there
is a solution s0 2 P�(x) such that ci(s

0) � (1 + �)ci(s)
for all i = 1; : : : ; k. Thus, multiobjective optimiza-

tion problems can be divided into those for which the
�-approximate Pareto curve can be computed in poly-
nomial time for some reasonably small �, and those for
which it cannot. It is reasonable to consider the former
to be \tractable."

Our results state that query optimization, starting
from a speci�ed query but with multiple choices for each
base relation and operation varying with respect to cost
and delay, is a tractable problem in this sense; the result
holds both in the context of Mariposa's coordinator, and
in general.

3 TheMariposa Coordinator Prob-

lem

Suppose that we have a query subdivided into n hor-
izontal strides, and for each stride i we have a list of
pairs Pi = ((ci1; di1); : : : ; (cim; dimi

)) with cij � ci;j+1

and dij � di;j+1 for all i and j 6= mi; the pairs stand for
the cost and delay of mi possible query plans for each
stride i. A feasible (global) query plan (j1; j2; : : : ; jn)
is a choice of a plan ji for each stride; its total cost
is
P

i ci;ji and its delay is
P

i di;ji . This is a problem
with two objectives, cost and delay. We call this the
Mariposa coordinator problem.

We will �rst analyse Mariposa's greedy algorithm
and relate it to the Pareto curve. Recall that the al-
gorithm constructs a sequence of solutions s0; s1; : : :,
with associated set of points in the delay-cost plane
p0 = (d(s0); c(s0)); p1 = (d(s1); c(s1)); : : :. The algo-
rithm makes sure that there is improvement in each step
in the pro�t (i.e. that he quantity u(di)�ci is increasing
in each step ) and terminates when this is not the case.
Let us ignore for now the user budget function and let
the algorithm compute the complete sequence (this will
be the case for example if u is a constant function.) If
there are no ties among the bids in any steps, then this
sequence is uniquely de�ned. If there are ties, then the
set of solutions produced may depend on how the ties
are broken. Let us assume for concreteness that when
several bids from the same stride are tied, i.e. have the
steepest descent, then the algorithm picks the one with
the minimum cost; and ties among bids from di�erent
strides are broken arbitrarily.

For a multiobjective optimization problem, de�ne its
convex Pareto curve CP (x) to be the Pareto curve of the
convex hull of the set of cost vectors of the solutions, i.e.
the lower left boundary of the convex hull. We identify
CP (x) with its set of vertices and the associated set of
solutions. Thus, CP (x) is a subset of the points (cost
vectors) such that every other cost vector is dominated
by a convex combination of some members of CP (x).

In our case, the convex Pareto curve for each of the
strides, as well as for the global solution set, is a polyg-



onal line in the delay-cost plane. Consider the following
algorithm.

Algorithm M'

1. For each stride i, compute the convex Pareto curve
CPi of the point set Pi. We consider the ver-
tices as ordered in increasing delay (and decreas-
ing cost), CPi = (pi0; : : : piri). Let s0 be the global
solution that consists of plan pi0 for each stride i;
i.e., s0 is a minimum delay solution.

2. Let st be the current global solution. If there is
a stride i for which the corresponding component
pij of st is not the last vertex of CPi (equivalently,
if t <

P
i ri), then choose that stride for which

the next edge of CPi has the steepest slope and
replace pij by the next vertex pi;j+1 of CPi to form
the new global solution st+1.

In case of ties in Step 2 between the strides (i.e.
next edges with the same steepest slope), assume that
Algorithm M' breaks them the same way as Mariposa.

Lemma 1 Algorithm M' produces the same sequence of
solutions as the Mariposa algorithm.

Sketch of proof. By induction. The �rst solution is
clearly the same. The induction step follows from the
fact that for any stride i and vertex pij of CPi, the plan
of stride i that yields the steepest descent from pij is
the next vertex of CPi.

One advantage of Algorithm M' is that it yields a
more e�cient implementation than the straightforward
algorithm, namely the complexity is O(n log n) where n
is the size of the input. Suppose that there are l strides,
each with m plans (thus the input has size lm). Then
the convex Pareto curve CPi for each stride can be com-
puted in time O(m logm). The sequence of solutions
can then be generated in time O(log l) per iteration, us-
ing a priority queue to maintain the slopes of the next
edges. Thus, the total time is O(lm(log l+logm)). The
straightforward greedy algorithm would need an addi-
tional O(m) time per iteration to recompute the gra-
dients of the plans for the stride whose solution was
modi�ed; the total time would be O(lm2 + lm log l).

Theorem 1 The sequence of solutions computed by the
Mariposa algorithm (and algorithm M') is the convex
Pareto curve of the global solution set.

Sketch of proof. Every vertex v of the convex Pareto
curve CP is the (unique) optimal solution for some lin-
ear function of the cost and the delay a:c + b:d, with
a; b � 0. Vertex v has the property that the slope �b=a
of the objective function lies between the slopes of the
two edges of CP that are incident to v (or v is the �rst
or last vertex of CP ).

For linear objectives, the global optimization prob-
lem is trivial because we can optimize separately in each
stride. That is, v consists of a solution vi for each stride
that optimizes a:c+b:d. Hence, vi is a vertex of CPi, all
edges before vi have slope that is steeper than the slope
of the objective function, while the next edge does not.
Since Algorithm M' chooses edges in order of slope, it
follows that it will generate at some point the solution
v = (v1; : : : ; vl); that is, it will never proceed in a stride
i beyond the vertex vi before all the other strides j reach
the appropriate vertex vj .

It follows that every vertex of the convex Pareto
curve CP is produced by the algorithm. In case of ties
in some steps, Algorithm M' (and Mariposa) may pro-
duce some additional intermediate points that lie in the
middle of some edges of CP . In fact, the di�erence
between the solution sequences generated by di�erent
ways of breaking the ties is in such intermediate points
that get produced.

One consequence is that, although the global solu-
tion set is exponential (if there are l strides with m
plans each, then there are ml solutions), the convex
Pareto curve has a relatively small number of vertices -
no more than the number of plans in the strides. (We
note however that there may be an exponential number
of solutions that correspond to intermediate points on
the edges of the convex Pareto curve).

Corollary 2 The convex Pareto curve has a linear num-
ber of vertices.

A second consequence concerns the optimality of
Mariposa's greedy algorithm for certain user budget func-
tions. Recall that Mariposa assumes that the user pro-
vides a budget function u(d) (a non-increasing func-
tion), and the algorithm aims to �nd a solution that
maximizes the pro�t u(d)� c.

Corollary 3 If the user function u(d) is linear, then
Mariposa computes the optimal solution. If u(d) is con-
vex, then the optimal solution occurs at a vertex of the
convex Pareto curve, although the Mariposa algorithm
may terminate prematurely before reaching the vertex.

Sketch of proof. In the linear case, the claim follows
from the proof of the Theorem above. (Note however
that in this case optimization is trivial.) Suppose u(d) is
convex, i.e. u(�d1+(1��)(d2)) � �u(d1)+(1��)u(d2)
for any d1; d2 and 0 < � < 1. A point p = (d; c) that
is not on the convex Pareto curve CP is dominated by
a convex combination p0 = �v1 + (1 � �)(v2) of two
vertices v1; v2 of CP . Then the pro�t of p is no greater
than the pro�t of p0 which in turn is no greater than the
maximum of the pro�ts of the vertices v1, v2. However,
since the Mariposa algorithm stops when a step fails to
improve the pro�t, it may terminate prematurely before



reaching the optimal vertex. For example, suppose that
u(d) = 8� 2d if d � 2, else 4, and the Pareto curve has
three points (plans) with delay-cost (1,4), (2,3), (5,1).
Then the algorithm will stop at the �rst plan for a pro�t
of 2 (since the second point is worse), although the op-
timal plan is the third one for a pro�t of 4.

Thus, for nonlinear budget functions, it is better not
to terminate the algorithm if there is no immediate im-
provement, since a better point may be found later on
(and the total number of generated global plans is in any
case linear). For general (nonconvex) budget functions
however even generating all the vertices of the convex
Pareto curve may fail to produce an optimal solution.
In fact the best vertex may be arbitrarily far from the
optimum, or there may even not be a pro�table vertex,
although there are other plans with a positive pro�t.

Theorem 4 For every number M > 0 there is a non-
increasing function u(d) and a set of Pareto curves for
strides such that there is a way of combining strides
with total cost C and delay D such that u(D) � C >
M � [u(di)� ci] for all the solutions (di; ci) generated by
the Mariposa algorithm .

Sketch of proof. Suppose that there are three global
plans with delay-cost (1; 2M); (M + 1;M + 1); (2M +
1; 1), and the user budget function is u(d) = 2M + 1 if
d �M +1, else 4M +3� 2d. Then the optimal plan is
the second one with pro�tM , while the other two plans
have pro�t 1. However, (M +1;M +1) does not belong
to the convex Pareto curve as it is dominated by the
average of the other two points.

Thus, in general one needs to consider points of the
Pareto curve that are not on the convex curve. Further-
more, a user interface that returns to the user the whole
Pareto curve would be a major improvement over one
that requires the user to supply a prede�ned trade-o�
curve.

How hard is it to compute the Pareto curve in this
setting? It is not hard to see that this problem is in-
tractable. First, it is easy to construct cases in which
all exponentially many feasible solutions appear at the
Pareto curve. Second, �nding a single desired solution
in the Pareto curve, say, the one that has cost less than
B and is as fast as possible, given that constraint, is an
NP-hard problem (easy reduction from the knapsack

problem).

In view of these negative results, it is interesting
to compute the �-Pareto curve of this biobjective opti-
mization problem |that is to say, the overall cost-delay
tradeo�, approximated to within � relative error.

Theorem 5 There is an algorithm that computes the
�-Pareto curve of the Mariposa coordinator problem

in time polynomial in the size of the input and 1=�.

Sketch of proof. One way of proving this is to real-
ize that this problem can be reduced to the bicriterion
shortest path problem (the problem facing a Web-based
map service computing the distance/travel time trade-
o� of a trip). The reduction simulates each stride i by a
set of mi parallel edges, with costs and delays reecting
those of the options available at each stride. As the lat-
ter problem has a polynomial algorithm for �nding its
�-Pareto curve [Han], the proof would be complete.

We also give here a dynamic programming algorithm,
which will be generalized in the next section for gen-
eral query trees. To start, we give a (pseudopolyno-
mial) algorithm for �nding the exact Pareto curve in
time O(nL), where L is the smaller of the maximum
cost and the maximum delay of any point in the trade-
o� curve. Assume without loss of generality that the
maximum delay is the smaller of the two. The dy-
namic programming algorithm computes in an array
A[1 : : : L], the minimum cost of a plan for each de-
lay d � L. The computation is done one stride at a
time. Having computed the information for the �rst
i� 1 strides we combine with the set of plans Pi of the
ith stride: for d = 1 : : : L, A(d) = min(A(d � 1) do
minfA(d� j) + cj(j; c) 2 Pi; j < dg).

We can compute an �-Pareto curve as follows. Par-
tition the range of delays from the minimum delay up
to L geometrically with ratio 1 + � =

p
1 + �, i.e. we

de�ne O(log1+�L) bounds bj with bj+1 = bj(1+ �). Let
r = dl=�e, where l is the number of strides. For each bj ,
do the following. For each plan of each stride, transform
its delay from d to bdr=bjc. Compute the minimum cost
global plan with transformed delay at most r; this can
be done by the dynamic programming algorithm in time
nr = O(nl=�) (no need to compute array elements be-
yond r). Doing this for all bj produces a set of global
plans. Remove dominated plans from the set. The re-
maining ones form an �-Pareto set.

An approximate Pareto curve can be computed along
similar lines also in the case where there is a set of sites,
each subplan comes with an associated site that bids
for it, and there are communication delays between the
sites. The problem in this case can be still modeled as
a bi-objective shortest path problem for a more compli-
cated graph.

4 The Whole Hog

The query optimization problem solved in the previous
section is only a subproblem of the Mariposa optimizer:
It takes as given the partition into strides, for example.
It would be more interesting if we could approximate a
query's cost-delay trade-o� in a more general setting.

Suppose that we are given a query tree T (the base
relations could be fragments of the relations in the orig-
inal SQL query, as in Mariposa), and, for each node i



(operation or input relations) we are given a list of pairs
Pi = ((ci1; di1); : : : ; (cimi

; dimi
)) standing for the cost

and delay of various options for implementing this op-
eration, given its input data. In the general distributed
case, we assume that there is a set S of sites and every
pair (cij ; dij) of Pi (i.e. plan for execution of node i) has
an associated site sij which is bidding to execute the
node, and for each node i and pair of sites j; k there is a
cost c(i; j; k) and delay d(i; j; k) for shipping the result
of node i from site j to site k. It is assumed that a site
can execute plans locally in parallel. We wish to choose
an option for each node so as to minimize both total
cost and total delay of the resulting query plan. We call
this the bicriterion query plan problem. It is a
generalization of the Mariposa coordinator problem,
since that problem is the special case in which the query
graph is a straight line (with the strides standing for
meta-operations).

We observed in the last section that for some func-
tions of cost and delay (eg. linear and convex), one can
perform an exact global optimization, and in fact (a
variant of) the Mariposa algorithm accomplishes this.
This is no more the case, even for simple extensions
(and without the generalization to many sites and com-
munication costs and delays.)

Theorem 6 The problem of �nding a global solution
that optimizes a given linear function of cost and delay
for a given query tree is NP-hard.

Sketch of proof. The query tree T consists of a path
(as in the previous section) and an additional child of
the root. The plans of the path simulate an instance of
the knapsack problem, and the other child of the root
has a single available plan. The objective linear function
seeks to �rst minimize delay and then break ties by cost.

The problem is only weakly NP-hard; optimization
in general can be solved in pseudopolynomial time as we
will see below. As it turns out, a dynamic programming
technique generalizing the one in the proof of Theorem 5
establishes that the more general bicriterion query plan
problem can be e�ciently approximated:

Theorem 7 There is an algorithm that computes the �-
Pareto curve of the bicriterion query plan problem

in time polynomial in the size of the input and 1=�.

Sketch of proof. We give �rst a pseudopolynomial
algorithm. Let L be the delay of the minimum cost plan
(this can be found in polynomial time). For each node
i, site s and delay d, let A(i; s; d) be the minimum cost
of any plan that completes the computation of node i at
site s within time d. These quantities can be computed
bottom up by dynamic programming. For the leaves i
use the given plans of Pi and the communication costs

and delays. For an internal node i with set of children
C(i), for d = 1 : : : L, compute A(i; s; d) as the minimum
of the following quantities: 1. (A(i; s; d � 1), 2. the
minimum over all other sites j of A(i; j; d� d(i; j; s)) +
c(i; j; s), 3. the minimum over all plans (cij ; dij) of Pi

with site s of the quantities cij+Sigmav2C(i)fA(v; s; d�
dij)g.

To compute the �-Pareto curve, we partition the
range of delays geometrically as in Theorem 5, and then
we scale and round the delays, and proceed in a similar
manner as before.

5 Conclusion

We showed that the query optimization problem can be
usefully studied within the scope of multiobjective op-
timization. It is interesting to recall here the work of
[EHJ+]: We are given n web sources (horizontal frag-
ments of a relation) each with its own delay, cost, and
quality (roughly, the probability that a tuple will appear
there). They study the tradeo� between cost (total), de-
lay (maximum) and quality of the union of subsets of
the fragments. It is shown in [PY] that this problem can
be approximated in polynomial time. This problem can
be viewed as the special case of a simple query, but with
the additional twist that alternative sites (bids) are not
equivalent but o�er a range along a third dimension of
quality. The more general query optimization problem
could be studied also in a similar framework.

References

[CHM] C. Chekuri, W. Hasan, and R. Motwani.
Scheduling Problems in Parallel Query Optimiza-
tion. Proc. of the Fourteenth ACM Symposium on
Principles of Database Systems (PODS), 1995, pp.
255-265.

[CJK] T. C. E. Cheng, A. Janiak, and M. Y. Kova-
lyov. Bicriterion Single Machine Scheduling with
Resource Dependent Processing Times. SIAM J.
Optimization, 8(2), pp. 617{630, 1998.

[Cli] J. Climacao, Ed. Multicriteria Analysis. Springer-
Verlag, 1997.

[ESZ] F. Ergun, R. Sinha, L. Zhang. An Improved
FPTAS for Restricted Shortest Path. Submitted,
2000.

[EHJ+] O. Etzioni, S. Hanks, T. Jiang, R. M. Karp,
O. Madari, and O. Waarts. E�cient Information
Gathering on the Internet. Proc. 37th IEEE Symp.
on Foundations of Computer Science, pp. 234{243,
1996.



[FOCS] Proc. 41st IEEE Symp. on Foundations of
Computer Science, 2000.

[Han] P. Hansen. Bicriterion Path Problems. Proc.
3rd Conf. Multiple Criteria Decision Making The-
ory and Application, pp. 109{127, Springer Verlag
LNEMS 177, 1979.

[Har] R. Hartley. Survey of Algorithms for Vector Op-
timization Problems. Multiobjective Decision Mak-
ing, pp. 1{34, S. French, R.Hartley, L.C. Thomas,
D. J. White Eds., Academic Press, 1983.

[HM] W. Hasan, R. Motwani. Optimization Algorithms
for Exploiting the Parallelism-Communication
Trade-o� in Pipelined Parallelism. Proc. of the
20th International Conference on Very Large Data
Bases (VLDB), pp. 36-47, 1994.

[PY] C. H. Papadimitriou and M. Yannakakis. On the
Approximability of Trade-o�s and Optimal Access
of Web Sources. Proc. 41st IEEE Symp. on Foun-
dations of Computer Science, 2000.

[SAP+] M. Stonebraker, P. M. Aoki, A. Pfe�er, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A Wide-
Area Distributed Database System. VLDB Jour-
nal, 5:1, pp. 48-63, 1996.

[Wa] A. Warburton. Approximation of Pareto Optima
in Multiple-Objective Shortest Path Problems. Op-
erations Research, 35, pp. 70-79, 1987.


