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ABSTRACT

Flexible queries facilitate, in a novel way, easy and concise
querying of databases that have varying structures. Two
different semantics, flexible and semiflexible, are introduced
and investigated. The complexity of evaluating queries un-
der the two semantics is analyzed. Query evaluation is poly-
nomial in the size of the query, the database and the result in
the following two cases. First, a semiflexible DAG query and
a tree database. Second, a flexible tree query and a database
that is any graph. Query containment and equivalence are
also investigated. For the flexible semantics, query equiva-
lence is always polynomial. For the semiflexible semantics,
query equivalence is polynomial for DAG queries and expo-
nential when the queries have cycles. Under the semiflexible
and flexible semantics, two databases could be equivalent
even when they are not isomorphic. Database equivalence
is formally defined and characterized. The complexity of de-
ciding equivalences among databases is analyzed. The im-
plications of database equivalence on query evaluation are
explained.

1. INTRODUCTION

Semistructured databases are aimed at representing data
that do not conform to a strict schema, due to frequent
changes in the structure of the data. The lack of a schema
may also be typical of an environment where many users
contribute data, in a variety of forms, to the database. The
World-Wide Web is such an environment. For an overview
of semistructured data see [1, 2, 9].

Traditional query languages and traditional querying meth-
ods are not well suited for semistructured data. For one, the
semistructured data model is based on a labeled directed
graph. More importantly, traditional query languages are
not geared to data having no schema at all, or a schema
that may change considerably over time or from one data
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instance to another. An additional consideration is the size
of the schema, which could be quite large compared to the
size of schemas of structured data.

When the schema is large and complicated, querying the
data could be rather difficult. An initial phase of querying
the schema might be needed before the query can be for-
mulated. Even with this additional step, the query could
be quite large and hard to phrase, due to the need to cover
many structurally similar, but not structurally identical data
instances.

The size of the schema is not the only source of difficulties.
A case in point is an XML repository of documents with
DTDs designed for machine interchange (as well as DTDs
that were actually generated by machines). In the eyes of a
layperson, such DTDs might not be easy to grasp, regardless
of the size.

Traditional query languages are based on the concept of rigid
matchings; that is, there should be a perfect match between
the conditions specified in the query and the data. Rigid
matchings are very sensitive to variations in the schema. A
query that is posed having a specific schema in mind, is
likely to yield only some of the answers or no answer at all,
even when only minor changes occur in the structure of the
data while the data itself does not change at all.

In recent years, a considerable amount of work has been
done on querying semistructured data, in general, and XML
data, in particular. Many query languages for semistruc-
tured data [3, 5, 6, 11, 20, 22] and for XML [2, 7, 8, 15] have
been proposed. In order to deal with the special character-
istics of semistructured data, some of these languages use
regular expressions. Issues related to the evaluation and op-
timization of query languages with regular expressions are
discussed in [4, 24]. A language that is more expressive
than the combination of first-order logic and regular expres-
sions is described in [25]. Additional work has been done
on constraining semistructured data [10, 12], describing the
structure of the data for query formulation and optimization
[17], and extracting information on changes in the data [13].

The query languages cited above are based on rigid match-
ings, and some of these languages use regular expressions to
express possible variations in the structure of the data. But
the approach of relying on regular expressions is problematic
in at least two aspects. First, the ounce of responsibility is
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Figure 1: A university database with information on courses, students and teachers.

on the user, who should phrase the regular expressions in
a way that will cover the possible variations in the struc-
ture of the data and yet will not cover too much. Secondly,
the tasks of query evaluation and optimization become more
complex in the presence of regular expressions.

An alternative approach is that of extracting the ontology
from the DTDs (or schemas). The ontology consists of the
list of names given to the elements and to the attributes of
the DTDs, and is much easier to comprehend than the full
structural details of the DTDs. In many cases, queries can
be phrased simply and succinctly using just the ontology.

In this paper, we present two semantics that are suitable for
ontology-based querying of semistructured data. Similarly
to existing query languages, our queries are represented as
labeled directed graphs. Thus, preserving the similarity of
queries and data. However, instead of a semantics that is
based on rigid matchings, we introduce two new semantics
that are based on semiflexible matchings and flexible match-
ings. We believe that these semantics capture the intended
meaning of many common queries. A user only needs to be
familiar with the ontology of the database in order to phrase
a query, and hence query formulation is more intuitive and
simpler compared to query languages that use regular ex-
pressions.

In a rigid-matching semantics, the implicit relationships be-
tween objects are expressed by labeled edges. More com-
plicated relationships have to be constructed explicitly by
formulating queries in terms of labeled directed graphs. The
semiflexible semantics, in comparison, also uses labeled di-
rected graphs to exhibit relationships between objects, but
however, assumes that database objects are implicitly re-
lated if they are connected by a directed path (and not just
by an edge). Thus, a path 7 of the query can match a path
¢ of the database if ¢ includes all the labels of 7; however,
the inclusion need not be contiguous or in the same order

as in . The flexible semantics further extends this idea by
applying transitivity to the implicit relationships that hold
under the semiflexible semantics.

Section 2 presents the essentials of the data model. Sec-
tion 3 defines the new semantics and discusses some basic
properties of the semiflexible semantics. Section 4 provides
complexity results for query evaluation under the semiflex-
ible semantics. Section 5 gives similar results for the flex-
ible semantics. The running times of query-evaluation al-
gorithms are cast as functions of the combined size of the
query, the database and the result. This approach of analyz-
ing the combined complexity (rather than the more common
data complexity) can discern between cases that are com-
putationally hard, even when the result is small, and cases
where the running time is governed merely by the size of the
result. Section 6 gives characterizations and complexity re-
sults for containment and equivalence of queries. Under the
semiflexible and flexible semantics, two databases could be
equivalent (even in nontrivial cases) in the sense that they
give the same result for all queries. Section 7 characterizes
equivalence of two databases. It also characterizes when a
given database is equivalent to a tree and gives an algorithm
for transforming the database to a tree. This result is im-
portant in the context of query evaluation, since queries over
tree databases can be evaluated more efficiently, as shown
in Section 4.

2. DATA MODEL

Our data model is a simplified version of the Object Ex-
change Model (OEM) of [26, 3]. The data is represented by
labeled directed graphs. Figure 1 depicts a database (which
is essentially an XML document). Each node represents an
object and has an oid. The atomic nodes (i.e., nodes without
outgoing edges) also have values, which are shown below the
nodes. For simplicity, we assume that all atoms are of type
PCDATA (i.e., string). Nodes with outgoing edges represent
complex objects. A database has a root and every node in
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Figure 2: Three queries over the university database.

the database is reachable from the root.

Formally, a database D is a 4-tuple D = (O, EZ,rp,a),
where O is a finite set of objects, EF is a set of labeled edges,
rp is the root and « is a function that maps each atom to
a value. The set £ of labels of EZ is called the ontology of
D. For example, the ontology of the database of Figure 1
is the set: {Course, Course Name, Teacher, Teacher-Name,
Address, Student, S-Name, PCDATA}.

3. QUERIES

Queries are also represented as labeled directed graphs and
are similar to those defined in [19]. Nodes of queries repre-
sent variables rather than objects, and no value is associated
with any node. Formally, a query is 3-tuple Q = (V, Eg, rQ),
where V' is a finite set of wariables, Eg is a set of labeled
edges and rq is the root of the query.

An edge from node u to node v that is labeled with [ is
denoted as ulv. A path from node u to node v that ends
with alabel [ is denoted as wxlv. This notation is generalized
in the natural way. For example, ulvxkw denotes a path that
starts at u, continues to v through an edge labeled with [,
and then continues to w through a path that ends with the
label k.

Let Q = (V, Eg,rQ) be a query and D = (O, EZ,rp,a) be
a database. A satisfying assignment (or a matching) of Q
w.r.t. D is a mapping u: V' — O that satisfies the constraints
imposed by Q. There are several types of constraints. One
type is a root constraint (rc) that requires the root of Q
to be mapped to the root of D. A second type is an edge
constraint (ec) that is written as ulv, where ulv is an edge
of Q. The ec ulv is satisfied by the mapping p if D has an
edge labeled with [ from u(u) to pu(v). A third type is a weak
edge constraint (wec) that is written as lv, where variable
v of @ has an incoming edge labeled with /. The wec lv is
satisfied by p if p(v) has an incoming edge labeled with [. A
fourth type is a quasi edge constraint (qec) that is written
as ulv, where u and v are variables of @ and [ is the label of
an edge from u to v. The gec ulv is satisfied by the mapping
u if D either has a path from p(u) to p(v) or vice-versa.

Other types of constraints also include filtering constraints
(fc) which are essentially selections. Considering fc’s is be-
yond the scope of this paper. Some of the techniques de-
veloped in [19] could be used to extend our results also to
queries with fc’s.

The usual semantics of queries is defined in terms of rigid
matchings. A rigid matching is one that satisfies the rc and
all the ec’s of the query Q. The set of all rigid matchings of
Q@ w.r.t. D is denoted as Math(Q).

In this paper we introduce two new notions of matchings.
The assignment p is a semiflezible matching if it satisfies
the rc of @) as well as the following two conditions. (1) For
each finite path volivilavs - - - I, v, of Q, where vg is the root,
the images p(v;) (0 < i < n) lie on some path ¢ of D, such
that for all ¢ (1 <4 < n), the edge of ¢ that enters p(v;)
is labeled with l;. Note that p(vg) is the root of D and,
hence, is the first node on ¢, but the rest of the pu(v;) are
not necessarily arranged on ¢ in the order p(v1),. .., u(vy)-
Moreover, other nodes could be on ¢ between the p(v;).
(2) For every strongly connected component C in @, the
image of C is a strongly connected component in D. Recall
that a strongly connected component in a graph is a set of
nodes in which between each two nodes there is a path. The
preservation of the strongly connected components is needed
in order to deal with paths that have cycles. We also give
next a more formal definition.

Formally, a path wvolivilavs - --l,v, of @ satisfies the SF-
Condition w.r.t. p if there is a permutation o of 0,...,n,
such that o(0) = 0 and D has a path of the following form:

(V6(0)) ¥l (1) 1 (Vo (1)) ¥l (2) (Vo (2)) -+ * #lor () (Ve () )-

Now, we formally define an assignment g to be a semi-
flexible matching if (1) it satisfies the rc of @, and (2)
every finite path volivilavs - - l,v, of @, where vy is the
root, satisfies the SF-Condition w.r.t. u, and (3) for every
strongly connected component C = {v;,,...,v;,, } in Q, the
set {p(viy), ..., uw(vi,,)} is a strongly connected component
in D. We denote the set of all semiflexible matchings of @
w.r.t. D as Mat3] (Q).



[Matchings [ u [v [w [ 7 [s [t [ z (student) [ y (teacher) [ z (course)
1|5 ]2 |12 ] 10 | 24 | Reuven (19) | A. Levi (17) Database (26)
16| 2 |13] 10| 24 | Shimon (20) | A. Levi (17) | Database (26)
1|7 |3 |14 |16 | 25| Rivka (21) B. Cohen (23) | Logic (27)
1]8|3 |15 |16 | 25 | Rachel (22) | B. Cohen (23) | Logic (27)

Table 1: The flexible matchings for Query 3 of Figure 2 and the database of Figure 1.

A flexible matching satisfies the rc, all the wec’s and all the
gec’s of Q. We denote the set of all flexible matchings of Q
w.r.t. D as Math (Q).

Intuitively, in both the semiflexible and flexible semantics,
we assume that nodes of D that are connected by a path are
semantically related. The difference is that in the flexible
semantics, we also assume that this relationship is transitive.
This difference entails another important difference between
the semiflexible and the flexible semantics. In the flexible
semantics, cycles in the query are not necessarily mapped
to cycles in the database. Semiflexible matchings, however,
require strongly connected components in the query to be
mapped to strongly connected components in the database.

PROPOSITION 3.1. For a database D and a query Q, the
following holds:

Math(Q) C Mat} (Q) € Mat)(Q)

Some languages for semistructured data use regular expres-
sions as a tool for formulating queries when the structure is
not completely known to the user. In principle, the expres-
sive power of regular expressions subsumes the semiflexible
and flexible semantics. However, in addition to regular ex-
pressions, one may also need unions and joins in order to
fully express these semantics. In any case, the semiflexi-
ble and flexible semantics facilitate a much more succinct
and easier style of writing queries. Moreover, we will show
that evaluation and optimization of semiflexible and flexi-
ble queries are easier than evaluation and optimization of
queries with regular expressions.

3.1 Examples

A university database that holds information on courses,
students and teachers is depicted in Figure 1. Suppose that
Alice wants to query the data; she is familiar with the ontol-
ogy of the database, but does not know how the information
is organized. We examine a few cases.

ExXAMPLE 3.2. Alice tries to look in the database for in-
formation on courses. She assumes that the information on
each student includes the courses that the student is taking.
Thus, she formulates Query 1 of Figure 2. There are no
rigid matchings of Query 1 w.r.t. the university database.
However, when the query is evaluated under the semiflexible
semantics, variable w will be assigned to the desired course
nodes (Node 2 and Node 3).

EXAMPLE 3.3. Alice wants to find two students who are
taking the same course. She formulates Query 2 of Figure 2.

Once again, there are no rigid matchings in this case. How-
ever, under either the semiflexible or the flexible semantics,
Alice will find, for example, Rivka and Rachel as two stu-
dents who are taking the same course (Logic). This is due
to the fact that assigning uw,v,w,z to 1,7,8,3, respectively,
18 a semiflexible (and, hence, also a flexible) matching of the
query w.r.t. the university database.

ExXAMPLE 3.4. When Query 3 of Figure 2 is posed to the
university database as either a rigid or a semiflexible query,
there are no matchings of the query w.r.t. the database. Nev-
ertheless, under the flexible semantics, we get the assign-
ments that are shown in Table 1. Atomic nodes where re-
placed with their value.

3.2 Moreon SemiflexibleMatchings

It is not necessarily easy to check whether an assignment
to the variables of a query @ is a semiflexible matching.
The reason is that all paths of Q have to be considered. If
Q is a dag (directed acyclic graph), the number of paths
could be exponential, and if @ has a cycle, then there are
infinitely many paths. In this section, we show that if the
given database D is a dag, then checking whether an assign-
ment is a semiflexible matching could be done in polynomial
time in the size of @ and D. We also show that in the case
of a cyclic query, it is sufficient to consider only simple paths
and cycles in order to check whether a given assignment is
a semiflexible matching. Note that as a matter of terminol-
ogy, a cyclic query (database) has at least one cycle. Thus,
the class of cyclic queries (databases) does not include any
dag query (database). A tree query (database), however, is
a special case of a dag query (database).

LEMMA 3.5. Suppose that Q is a dag query and D is a
dag database. The assignment p: V — O is a semiflexible
matching of Q w.r.t. D if and only if the following condition
18 satisfied.

e For all labels I, all nodes v and the root r of Q, if Q
has a path of the form r+lv, then D has a path of the
form p(r)xlu(v); and

o For all labels | and k, and all nodes u, v and w of Q,
if Q has a path of the form ulvxkw, then D either has
a path of the form p(v)*ku(w) or a path of the form
p(w)*lp(v).

PrOOF. It is easy to see that if y is a semiflexible match-
ing, then it satisfies the condition of the lemma. For the
other direction, suppose that the condition of the lemma
holds and consider a path © = volivil2v2 - - - [, v, of Q. Since
D is a dag, its nodes can be sorted topologically. Let o be



a permutation of 0,...,n, such that ¢(0) = 0 and the se-
quence of objects p(vs(0)), #(Vo(1)); - - - s (Ve (n)) conforms to
the topological ordering on D. Note that v,y and p(v, (o))
are the roots of @ and D, respectively. Moreover, if both
1V (i—1y) and p(ve(;)) (1 <4 < n) lie on the same path of
D, then the path must be from p(v,_1)) to p(ve())-

We claim that D has a path of the form

(Vo (0))*lo (1) (Ve (1)) ¥lo (2) (Vo (2)) - -+ #lo () (Vo () -

To prove it, we show that for all 1 <4 < n, there is a path
of the form p(vy(i—1))*loi)w(ve(:)) in D. For i = 1, node
Uy (0) is the root of @, and so, @ has a path of the form
Vg (0)*lo(1)Vs(1). Thus, by the first part of the condition of
the lemma, D has a path of the form p(v,(0))*l, 1)1 (Vs(1))-

For ¢ > 1, there are two cases to be considered, depending
on whether v, (;_1) appears before or after v, ;) on the path
m of Q. If v,(;_1) appears first, then @ has a path of the
form v, (;_1)*l,(i)vs(;)- Thus, according to the second part
of the condition of the lemma, D must have a path of the
form p(ve(;—1))*lo iy (Vs(iy)- Alternatively, if v,(;y appears
first, then there is a j (0 < j < n — 2), such that @ has a
path of the form v;l,(;)vs(5)*lo(;—1)Vo(s—1)- Thus, according
to the second part of the condition of the lemma, D must
have a path of the form p(v,—1))*lo i) (Vo(s))- O

Next, we will consider cyclic queries. Since such queries have
infinitely many paths, a naive test based on the definition of
a semiflexible matching does not terminate. The following
lemma alleviates this difficulty.

The path volivilavs - - - Inv, (Where vg is not necessarily the
root) is a simple path if all the v; are distinct. It is a cycle if
vo = Up, and it is a simple cycle if vo = v, and v1,v2,..., v,
are distinct.

LEMMA 3.6. Let Q be a cyclic query and D be a cyclic
database. The assignment p is a semiflezible matching of Q
w.r.t. D if and only if the following conditions are satisfied.
(1) The assignment p satisfies the rc of Q. (2) All simple
paths of Q that start at the root satisfy the SF-Condition
w.r.t. p. (8) For all simple cycles uoliuq - - - lyur, of Q (where
up is not necessarily the root), D has a cycle (which is not
necessarily simple) of the form p(uo)*lap(ut) - - - Ik p(ur).

PrOOF. Obviously, if p is a semiflexible matching, then
Conditions (1) and (2) hold. Next, we will show the neces-
sity of Condition (3).

Let p be a semiflexible matching of @ w.r.t. D, and let
C = woliu1 - - - lyug, where up = ug, be a simple cycle of Q.

The set {u(uo), ..., u(ur)} is contained in a strongly con-
nected component of D, because p is a semiflexible match-
ing and {uo,...,ur} is contained in a strongly connected
component of Q. Therefore, there is a path from p(u;) to
w(uit1) (0<i<k—1).

The second observation is that D has a path of the form
w(ui)xlip(u;) (1 <4 < k). In proof, for each node u; (1 <

i < k) in C, there is a path that starts at the root of @,
continues to a node in C' and then goes to u; through the
edge u;—1l;u;. This path can be extended by going around
the cycle C from u; back to itself. Thus, @ has a path of
the form rg*l;u;*l;u;, where rg is the root of (). This path
satisfies the SF-Condition, since y is semiflexible matching.
Therefore, D must have a path of the form p(u;)*l;p(u;)
(1<i<k).

By combining the path from p(u;—1) to p(u;) with the path
w(us)*lip(ui) (1 <4 < k), it follows that D has a path of
the form p(ui—1)*lipu(u;) (1 <4 < k). Therefore, D also has
a path of the form Cp = p(uo)*lip(u1) - - *lpp(ur). Since
uo = ug, it follows that p(uo) = p(ur) and, thus, Cp is
a cycle in D. Thus, we have shown that Condition (3) is
satisfied.

For the other direction, suppose that p is a mapping of the
variables of @ to objects of D, such that Conditions (1)—(3)
are satisfied. By Condition (3), g maps strongly connected
components of @) to strongly connected components of D.
Next, we will show that paths of @ satisfy the SF-Condition
w.r.t. p.

Let m = voliv1 - - lnvn be a path of @, where vo is the root
of Q. We will show by induction on n that 7 satisfies the
SF-Condition w.r.t. p.

For n =1, 7 is either a simple path (if vp # v1) or a simple
cycle (if vo = wv1). In the first case, m satisfies the SF-
Condition by Condition (2), and in the second case — by
Condition (3).

Next, suppose that the claim holds for paths of length less
that n, where n > 1. We have to show that the claim holds
for the path 7.

Once again, if 7 is a simple path or a simple cycle, then
either Condition (2) or Condition (3) implies that 7 satisfies
the SF-Condition.

If 7 is neither a simple path nor a simple cycle, then it must
have variables v; and v (¢ < k), such that the path n. =
V;li41Vi41 - - - [pvg is a simple cycle. By Condition (3), D has
a cycle of the form ¢. = p(vi)*lit1p(vig1) - - - *lpp(vg).

By the induction hypothesis, the path
mp = vol1vr - - Livilkp1Vk+1 - lnvn

satisfies the SF-Condition. Thus, there is a permutation o,
of 0,1,...,%,k+1,...,n, such that 0,(0) = 0 and D has a
path of the following form.

¢p = H(Uop(0))*lap(1)u(vap(1)) T
oy () (Vop (1)) ¥lop (k1) (Vorp (k1)) * -
#lo () (Vop (n))

We will now show that the cycle ¢. and the path ¢, can be
combined into a single path ¢ that shows that 7 satisfies the
SF-Condition. Intuitively, this is done by inserting the cycle
¢. into the path ¢, starting at an occurrence of v; in ¢,. To
do that, we need to define a permutation o of 0,1, ..., n that



[ Database / Query [[ path query | tree query [ dag query |

cyclic query |

path database PTIME PTIME
tree database PTIME PTIME
dag database PTIME PTIME
cyclic database PTIME PTIME

PTIME there are no semiflexible matchings

PTIME there are no semiflexible matchings

PTIME there are no semiflexible matchings
coNP coNP

Table 2: The complexity of checking whether p is a semiflexible matching.

combines the effect of the permutation o, with the effect of
the identity permutation of ¢ + 1,...,k, which relates the
simple cycle 7. to the cycle ¢..

The permutation o, is defined over 0,1,...,4,k+1,...,n,
i.e., it has a gap between ¢ + 1 and k. However, this gap is
not necessarily the place to put the cycle ¢.. Therefore, we
first have to shift some positions in order to create the gap
in the right place.

Formally, there is a j, such that o,(j) = 7. Note that j is
the position of u(v;) in the path ¢,. There are two cases
for creating the gap, starting at position j + 1, and for each
case o is defined differently.

If j+1 < 4, then the gap has to be created by shifting right;
that is, for j +1 < m < 4, we define o(m + k — i) = op(m).

If k41 < j, then the gap has to be created by shifting left;
that is, for k+1 < m < j, we define a(m— (k—1)) = op(m).

Now, we fill the gap with the cycle ¢. by defining o(j+m) =
i+m for 1 < m < k —i. Finally, we complete the definition
of o by defining o(m) = o,(m), for all other values of m.

It thus follows that D has a path ¢ of the form

#(Ve(0)) *lo (1) (Vo (1)) *lo 2) (Vo (2)) -+ o () (Vo (n))
and this path shows that 7 satisfies the SF-Condition. [

It should be noted that a query with cycles cannot be satis-
fied by a database without cycles, under either the rigid or
semiflexible semantics. However, for the flexible semantics,
this is not necessarily the case.

COROLLARY 3.7. Deciding if a given assignment p of a
cyclic query w.r.t. a cyclic database is a semiflexible match-
ing s in coNP.

ProOOF. We will describe a nondeterministic polynomial-
time algorithm for testing whether p is not a semiflexible
matching. If p does not map the root of the query to the
root of the database, then the algorithm returns yes. The
algorithm guesses a simple path volivilovs - - - lpv, of @ and
returns yes if this path does not satisfy the SF-Condition
(in the full paper, we will describe how to test that a given
path satisfy the SF-Condition in polynomial time). The
algorithm also guesses a set of nodes {v;,,...,v;,, } and re-
turns yes if this set is strongly connected in @, but the set
{w(viy), - .., u(vs,, )} is not strongly connected in D. O

In summary, if the database is a dag, then Lemma 3.5 im-
plies that testing whether p is a semiflexible matching has
a running time that is polynomial in the size of the query
and the database. If the database is cyclic and the query is
a tree, the test can still be done in polynomial time, since a
tree query has only a linear number of paths from the root
to a leaf. However, for a cyclic database and a query that
is either a dag or cyclic, we only know that the test is in
coNP. Table 2 gives the complexity results, in terms of the
size of the query and the database, for the various cases.

4. QUERY EVALUATION IN SEMIFLEXI-
BLE SEMANTICS

Query evaluation has a polynomial-time data complexity un-
der either the semiflexible or flexible semantics. If both the
query and the data are considered as input, then the com-
plexity is certainly exponential, since the size of the result
could be exponential in the size of the query and the data. A
better approach is to analyze the combined complexity that
is measured in terms of the size of the query, the database
and the result. Recall that in the relational case, merely
checking whether a join of n relations is not empty is NP-
Complete [21]; hence, the combined complexity is exponen-
tial. However, for the important case of acyclic joins, the
combined complexity is polynomial [28]. In this section, we
will discuss the combined complexity of query evaluation
under the semiflexible semantics.

4.1 Path Queries

In this section we consider path queries. A path query has
the form wvolivilavs . .. lhvn, Where vo is the root and all the
v; are distinct. First, we will discuss the case of evaluating
a path query over a database that is also a path. Note that
even in this case, the result could be exponential in the size
of the query and the database (provided that some labels
are repeated along paths of the database). However, the
combined complexity is polynomial.

For a query node v, the correspondence set of v, denoted Cl,
is the set of all database objects o, such that o satisfies some
wec of v (i.e., there is a label I, such that both o and v have
incoming edges labeled with ). The correspondence set of
the root rq of Q consists of the root rp of the database.

PrOPOSITION 4.1. Consider a path query Q of the form
vol1vilava ... l,vn, and a path database D over a set of ob-
jects O. The set Mats{ (Q) of the semiflexible matchings
of Q wrt.Dis{p:V = O | u(v) € Cy, for0 < i <
n, and p(vi) # p(v;) for i # j}. Computing Mats] (Q) has
a linear-time combined complezity.

PrOOF. Follows from the definition of the SF-Condition.
In particular, note that this condition implies that if the



[ Database / Query [[ path query | tree query | dag query [ cyclic query |
path database PTIME PTIME PTIME the result is always empty
tree database PTIME PTIME PTIME the result is always empty
dag database NP-Complete | NP-Complete NP-Complete the result is always empty
cyclic database NP-Complete | NP-Complete | NP-Hard (in X5) NP-Hard (in ©%)

Table 3: The complexity of checking nonemptiness under the semiflexible semantics.

database has no cycles, then g must map variables that are
connected by a path to distinct objects. O

Next, we consider the case of a tree database D. For each
path 7 of D from the root to a leaf, we compute the result
of the path query @ w.r.t. w, and then take the union of all
these results. Thus, we get the following.

THEOREM 4.2. Query evaluation for a path query @ and
a tree database D has a combined complezity of O(|Q|-|D|+
|M|) time, where |Q|, |D| and |M| are the sizes of the query,
the database and the result, respectively.

The next theorem shows that query evaluation is not likely
to have a polynomial-time combined complexity when the
database is a dag.

THEOREM 4.3. Given a path query Q and a dag database
D, deciding whether Matst(Q) 1s not empty is NP-Complete
(when the input is the query and the data).

The NP-Hardness is shown by a reduction of 3SAT. The
problem is in NP, since one can guess an assignment p and
verify that it is a semiflexible matching in polynomial time
(follows from Lemma 3.5).

Note that for a path query @ and a database D that may
have cycles, query evaluation has a combined complexity of
O(|D|'®* +1Q)) time.

4.2 Tree,DAG, and Cyclic Queries

In this section, we show that evaluation of tree and dag
queries is not significantly harder than evaluation of path
queries, except for the case of a cyclic database.

Note that checking nonemptiness is NP-Complete when both
the query and the database are dag’s, since NP-Hardness
follows from Theorem 4.3 and membership in NP follows
from Lemma 3.5. The result of Theorem 4.2 can be gener-
alized to dag queries and tree databases, as stated by the
next theorem that gives the main result about evaluation of
semiflexible queries. The algorithm mentioned in the theo-
rem is rather intricate and its description cannot be given
here due to space limitations.

THEOREM 4.4. Let Q be a dag query and let D be a tree
database. There is an algorithm that computes the set of
semiflezible matchings Mat3] (Q) in O(Q|* - |D|® + |M|? -
|Q|? - |D|) time, where |Q|, |D| and |M| are the sizes of the
query, the database and the result, respectively.

For the case of cyclic databases, query evaluation is NP-
Complete provided that there is a polynomial-time test for
verifying that an assignment is a semiflexible matching, i.e.,
when the query is either a path or a tree. For dag queries,
however, we only know that verifying that an assignment
is a semiflexible matching is in coNP. Therefore, checking
nonemptiness is in X5 (and is still NP-Hard).

Now consider cyclic queries. Since the result of evaluating
a cyclic query over a dag database is always empty, NP-
Hardness does not follow from Theorem 4.3. However, a re-
duction similar to that of Theorem 4.3 shows that nonempti-
ness of a cyclic query over a cyclic database is NP-Hard (and
is in 2%).

The complexity results for the various cases are shown in
Table 3. Note that when testing emptiness is polynomial-
time (in the size of the query and the data), query-evaluation
has a polynomial-time combined complexity. When testing
emptiness is not polynomial, query-evaluation cannot have
a polynomial-time combined complexity either.

5. EVALUATING FLEXIBLE QUERIES

First, we will show that query evaluation under the flexible
semantics can be reduced to query evaluation under the rigid
semantics.

Let D = (O, E,rp,a) be a database over the set of nodes
O. The reachability graph of D is a rooted labeled directed
graph, denoted RG(D) = (O, Er,rp, ), that is obtained
from D by adding edges as follows. If object o of D has an
incoming edge labeled with [ and there is either a path from
o' to another object o or vice-versa, then Er has an edge
labeled with I from o to o'.

THEOREM 5.1. Let Q be a query and let D be a database
with a reachability graph RG(D). The set of flexible match-
ings of Q w.r.t. D is equal to the set of rigid matchings of
Q w.r.t. RG(D).

Evaluating all the rigid matching of @ w.r.t. RG(D) can be
done as follows. For each edge e = ulv of @), we create a bi-
nary edge relation r. that has the attributes v and v, and the
following set of tuples: {(0,0’) | RG(D) has an edge olo'}.
In other words, 7. contains all edges of RG(D) that have
the same label as e. The join of all the edge relations yields
all the rigid matchings of RG(D). When the join is acyclic,
Yannakakis’s algorithm [28] can be applied and, hence, we
get the following corollary.

COROLLARY 5.2. Query evaluation under the flexible se-
mantics has a polynomial-time combined complexity when
the query Q is a tree and the database D is any graph.



The next theorem shows that if @) is not a tree, then a query-
evaluation algorithm with a polynomial-time combined com-
plexity is not likely to exist.

THEOREM 5.3. Given a dag query Q and a database D,
deciding whether the flezible semantics yields a nonempty
result 1s NP-complete.

NP-hardness follows from a reduction of 3SAT. Membership
in NP follows because a flexible matching can be guessed and
verified in polynomial time.

6. QUERY CONTAINMENT AND QUERY
EQUIVALENCE

In the case of relational conjunctive queries, the final step
of evaluation is a projection of the matchings onto the dis-
tinguished variables. Consequently, containment is defined
in terms of those projections. In the case of queries over
semistructured data, the final step is a construction of the
result from the matchings. A discussion of this step, how-
ever, is beyond the scope of the paper. Thus, in this paper,
the semantics of queries is defined in terms of matchings
over all the variables, and containment (equivalence) is de-
fined as containment (equality) of the corresponding sets of
matchings.

Formally, given two queries 1 and Q2 over the same set
of node variables, we say that (1 is contained in Q2 un-
der the semantics s, denoted Q1 C;s Q2, if for all database
D, Math(Q1) € Math(Q2). The queries @1 and Q2 are
equivalent if for all database D, Mat}(Q1) = Math(Q2).

Deciding equivalence and containment of queries is useful
for optimization techniques. The next theorem provides a
characterization of containment for semiflexible queries.

THEOREM 6.1. Let Q1 and Q2 be queries over the same
set of variables V. Q1 C,f Q2 if and only if the identity
mapping p over V is a semiflexible matching of Q2 w.r.t. Q1.

COROLLARY 6.2. Deciding if Q1 Csf Q2 is in coNP when
Q1 is a cyclic graph and Q2 is either a dag or a cyclic graph.
In all other cases, it is in polynomial time.

A characterization of containment for flexible queries is given
in the next theorem.

THEOREM 6.3. Let Q1 and Q2 be queries over the same
set of variables. Q1 Cf Q2 if and only if the following two
conditions hold:

1. For each wec lv in Q2, there is a wec lv in Q1.

2. For each ec ulv in Q2, where u # rg, (rq, is the root
of Q2), the query Q1 contains either the ec ul'v or the
ec vl'u for some label I'.

To decide containment of ()1 in ()2 we just need to check
that every wec (ec) in @1 has a suitable wec (ec) in Q2.

COROLLARY 6.4. Deciding if Q1 Cf Q2 isin O(|Q1]-|Q2])
time.

If we sort the ec’s and wec’s of Q2 deciding containment can
be done in O(|Q2| - log Q2] + Q1] - log |Q2])-

7. DATABASE EQUIVALENCE

Given two databases D and D’ over the same set of objects
O, we say that D and D’ are equivalent under the semantics
s if for every query @, the set of s-matchings of Q w.r.t. D
is equal to the set of s-matchings of Q@ w.r.t. D'. Under the
classical (i.e., rigid) semantics, two databases are equivalent
if and only if they are isomorphic (i.e., have the same root
and the same set of labeled edges). In the case of the semi-
flexible and flexible semantics, however, two databases can
be equivalent even if they are not isomorphic.

One reason for investigating database equivalence is that
in some cases it is more efficient to evaluate queries over
databases that have a certain form than over databases that
have a different form. For example, we showed that it is
more efficient to evaluate queries over a tree database than
over a dag database. Thus, it is important to be able to char-
acterize equivalence of databases, and to be able to trans-
form a database of a given form (e.g., dag) to an equivalent
database that has a different form (e.g., tree).

Let D and D’ be two databases that have the same set
of objects and the same root. We say that a path ¢ =
ool101l202 - - - lp0, of D, where op is the root, is included in
a path ¢’ of D’ if there is a permutation ¢ of 1,...,n, such
that ¢’ has the form 0o0*l,(1)05(1)*lo(2)00(2) - - * *¥lo () O (n) -

We say that there is a semiflezible path inclusion of D in D’
if for every path ¢ in D that starts at the root, there is a
path ¢’ in D', such that ¢’ includes ¢.

THEOREM 7.1. Consider two databases D and D’ over
the same set of objects and with the same root. D and D’
are equivalent under the semiflexible semantics if and only
if (1) there is a semiflezible path inclusion of D in D' and
vice-versa, and (2) each strongly connected component in D
is a strongly connected component in D' and vice-versa.

Conditions (1) and (2) of the above theorem are essentially
equivalent to the condition that the identity mapping (of the
objects of D to the objects of D’) is a semiflexible matching.
Therefore, we get the following corollary.

COROLLARY 7.2. Deciding equivalence of databases, un-
der the semiflexible semantics, is in polynomial time if the
databases are dags and is in coNP if the databases have cy-
cles.

For the flexible semantics, we have the following theorem.



Algorithm TransformingDatabaseToTree(D);
Input a tree-transformable database D;

let H be the path hypergraph of D;
let B = BD(H) be the Bachman diagram of #;

S+ {50};

while § is not empty
remove some node S; from S;
add to S all the children of S; in B;
let S; be the parent of S; in B;

return T;

Output a tree database T' that is equivalent to D under the semiflexible semantics;

let So be the least node of B (So is the intersection of all nodes of B);
(* by chosing Sy to be the root, B can be viewed as a tree *)

create from the objects of Sy a path Py with rp (the root of D) as the first node;

create a simple path P; from the objects of S; that are not in S;;
(* Since S; is the parent of S;, a path P; has already been created for S; *)
add an edge from the last node of P; to the first node of P;;

let T' be the database that was produced in the previous steps;

label T' by attaching to each edge the label that corresponds to its target in D;

Figure 3: Creating a tree database 7' from a database D.

THEOREM 7.3. Consider two databases D and D' over
the same set of objects O and with the same root. D and
D’ are equivalent under the flexible semantics if and only if
their reachability graphs are isomorphic, i.e., have the same
set of labeled edges.

It is not necessary to solve the general case of graph iso-
morphism in order to decide equivalence of databases under
the flexible semantics. Instead, it is sufficient to check that
the identity mapping is an isomorphism. Thus, deciding
whether two databases D and D' are equivalent under the
flexible semantics is in O(|D|? log |D| + |D’|* log | D'|).

7.1 Removing Redundancies

One application of database equivalence is the removal of
redundant parts from databases. A part of a database is
redundant if removing it from the database has no effect on
the result of query evaluation.

For example, given a database D, we say that an edge o1lo2
in D is redundant w.r.t. the semiflexible semantics if D has a
path of the form o1%los that does not include the edge 01l0-.
If a redundant edge is removed, the result is a database
that is equivalent to the original one under the semiflexible
semantics.

7.2 Testingfor Equivalenceto a Tree

In addition to testing database equivalence, it is also pos-
sible to transform a database D to a tree, provided that
D is indeed equivalent to some tree database. Note that
under the semiflexible semantics, a cyclic database cannot
be equivalent to a tree database. However, there are dag
databases that are equivalent to tree databases. Under the
flexible semantics, even a cyclic database could be equivalent
to a tree database.

Transforming a database to an equivalent tree is important
for several reasons. First, evaluation of queries is more ef-
ficient when the database is a tree, as was shown earlier.
Secondly, in a graphical user interface, presenting trees is
easier than presenting dags. Thirdly, storing data as a doc-
ument (e.g., in XML) is easier when the data is a tree, since
references and identifiers need not be used.

Given a database D, we say that D is tree transformable
under the semantics s if there exists a tree database T that
is equivalent to D under the semantics s. In this section, we
characterize tree transformable databases under the semi-
flexible and the flexible semantics, and give algorithms for
the transformations.

‘We will start with transformation to a tree under the semi-
flexible semantics. Given a database D that has no redun-
dant edges, the following are necessary conditions for D to
be tree transformable under the semiflexible semantics.

The first necessary condition is that D does not include a
node that has incoming edges with different labels. The
reason for this condition is that in a tree database only one
edge enters each node (except for the root that has no in-
coming edge) and this edge holds exactly one label. The
second necessary condition is that D is acyclic. The reason
for the second condition is that in a finite tree all paths are
finite, while a cyclic graph contains an infinite path. The
third necessary condition is that the number of paths in D
is not greater than the number of nodes in D. Recall that
in a tree, the number of paths, from the root to a leaf, never
exceeds the number of nodes.

In order to have conditions that are both necessary and suf-
ficient, we need additional definitions. Given a database D,
the path hypergraph of D is the hypergraph # that has the
same nodes as D and has as hyperedges all sets of nodes S,
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Figure 4: Transformation to a tree under the semiflexible semantics.

such that S is the set of all nodes on some path of D from
the root to a leaf. Let £ be the set that contains all the
hyperedges of H and all the nonempty intersections of two
or more hyperedges of H. The Bachman diagram of H, de-
noted BD(?H), is the following graph. For each element of £,
there is a node in BD(H). There is an edge between E; and
E; in BD(H) if (1) E; C E», and (2) there is no element
E' in &, such that E; C E' C E> and E' is different from
both E1 and E>. We say that BD(#H) is acyclic if it contains
no cycle (as an undirected graph). A discussion of acyclic
Bachman diagrams and their usage in the characterization
of «y-acyclic hypergraphs is given in [16]. In [27], Bachman
diagrams are used to characterize full disjunctions.

THEOREM 7.4. Let D be a database with no redundant
edges and with the path hypergraph H. The database D is
tree transformable under the semiflexible semantics if and
only if the following three conditions hold. (1) D is acyclic;
(2) There is no node in D that has two different incom-
ing labels; and (3) BD(H), the Bachman diagram of H, is
acyclic. Deciding if D is tree transformable under the semi-
flexzible semantics is in polynomial runtime in the size of D.

Figure 3 gives a polynomial-time algorithm that actually
transforms a given database D to a tree, provided that D
is tree transformable. The algorithm starts by creating the
path hypergraph H of D. Note that in a tree transformable
database, the number of paths from the root to the leaves
cannot exceeds the number of nodes, and thus, the size of the
path hypergraph is polynomial in the size of the database.

The second step of the algorithm is the creation of the Bach-
man diagram B = BD(#H). This can be done in polynomial
time in the size of 7. Recall that the nodes of B are sets of
objects of the database D. The intersection of all the nodes
of B always contains the root of D. Thus, there is a least
node of B that is contained in all the other nodes. In the
algorithm, we view B as a tree whose root is the least node.

The algorithm creates a tree database T by visiting the
nodes of B in a topological order, starting with the least
node. Initially, T is empty. For each visited node E of B,
the algorithm adds to T the objects of E — E’, where E' is
the parent of E. The newly added objects are connected by
new edges to form a simple path. The order of the objects
along this path is not important, except for the root of D
that must be the first object on the path created for the
least node of B. Thus, each node E of B is associated with
some path in T, and that path has a first object and a last
object. A new edge is also added from the last object of the
parent of E to the first object of E.

The final step of the algorithm is to label the edges of T.
Each edge is labeled with the unique label associated with
the object that it enters; that is, if an edge enters an object
o, then in the original database D, all the edges that enter
o are labeled with the same label [, and [ is also the label of
the single edge that enters object o in the tree database T'.
Note that the root has no incoming edges in T'. It is easy to
see that the returned graph is indeed a tree.

‘We now consider transformation to a tree under the flex-
ible semantics. A necessary condition for the existence of
a transformation under the flexible semantics is as follows.
The database should not have a node o, such that two edges
with different labels enter o. Moreover, there should not be
any edge that enters the root.

Next, we give some additional definitions. The augmented
reachability graph of a database D is the reachability graph
of D augmented with an unlabeled edge from each node to
the root. An edge between two nodes, in the augmented
reachability graph, reflects the existence of a path in D
between these nodes. Since each node in the database is
reachable from the root, there is an edge in the augmented
reachability graph from each node to the root.

The mazimal-clique hypergraph of a database D is the hyper-
graph that has the same nodes as D and has, as hyperedges,
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Figure 5: Transformation to a tree under the flexible semantics.

the maximal cliques in the augmented reachability graph of
D. Note that in a directed graph, a clique is a set of nodes,
such that every two nodes are connected by edges in both
directions. A clique is maximal if it is not contained in any
other clique.

THEOREM 7.5. Consider a database D. Let the hyper-
graph H be the mazimal-clique hypergraph that is created
from the augmented reachability graph of D. The database
D is tree transformable under the flexible semantics if and
only if the following three conditions hold. (1) There is no
edge in D that enters the root; (2) There is no node in D
that has two different incoming labels; and (3) The Bachman
diagram BD(H) of H is acyclic.

Given that a database D is tree transformable under the
flexible semantics, the creation of the equivalent tree T is
the same as in the case of the semiflexible semantics, except
for the following. In the algorithm of the transformation
(Figure 3), the hypergraph # that is used is the maximal-
clique hypergraph of the augmented reachability graph of D
(instead of the path hypergraph of D). The creation of the
maximal-clique hypergraph is not in polynomial time. Thus,
the transformation to a tree under the flexible semantics is
not in polynomial runtime.

An example of a transformation is depicted in Figure 5.
Note that Figure 5 does not show the augmented reacha-
bility graph of the database D. However, it is easy to see
that the augmented reachability graph contains two maxi-
mal cliques. One clique is the set {00, 01, 02, 03,04} and the
other clique is the set {00, 01,02,03,05}. These cliques are
the leaves of the Bachman diagram that is created from the
maximal-clique hypergraph of the augmented reachability
graph.

8. CONCLUSIONS

The semiflexible and flexible semantics facilitate easy and in-
tuitive querying of semistructured data. Meaningful queries
can be formulated even when the user is oblivious to the
structural details of the data and is only familiar with the
ontology. Moreover, queries are insensitive to common vari-
ations in the schemas of semantically similar data instances.

For both semantics, query evaluation and optimization have
favorable complexities. Tree queries can be evaluated in
polynomial time in the size of the query, the data and the
result. In the case of the semiflexible semantics, even evalu-
ation of dag queries has the same complexity provided that
the database is a tree. Equivalence of queries is decidable
in polynomial time, except for the case of semiflexible cyclic
queries; in this case, there is an exponential-time algorithm
for testing equivalence.

A novel feature of the new semantics is the possibility of
transforming a given database D to a tree database that
is equivalent to D. For the semiflexible semantics, testing
whether D is equivalent to a tree database and actually
transforming D to a tree database (if the test is positive)
are both polynomial. Since queries can be evaluated more
efficiently over tree databases, this result is of practical im-
portance.

More research is needed in order to determine which of the
two semantics is more appropriate in common applications.
A second interesting subject for future research is extending
the semiflexible and flexible semantics to handle incomplete
information, as was done in [19] for the rigid semantics.
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