Equivalences Among Aggregate Queries
with Negation®

Sara Cohen
Institute of Computer Science
The Hebrew University
Jerusalem 91904, Israel

sarina@cs.huiji.ac.il

Werner Nutt
Department of Computing
and Electrical Engineering

Heriot-Watt University,
Edinburgh EH14 4AS
Scotland, UK

Yehoshua Sagiv
Institute of Computer Science
The Hebrew University
Jerusalem 91904, Israel

sagiv@cs.huji.ac.il

nutt@cee.hw.ac.uk

ABSTRACT

Query equivalence is investigated for disjunctive aggregate
queries with negated subgoals, constants and comparisons.
A full characterization of equivalence is given for the aggre-
gation functions count, max, sum, prod, top2 and parity. A
related problem is that of determining, for a given natural
number N, whether two given queries are equivalent over
all databases with at most N constants. We call this prob-
lem bounded equivalence. A complete characterization of
decidability of bounded equivalence is given. In particular,
it is shown that this problem is decidable for all the above
aggregation functions as well as for cntd (count distinct),
stdev (standard deviation), median and avg. For quasilin-
ear queries (i.e., queries in which predicates that occur pos-
itively are not repeated) it is shown that equivalence can
be decided in polynomial time for the aggregation functions
count, max, sum, prod, top2, parity, and avg. A similar re-
sult holds for cntd provided that a few additional conditions
hold. The results are couched in terms of abstract character-
istics of aggregation functions, and new proof techniques are
used. Finally, the results presented also imply that equiva-
lence, under bag-set semantics, is decidable for nonaggregate
queries with negation.

1. INTRODUCTION

The emergence of data warehouses and of decision-support
systems has highlighted the importance of efficiently pro-
cessing aggregate queries. In such systems the amount of
data is generally large and aggregate queries are used as a
standard means of reducing the volume of the data. Ag-
gregate queries tend to be expensive as they “touch” many
items while returning few. Thus, optimization techniques for
aggregate queries are a necessity. Many optimization tech-

*This work was supported in part by grant 9481-3-00 of the
Israeli Ministry of Science.

niques, such as query rewriting, are based on checking query
equivalence. For this purpose, a coherent understanding of
the equivalence problem of aggregate queries is necessary.

One of our main results in this paper is that equivalence
is decidable for disjunctive queries with comparisons and
negated subgoals if they contain one of the aggregation func-
tions max, top2, count, sum, prod, or parity.

A query that does not have negated subgoals is positive.
Equivalence of positive non-aggregate queries has been stud-
ied extensively [2, 1, 13, 8, 15, 11]. Furthermore, in [10]
it has been shown that equivalence is decidable for non-
aggregate disjunctive queries with negation. Syntactic char-
acterizations of equivalences among aggregate queries with
the functions max, sum, and count have been given in [12, 4].
These results have been extended in [5] to queries with the
functions prod and avg, for the special case of queries that
contain neither constants nor comparisons. Thus, there exist
results on the equivalence problem for both, non-aggregate
queries with negation as well as aggregate queries without
negation. However, to the best of our knowledge nothing
is known about the equivalence of aggregate queries with
negated subgoals.

Our decidability proofs rely on abstract properties of ag-
gregation functions. We consider functions that are defined
by means of operations on abelian monoids. Our proofs
work out if the monoids are either idempotent or are groups.
Functions of the first kind are max and top2, functions of
the second kind are count, sum, prod, and parity.

For these functions we reduce equivalence with respect to all
possible databases to equivalence over databases that have
at most as many constants as there are constants and vari-
ables in the queries, a property which we call local equiva-
lence. We do not study local equivalence immediately, but
the more general problem of bounded equivalence. It con-
sists in determining, given a nonnegative integer N and two
queries, whether the queries return identical results over all
databases with at most N constants. We give a complete
characterization of decidability of bounded equivalence. In
particular, we show that bounded equivalence is decidable
for queries with the functions count, cntd, max, sum, prod,
avg, median, stdev, top2 and parity.

Finally, we consider the special case of quasilinear queries,
that is, queries where predicates that occur positively are
not repeated. For quasilinear queries equivalence boils down
to isomorphism, which can be decided in polynomial time.

2. AGGREGATION FUNCTIONS

An aggregate query is executed in two steps. First, data is
collected from a database as specified by the non-aggregate
part of the query. Then the results are grouped into mul-
tisets (or bags), aggregation functions are applied to the
multisets, and the aggregates are returned as answers.

The queries that we consider in this paper contain the ag-
gregation functions count and cntd, which for a bag return
the number of elements or distinct elements, respectively;
parity, which returns 0 or 1, depending on whether the num-
ber of elements in the bag is even or odd; sum, prod and avg,
which return the sum, product, or average of the elements
of a bag; max, which returns the maximum among the el-
ements of a bag; median, which returns the median among
the elements of a bag; stdev, which returns the standard
deviation of the elements of a bag and top2, which returns
a pair, consisting of the two greatest different elements of a
bag.

The reader will notice in the course of the paper that our
results for max and top2 immediately carry over to min and
bot2, which select the minimum or the two least elements
out of a multiset of numbers. Moreover, our results for top2
can easily be generalized to the function topkK, which selects
the K greatest different elements.

Our arguments to prove decidability of equivalence for cer-
tain classes of aggregate queries rely on the fact that the
aggregation functions take values in special kinds of abelian
monoids and are defined in terms of the operations of those
monoids. To make this formal, we will introduce the class
of monoidal aggregation functions and two of its subclasses.
We will show that all of the above functions except cntd,
stdev, median and avg belong to one of these two subclasses.

In general, an aggregation function maps multisets of tuples
of numbers to values in some structure, which in most cases
consists again of numbers. Here, we assume that the results
of the aggregation are elements of some abelian monoid.

An abelian monoid is a set M with an associative and com-
mutative binary operation, which we denote as “+”, and a
neutral element, which we denote as 0. An abelian monoid
M is idempotent if a + a = a holds for all a € M, and M is
a group if for every a there is a b such that a +b = 0. The
element b is called the inverse of a and is usually denoted
as —a. Instead of a + (—b) we will usually write a — b.

ExAMPLES 2.1. Standard abelian monoids are the set of
integers Z and the set of rational numbers Q, with the bi-
nary operations of addition or multiplication, and the neu-
tral elements 0 or 1, respectively. A further example is
the two element group Z, = {0, 1}, where addition satis-
fies14+1=0.

By Q1 we denote the rational numbers augmented by a new

element L, which is less than any element in Q. Then Q is
an abelian monoid if the operation is selecting the maximum
of two numbers. The neutral element is L.

A less common example is the monoid T2, which is defined
as the set of pairs

Ty :={(d,e) € QL x QL | d> e},

with the binary operation “@”, where (di,e1) @ (d2,e2) is
defined as the pair (d,e) that consists of the two greatest
different elements among {di,e1,d2,e2}. For instance, we

have (5, 1) & (2,1) = (5,2) and (5,2) & (5,1) = (5,2). [

If (M,+) is an abelian monoid, we can extend the binary
operation to subsets of M and to multisets over M in a
canonical way—because of the associativity and commuta-
tivity of “4”, the order in which we apply the operation
does not matter. If M’ is such a set or multiset, we denote
the result of applying “+” to M’ as EGGM’ a.

Many common aggregation functions are computed by first
mapping the elements of a multiset into an abelian monoid
and then combining the values obtained through the map-
ping by the monoid operation. Technically, we assume that
there is a set S, a monoild M with operation “4+”, and a
function f: S — M. Then the aggregation function based
on f and “4”, which maps multisets B over S to elements
of M, is denoted as oz‘; and defined by

af(B) = Z f(a),

a€EB

for all bags B over S. We say that « is a monoid aggregation
function if o = oz}' for some abelian monoid operation “+7”.

In particular, we say that oz}' is tdempotent or a group ag-
gregation function if the underlying monoid is idempotent,
or a group, respectively.

ExampLEs 2.2. Obviously, sum, prod, and max are the
aggregation functions based on the identity mapping and
on addition, multiplication, or the binary operation “max”,
respectively. The functions count and parity arise from the
additive groups Z and Z; by choosing as f the mapping
that maps every element to the constant 1. We obtain the
aggregate top2 over the rationals by choosing the monoid

T; and the mapping f: Q — T; defined by f(a) := (a, 1).

Note that sum, prod, count and parity are group aggregation
functions, while max and top2 are idempotent. However,
one can prove that cntd, stdev, median and avg are not
monoid aggregation functions. O

3. DISJUNCTIVEAGGREGATEAND NON-
AGGREGATE QUERIES

We now introduce conjunctive and disjunctive queries with
negated subgoals and review their basic properties. We use
standard Datalog syntax extended by aggregation functions.
We thus give an abstract representation of unnested aggre-
gate queries as they are definable in SQL without using the
HAVING construct.

3.1 Syntax of Non-aggregate Queries

Predicate symbols are denoted as p, q, r. A term, denoted as
s, t, is either a variable or a constant. A relational atom has
the form p(s1, ..., sx), where p is a predicate of arity k. We
also use the notation p(s), where s stands for a tuple of terms
(s1,-..,8x). Similarly, T stands for a tuple of variables. An
ordering atom or comparison has the form s; p s2, where pis
one of the ordering predicates <, <, >, >, or #. A relational
atom can be negated. A relational atom that is not negated
is positive. A literal is a positive relational atom, a negated
relational atom, or a comparison. A condition, denoted as
L, is a conjunction of literals. We assume that conditions
are safe [14].

A query is a non-recursive expression of the form
q(z) L1 V...V Ly,

where each L; is a condition containing all the variables
appearing in the tuple z. The variables that occur in the
head, i.e. in Z, are the distinguished variables of the query.
Those that occur only in the body are the nondistinguished
variables.

A query is conjunctive if it contains only one disjunct. A
query 1is positive if it does not contain any negated relational
atoms. By abuse of notation, we will often refer to a query
by its head ¢(z) or simply by the predicate of its head q.

3.2 Semanticsof Non-aggregate Queries
Databases are sets of ground relational atoms and are de-
noted by the letter D. The carrier of D, written carr(D), is
the set of constants occurring in D. We define in which way
a query gq, evaluated over a database D, gives rise to a set
of tuples g°.

An assignment v for a condition L is a mapping of the
variables appearing in L to constants, and of the constants
appearing in L to themselves. Assignments are naturally
extended to tuples and atoms. Satisfaction of atoms and
of conjunctions of atoms by an assignment with respect
to a database are defined in the obvious way. For 3 =
(s1,-..,5%) we let v§ denote the tuple (v(s1),...,v(sx)).

For the interpretation of comparisons it makes a difference
whether they range over a dense order, like the rational num-
bers, or a discrete order, like the integers. A conjunction of
comparisons, like 0 < y < z < 2, may be satisfiable over the
rationals, but not over the integers. If, as in most cases, a
result in this paper holds for comparisons over both, integers
and rationals, we will not mention this explicitly. However,
often two different proofs are needed to establish such a re-
sult.

A query ¢(7) < L1 V...V Ly, defines a new relation ¢”, for
a given database D, as

U{'ﬂ? | v satisfies L; with respect to D}. (1)

=1

Chaudhuri and Vardi [3] have introduced bag-set semantics,
which records the multiplicity with which a tuple occurs as
an answer to the query. The definition in (1) can be turned

into one for bag-set semantics by replacing set braces by
multisets and set union by multiset union. Bag semantics
[3] differs from bag-set semantics in that both, database re-
lations and relations created by queries, are multisets of tu-
ples.

3.3 Syntax of Aggregate Queries

In [12, 4] we have shown that equivalence of positive disjunc-
tive queries with several aggregate terms can be reduced to
equivalence of queries with a single aggregate term. This
still holds if the queries can contain negated subgoals. For
this reason, we consider in the present paper only queries
having a single aggregate term in the head. We give a for-
mal definition of the syntax of such queries.

An aggregate term is an expression built up using variables
and an aggregation function. For example count and sum(y)
are aggregate terms. We use a(y) as an abstract notation
for aggregate terms. Note that § can be the empty tuple as
in the case of the function count.

An aggregate query is a query augmented by an aggregate
term in its head. Thus it has the form

@@, (7)) < L1 V...V Ly, (2)

In addition, we require that

e a(y) is an aggregate term;
e no variable x € T occurs in ¥;

e cach condition L; contains all the variables in # and
in g.

We call z the grouping terms of the query. If the aggregation
term in the head of a query has the form a(y), we call the
query an a-query (e.g., a max-query).

3.4 Semanticsof Aggregate Queries

Consider an aggregate query g as in Equation (2). We define
how, for a database D, the query yields a new relation ¢ .
We proceed in two steps.

We denote the set of assignments v over D that satisfy one
of the disjuncts L; in the body of ¢ as I'(g, D). We assume
that such a v is defined only for the variables that occur
in L;. Moreover, if an assignment = satisfies two or more
disjuncts, we want it to be included as many times in I'(g, D)
as there are disjuncts it satisfies. To achieve this, we assume
that there are as many copies of ¥ in I'(q, D) as there are
disjuncts that v satisfies, and that each copy carries a label
indicating which disjunct it satisfies.

Recall that # are the grouping terms of ¢ and § are the
aggregation variables. For a tuple d, let I';(g, D) be the
subset of I'(q, D) consisting of labeled assignments v with
vZ = d. In the sets T'g(q, D), we group those satisfying

'"We could make this more formal by defining I'(q, D) to con-
sist of pairs (7, 1), where v is an (ordinary) assignment and 1
the index of a condition that it satisfies. However, to avoid
charging our notation with too much detail, we prefer to
introduce the concept of “labeled assignments” informally.

assignments that agree on Z. Therefore, we call I';(q, D)
the group of d.

Let A be a set of labeled assignments and g be a tuple of
variables for which the elements of A are defined. Then we
define the restriction of A to § as the multiset

A :={y |7 e A}

We can apply the restriction operator to I'j(q, D). If a(y) is
an aggregation function, we can apply « to the the multiset
Ay, which results in the aggregate value a(A};). As an
alternative notation, we define

a(y) + A= a(Ap).

Now we define the result of evaluating q(z,a(y)) over D,
denoted ¢” as

{(J,oz(g) 1T4(q,D)) | d = vz for some v € I'(q, D)}

Similarly as for non-aggregate queries, q° is a set of tuples.

3.5 Equivalence

Two queries q and q’, aggregate or non-aggregate, are equiv-
alent if over every database they return the same sets of
results, that is, if g© = q'D for all databases D. For positive
non-aggregate queries, equivalence is decidable and has been
characterized in terms of the existence of query homomor-
phisms [2, 13, 8]. Levy and Sagiv have shown that equiva-
lence is still decidable for disjunctive queries with negated
atoms [11].

In [12, 4], we have proved decidable characterizations for
the equivalence of positive conjunctive and disjunctive ag-
gregate queries with the operators max, count, and sum.
Note that two non-aggregate queries g(%), ¢'(T) are equiva-
lent under bag-set semantics if and only if the count-queries
q(Z, count), q'(Z, count) are equivalent. Thus, characteriza-
tions of the equivalence of count-queries immediately yield
criteria for non-aggregate queries to be equivalent under
bag-set semantics.

4. BOUNDED EQUIVALENCE

Our goal is to to reduce the problem of deciding equivalence
of two aggregate queries over all possible databases to the
problem of deciding local equivalence, that is, equivalence
over databases containing no more constants than the size
of the queries. In this section, we present the conditions
necessary for the more general bounded equivalence problem
to be decidable. We also show decidability of this problem
for a wide range of aggregate queries.

Let N be a nonnegative integer. We say that two queries
q, ¢' are N-equivalent, denoted q¢ =x ¢, if for all databases
D whose carrier has at most N elements, we have q° = q'D.

The bounded equivalence problem for a class of queries is
to decide, given N > 0 and queries g, ¢’ from that class,
whether ¢ =5 ¢'.

Let L be a condition. Then the variable size of L is number
of variables in L. Let ¢q be a disjunctive query. The variable
size of q is the maximum of the variable sizes of the con-
ditions in q. If a query contains an equality y = z, it does

not matter if the variables are counted once or twice for the
proofs later on.

The term size of a query is the total number of constants
occurring in that query plus the variable size. The term size
of a pair of queries ¢, ¢’ is the total number of constants
occurring in at least one of ¢ or ¢’ plus the maximum of
the variable sizes of q, ¢'. We denote the term size of q as
7(q) and the term size of q, ¢’ as 7(g,q'). We say that two
queries q, ¢’ are locally equivalent, if g© =1(q,q') q'D7 that is,
if ¢ and ¢’ return the same results over all databases with
at most 7(q,q') constants.

Clearly, two queries are equivalent if and only if they are
N-equivalent for all N > 0. However, the decidability of
bounded equivalence for a class of queries does not neces-
sarily imply that equivalence is decidable. Sections 5 and 6
establish criteria for this implication to hold. Moreover, de-
cidability of N-equivalence, for a fixed N, does not imply
decidability of local equivalence, since in the latter problem
the size of the databases to be tested depends on the size of
the queries.

ProprosiTiON 4.1. If the bounded equivalence problem is
decidable for a class of queries, then local equivalence is de-
cidable, too.

In the rest of this section we study the decidability of the
bounded equivalence problem for several aggregation func-
tions. Note that N-equivalence is not necessarily a trivial
property. Even if the size of databases is bounded, there
are still infinitely many databases whose size is below the
bound, and the aggregation results may well depend on the
values of the constants in a database.

We introduce the notion of shiftable aggregation functions
and of order-decidable aggregation functions. It is shown
that shiftable aggregation functions are a special case of
order-decidable aggregation functions. We then show that
bounded equivalence is decidable exactly for queries with
order-decidable aggregation functions.

4.1 Shiftable Aggregation Functions

We introduce the notion of shiftable aggregation functions.
Intuitively, the value of such a function does not depend on
the specific values in a multiset, but only on the ordering of
the elements. Let D and D’ be sets of values. A function
w: D — D' is a shifting function if for all d, d’ € D we have

d<d = ¢(d) < p(d).

A shifting function is extended to bags as one would expect.
An aggregation function « is shiftable if for all shifting func-
tions ¢: D — D', where D’ is an arbitrary ordered domain
over which « is defined, and for all bags B, B’ with elements
in DD, we have

a(B) = a(B)) < a(¢(B)) = a(¢(B).

PROPOSITION 4.2. The aggregation functions median,
parity, cntd, count, max and top2 are shiftable.

Note, however, that the aggregation functions sum and prod
are not shiftable. For example, consider the bags B = {2, 2}
and B’ = {4} and suppose ¢ is a shifting function with
¢(2) = 3 and ¢(4) = 5. Then sum(B) = sum(B’') =
prod(B) = prod(B’) = 4, while neither sum nor prod agree
on o(B) = 3,3} and ¢(B') = {5}.

4.2 Order-Decidable Aggregation Functions

Before defining order-decidable aggregation functions, we
present some auxiliary definitions. A domain, denoted 7
is a set of ordered values. For example, the integers Z and
the rationals Q are domains.

We say that a conjunction of ordering atoms L is a complete
ordering of a set of terms T" with respect to a domain I if for
every two terms ¢, € T, exactly one of the following holds:

o L=t <t
o L=t >t
o Li=t=1t

over Z. Note that by definition, complete orderings are sat-

isfiable.

If B is a bag of terms, we denote the variables appearing in
B by v(B). Similarly, we denote the variables in B or in B’
by v(B, B').

Let o be an aggregation function and let Z be a domain.
We say that « is order-decidable over I if for all nonempty
bags B and B’ and all complete orderings L of the terms
of B and B’ with respect to Z it is possible to decide if the
formula

(Vo) (L= a(B) = a(B) (3)

u€v(B,B')

is true over Z. Note that the truth value of the formula may
be dependent on 7.

Intuitively, Formula 3 states that it is possible to decide if
the value of o when applied to B and to B’ is equal, for all
instantiations 6, that satisfy L, of the variables in B and
B’

ExXAMPLE 4.3. It is easy to see that the function parity
is order-decidable over any domain. Consider, for example,
the bags {{1,2,u}} and {v,v,7} and an arbitrary complete
ordering L of {1,2,u, v,7}. Tt is possible to decide the equa-
tion

(Vu) (Vo) (L — parity({1, 2, u}) = parity({v, v, 7}))

since the parity of both bags is odd regardless of the values
assigned to u and v. O

It is not by chance that the function parity is order-decidable
over all domains. It is actually a consequence of the fact that
parity is a shiftable aggregation function.

THEOREM 4.4. Let o be a shiftable aggregation function
and let T be a domain. Then « is order-decidable over T.

PROOF. Suppose that « is a shiftable aggregation func-
tion and that Z is a domain. Let B and B’ be bags over
7 with terms T'. Let L be a complete ordering of T' with
respect to Z. Let §: T' — 7 be a function. We say that ¢
satisfies L if the following conditions hold:

e 6 maps all constants to themselves;

o for all t,t' € T and all ordering predicates p it holds
that

tpt < 5(t) po(t)).

Consider Formula 3. Since L is a complete ordering, L is
also satisfiable with respect to Z. We show that if a(6(B)) =
a(8(B")) for some 4 that satisfies L, then a(8'(B)) = a(8'(B’)
for any 4’ satisfying L. From this, it follows that to test For-
mula 3 it is enough to generate one example § and to check
the formula for it.

Now, let &, 8': T — T be two arbitrary assignments that
satisfy L. We assume without loss of generality that there
are no two different terms ¢1, t2 € T for which L |= & =
ta. (If there were such terms we could remove one of them
by renaming.) Hence, § and §' are injections. Thus, the
function &’ 0 671 is well defined.

Since both § and 8’ preserve order, 6’ o 67! is a shifting
function. Thus, a(8(B)) = «(§(B')) implies «(d'(B)) =
a(8(B")), as required. O

The other direction of Theorem 4.4 does not hold. An aggre-
gation function can be order-decidable over a given domain
even if it is not shiftable.

ProposiTiON 4.5. The aggregation functions sum, prod,
avg and stdev are order-decidable over Z and over Q.

Proor. This follows directly from the fact that the uni-
versal theories of the structures

o (Z,(+,-,0,1,<))
° <Q7 (+7 50,1, <)>

are decidable (cf. [9, pages 24-27]). O

4.3 Decidability of Bounded Equivalence

It is possible to show that if an aggregation function « is
order-decidable over a domain Z then bounded equivalence
can be decided for a-queries containing comparisons that
range over Z. Actually, bounded equivalence for a-queries
ranging over 7 is decidable if and only if o is order-decidable

~—

over Z. This gives a complete characterization of decidabil-
ity of bounded-equivalence of aggregate queries with nega-
tion, disjunction, constants and comparisons. In addition,
we derive as a direct result that bounded equivalence is de-
cidable for queries with a wide range of common aggregation
functions.

THEOREM 4.6. Let o be an aggregation function and let
T be a domain. Then the bounded equivalence problem is
decidable for disjunctive a-queries with comparisons ranging
over I if and only if o is order-decidable over T.

Proof (Sketch). “«” Consider a-queries q and ¢'. Suppose
that « is order-decidable over Z. We show it is possible to
check if ¢ =n ¢/, for a given N. Let C be the set of constant
values appearing in q or ¢’ and let U be a set of N variables.
Let P be the set of predicates appearing either in ¢ or in ¢'.
The set P contains predicates that appear either positively
or negatively in the queries. We use ary(p) to denote the
arity of a predicate p € P.

We denote by BASE the set of all atoms that can be created
using the terms in C UU and the predicates in P. Formally,

BASE := {p(t1,... , tary(p)) | p € P and

b, tary(p) € T}

An instantiation of a set S C BASE is a function ¢ from the
variables in S to Z. Instantiations define databases. It is
possible to show that it is sufficient to consider databases
that can be derived by instantiating subsets of BASE.

There are infinitely many instantiations of a given subset
S of BASE. Thus, we do not consider each instantiation
directly. Instead, for each complete ordering L of C U U
with respect to Z, we consider instantiations of subsets of

BASE that satisfy L.

Consider a subset S of BASE and a complete ordering L of
C UU. We may attempt to evaluate q and ¢’ over S where
the ordering of its terms is defined by L. We can verify that
q and ¢’ return the same tuples of terms for their grouping
variables. However, it is not possible to compute the values
of the aggregation function in the queries since S contains
variables. We can compute the bag of terms assigned to
the aggregation variables for a given assignment of values to
the grouping variables. For an assignment of tuple ¢ to the
grouping variables, we denote the bag of values assigned to
the aggregation variables of q (¢') as B; (B}).

One can show there is an instantiation é of S that satisfies
L and defines a database §(S) over which ¢ and ¢’ do not
return the same aggregation value for ¢ if and only if the
formula

(V) (L= a(By) = a(By))

is false. Since « is order-decidable over Z, the truth value of
the formula can be determined.

“=” We show that if bounded equivalence of a-queries
ranging over I is decidable, then « is order-decidable over

Z. Let B and B’ be bags and let L be a complete ordering
of the terms in B and B'.

Let T'= {t1,...,tn} be the set of terms in B and B’. We
define the condition A as

A:=p(t1) & p(t2) & ... & p(tn).
Suppose that B = {s1,...,s.} and B’ = {s1,...,s..}.

We assume that the variable y does not appear in B or B'.
We define conditions

Li:=A& L&y=s;
L; ::A&L&y:s;

1=1...n

7=1...m

Let ¢ and ¢’ be the queries

qla(y)) < \/ Li

=1

¢ (a(y) « \/ L;
=1
It is possible to show that ¢ =n ¢’ if and only if Formula 3
is true for the bags B, B’ and the complete ordering L. [

COROLLARY 4.7. Let o be a shiftable aggregation function
and let T be a domain. Then the bounded equivalence prob-
lem is decidable for disjunctive a-queries, provided that the
comparisons range over I.

COROLLARY 4.8. For the classes of disjunctive max, sum,
prod, avg, cntd, count, parity, median, stdev, and top2
queries, bounded equivalence is decidable provided that the
comparisons range over Q or Z.

In Theorem 4.6 we reduced order-decidability to bounded
equivalence. A point of interest is that in our reduction we
only used positive queries. Therefore, negation in queries g
and ¢’ does not affect decidability of bounded equivalence
of g and ¢'.

COROLLARY 4.9. The bounded equivalence problem is de-
cidable for positive disjunctive a-queries with comparisons
ranging over I if and only if the bounded equivalence prob-
lem s decidable for disjunctive a-queries with negation and
comparisons ranging over L.

5. DECOMPOSITION PRINCIPLES

Levy and Sagiv [10] have shown that two disjunctive non-
aggregate queries are equivalent if they are equivalent over
all databases whose carrier is not greater than the size of
the queries. For non-aggregate queries this is not surprising
since an answer by a query q depends only on a single as-
signment satisfying q. Hence, if over some database D, by
means of the assignment v, the query ¢ returns the tuple d,
but ¢’ does not return d, then we can construct a database
Do C D that contains only constants occurring in ¢, ¢’ and
in v such that d € ¢”° and d ¢ q'DU.

For aggregate queries this argument cannot be applied since
the results of a query are amalgamated of many single results
that may involve arbitrarily many constants in the database.
Nevertheless, for queries with an idempotent monoid or a
group aggregation function we can reduce equivalence over
arbitrary databases to equivalence over small databases.

As a first step, we formulate decomposition principles for
these two classes of functions. Such a principle provides
a method to compute the value of an aggregation over a
union of sets of assignments from aggregations over the sets
themselves and possibly some of their subsets.

ProposITION 5.1. Let o be an idempotent monoid aggre-
gation function and (Ai)le a family of sets of assignments,

all defined for §y. Then

a(y) L Uf:l Ai= Zf=1 (a(y) L A).

Note that the “>"” in the equation above is the extension
of the idempotent monoid operation. In the case of max,
for instance, the right hand side of the equation becomes
max’_; (max(y) | A;).

Before we treat the case of groups, we remind the reader
of the well-known Principle of Inclusion and Exclusion for
computing the cardinality of a union of sets. It says that for
any finite family of sets (Ai)le we have

‘Uf:l Ai

:Ef=1|Ai|—Zi<] |[As VA + -+ |
(=) 7Nz, Adl-

For group aggregates, we can generalize Equation (4) to the
following decomposition principle.

PROPOSITION 5.2. Suppose that « is a group aggregation
function and (Ai)le 18 a finite family of sels of assignments,

all defined for §y. Then

a(y) | U?:l Ai :Zle (a(y) 4 Ai) =
Yl L AN A) + 4+ (5)

(=1 (a(w) L N, A

Here the “—"-sign denotes inverses with respect to the group
operation. Note that for & = count, Equation (5) simplifies
to Equation (4), since (count | A) = |A| for every set of
assignments A.

Because of the two above propositions, we say that idempo-
tent monoid and group aggregation functions are decompos-

able.

6. REDUCING EQUIVALENCE TO
LOCAL EQUIVALENCE

We now show that for queries with decomposable aggrega-
tion functions local equivalence implies equivalence. To this
end we show first that, given two queries and a database,
we can identify small subsets of the database such that the
satisfying assignments over the database are the union of
the satisfying assignments over the subsets. Then we apply
the decomposition principles to conclude from the fact that
the queries return the same results over the small databases
that they return the same result over the original database.

Let g1, g2 be disjunctive queries, D be a database, and d be
a tuple of constants. Let (D;)%.; be a family of databases
with D; C Dforall i € 1..k. Then (D;)% is a decomposition
of D with respect to g1, g2 and d if the following holds:

1. |carr(D;)| < 1(q1,q2) for all i € 1..k;
2. Ty(q;, D) = U, Tala;, Di) forj=1, 2

3. N, Lalas, Diyy) = F(i(q],ﬂh Dzh) for j =1, 2 and for
all subfamilies (D;,)n of (D;);.

The first condition means that, intuitively, the databases
D; are small. The second condition says that for each gj,
7 =1, 2, we obtain exactly the satisfying assignments over
D that return d if we evaluate q; over each D; separately
and select the assignments that return d over D;. The third
condition says that for each g;, in order to obtain the in-
tersection of the assignment sets I'j(g;, D;,), it suffices to

evaluate g; over the intersection of the databases D;, .

THEOREM 6.1. Let q, q'ibe a pair of disjunctive queries,
let D be a database, and d be tuple of constants from D.
Then there exists a decomposition of D with respect to q, ¢

and d.

ProoF. The proof is in Appendix A. O

THEOREM 6.2. Let o be a decomposable aggregation func-
tion, and let q, ¢’ be disjunctive a-queries. Then q and ¢
are equivalent if and only if they are locally equivalent.

Proor. We only have to show that local equivalence im-
plies equivalence. Suppose therefore that ¢ and ¢’ agree on
all databases whose carrier has at most 7(g,q’) elements.
Let D be any database and d be a tuple of constants. It
suffices to show that

a(y) L Ta(q, D) = a(y) L T4(d', D).

Let (Dt')le be a decomposition of D with respect to q, ¢’
and to d.

a() L T4(q, D) = a(y) L U, Tala, Di)

=21 (@(9) $ Ta(a, Di) = -+ (1) (a(9) + N, Tala, Di)) (b)
=3 (@(9) $ Ta(a, Di) = -+ (1) (a(9) + Tala, N, Di)) ()
= (@(9) $ Ta(d', Di) = -+ (=1)* " (a(y) L Tald', N, D)) (d)
= (@(®) $ Ta(d', Di) = -+ (1) (a(y) L N2, Tald', D)) ()

=a(y) U, Tald', D)

=a(y) I Ta(d, D)

Figure 1: Equations for proof of Theorem 6.2.

If @ is an idempotent monoid function, we apply Proposi-
tion 5.1, which yields

O{(g) 4 F&(qv D)

a(y) $ Ui, Tala, D) (6a)

I

izt (a(9) L Ta(a, D:)) (6b)

Sici (a(@) 4 Ta(d', D)) (6c)

a(9) + Ui, Tald', D) (6d)

a(y) 4 Tald', D), (6e)

where Equations (6a) and (6e) hold because of Property 2
of decompositions, Equations (6b) and (6d) hold because of
Proposition 5.1, and Equation (6c) holds because g and ¢’
are locally equivalent and the databases D; contain at most
7(q,q') constants.

If @ is a group aggregation function, we apply Proposi-
tion 5.2, which yields the equations in Figure 1, where
Equations (a) and (g) hold because of Property 2 of de-
compositions, Equations (b) and (f) hold because of Propo-
sition 5.2, Equations (c) and (e) hold because of Property 3
of decompositions, and Equation (d) holds because q and ¢’
are locally equivalent and the databases D; contain at most
7(q,q') constants. O

COROLLARY 6.3. Suppose o is a decomposable aggrega-
tion function. If local equivalence is decidable for disjunctive
a-queries, then also equivalence is decidable.

COROLLARY 6.4. Fquivalence of disjunctive aggregate
querties is decidable for the aggregation functions max, top2,
count, parity, sum, and prod.

7. EQUIVALENCE OF QUASILINEAR
QUERIES

A positive conjunctive query is linear if no predicate occurs
more than once. We generalize this by defining that a con-
junctive query is quasilinear if no predicate that occurs in

a positive literal, occurs more than once. Thus, in a quasi-
linear query no predicate occurs in both a positive and a
negated literal and no predicate occurs more than once in
a positive literal. In this section we show that for a wide
range of quasilinear queries, equivalence is isomorphism.

We introduce an auxiliary definition. A conjunction of com-
parisons C' is reduced if

e there are no variables z, y occurring in C such that
CEz=y

e there is no variable z occurring in C such that C |=
z = d for a constant d.

We say that a conjunctive query is reduced if its comparisons
are reduced.

We have shown in [12] that for any positive conjunctive
query one can compute in polynomial time an equivalent
reduced conjunctive query. This still holds when the query
can contain negation. In [12] we have also shown that re-
duced linear max, count and sum queries are equivalent if
and only if they are isomorphic. For queries with negaed
literals we can generalize this result to quasilinear queries.

THEOREM 7.1. Let o be an aggregation function. Sup-
pose that reduced positive linear conjunctlive a-queries are
equivalent if and only if they are isomorphic. Then consis-
tent reduced quasilinear conjunctive a-queries are equivalent
if and if they are isomorphic.

Proor. Consider the reduced queries
q(z,a(y)) <~ P& N&C
q(%,a(g)) « P & N' & C'

where

e P and P’ are conjunctions of positive relational atoms;

e N and N’ are conjunctions of negated relational atoms;

, . . .
e (' and C' are conjunctions of comparisons.

Suppose that for positive conjunctive a-queries equivalence
is isomorphism. Suppose that ¢ is not isomorphic to ¢'. We
show that g is not equivalent to q'.

We define the queries gp and ¢
qr(z,a(y))«~ P& C

q}(a’:,oz(g)') « P &C

We consider two cases.

Case 1: Suppose that gp is not isomorphic to g». Then
qp % qp. Let D be a database for which gp and gp return
different values. We may assume, without loss of generality,
that D only contains atoms with predicates appearing in P
orin P’. Hence, there is no atom in D containing a predicate
appearing in N or N’. Thus, g5 = ¢ and q'g = q'D. We

derive that D is a counter-example for equivalence of ¢ and
’

q.

Case 2: Suppose that ¢p is isomorphic to ¢. Since gp and
qp are linear, there is only one isomorphism between them.
Let 8 be the isomorphism from gp to ¢». Note that 8 is
defined on all the variables in g, since q is a safe query. By
our assumption, g is not isomorphic to ¢’. Thus, §(N) # N'.
Suppose, w.l.o.g., that —a appears in N and 6(—a) does not
appear in N'. Let d be a mapping of the variables in ¢ to
constants such that § is consistent with the comparisons in
q. We define a database D := {6(b) | b € P} U {é(a)}.
Clearly, 6% ¢ qP whereas 67 € q'D. Thus, q Z ¢'. O

Now, it follows from our results in [12] that for quasilinear
queries with the aggregate functions max, sum and count
equivalence boils down to isomorphism. In a similar fashion
to the proofs there, we can extend our results to additional
aggregate functions.

THEOREM 7.2. Let q and ¢’ be satisfiable conjunctive o-
queries, possibly with constants, comparisons, and negated
atoms. Suppose that q, ¢’ are quasilinear and reduced and
that o is one of max, top2, count, parity, sum, prod, or
avg. Then q and q' are equivalent if and only if they are
tsomorphic.

For cntd a similar result can be shown for common cases.

THEOREM 7.3. Let q, ¢' be satisfiable conjunctive quasi-
linear cntd-queries. Moreover, suppose that

o the comparisons in q and ¢’ use only <,>;

o q and g’ either range over the rationals or do not have
constants.

Then q and ¢’ are equivalent if and only if they are isomor-
phic.

COROLLARY 7.4. The equivalence problem for the class of
quasilinear a-queries is decidable in polynomial time if o is
one of the aggregation functions max, top2, count, parity,
sum, prod, or avg and for common cntd-queries.

8. CONCLUSION

Necessary and complete conditions for the decidability of
bounded equivalence of disjunctive aggregate queries with
negation have been presented. This problem has been shown
to be decidable for a wide class of aggregation functions.
Equivalence of aggregate queries with negation has been re-
duced to a special case of bounded equivalence, called local
equivalence, for decomposable aggregation functions. We
have also shown that equivalence can be decided in polyno-
mial time for the common case of quasilinear queries.

Bag-set semantics has been introduced in [3] to give a formal
account of the way in which SQL queries are executed, which
do not return a set of tuples but a multiset. It is easy to
see that two non-aggregate queries are equivalent under bag-
set semantics if and only if the aggregate queries obtained
by adding the function count are equivalent. Thus, our re-
sults on count-queries directly carry over to non-aggregate
queries that are evaluated under bag-set semantics. This
is a significant contribution to the understanding of SQL
queries. Moreover, these results can easily be extended to
non-aggregate queries evaluated under bag semantics [3, 7],
thereby, solving an additional open problem.

Novel proof techniques have been presented. One example
is the application of the Principle of Inclusion and Exclusion
to the case of group aggregation functions. Our results are
couched in terms of abstract characterizations of aggregation
functions. Thus, the results presented are easily extendible
to additional aggregation functions.

Concepts seemingly similar to the ones introduced in the
present paper have been investigated in [6]. In particu-
lar, the authors considered aggregation functions defined in
terms of commutative monoids. However, the purpose of
that research was to study the expressivity of logics that
extend first-order logic by aggregation. In [6] it is shown
that formulas in those extended logics are Hanf-local and
Gaifman-local. Intuitively, this means that whether or not
a formula is true for a tuple d in a structure, depends only
on that part of the structure that is “close” to d. A class
of formulas that is Hanf- or Gaifman-local need not be de-
cidable. In addition, the authors only considered monoids
over the rationals, which excludes functions such as topK
and parity.

We leave for future research the problem of deciding equiv-
alence among avg, stdev, median and cntd queries as well
as equivalence of aggregate queries with a HAVING clause.
The adaption of our results to the view usability problem is
another important open problem.

9. REFERENCES
[1] A. Aho, Y. Sagiv, and J. Ullman. Efficient
optimization of a class of relational expressions. ACM
Transactions on Database Systems, 4(4):435-454,
1979.

[2] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational databases. In Proc.
9th Annual ACM Symposium on Theory of
Computing, 1977.

[3] S. Chaudhuri and M. Vardi. Optimization of real
conjunctive queries. In Proc. 12th Symposium on
Principles of Database Systems, Washington (D.C.,
USA), May 1993. ACM Press.

[4] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
aggregate queries using views. In C. Papadimitriou,
editor, Proc. 18th Symposium on Principles of
Database Systems, Philadelphia (Pennsylvania, USA),
May 1999. ACM Press.

[5] S. Grumbach, M. Rafanelli, and L. Tininini. Querying
aggregate data. In C. Papadimitriou, editor, Proc.
18th Symposium on Principles of Database Systems,
pages 174-183, Philadelphia (Pennsylvania, USA),
May 1999. ACM Press.

[6] L. Hella, L. Libkin, J. Nurmonen, and L.. Wong.
Logics with aggregate operators. In Proc. 14th IEEE
Symposium on Logic in Computer Science, pages
35-44, Trento (Italy), July 1999. IEEE Computer
Society Press.

[7] Y. JIoannidis and R. Ramakrishnan. Beyond relations
as sets. ACM Transactions on Database Systems,
20(3):288-324, 1995.

[8] D. Johnson and A. Klug. Optimizing conjunctive
queries that contain untyped variables. STAM Journal
on Computing, 12(4):616-640, 1983.

[9] G. Kuper, L. Libkin, and J. Paredaens, editors.
Constraint Databases. Springer-Verlag, 2000.

[10] A. Levy and Y. Sagiv. Queries independent of
updates. In Proc. 19th International Conference on
Very Large Data Bases, pages 171-181, Dublin
(Ireland), Aug. 1993. Morgan Kaufmann Publishers.

[11] A. Levy and Y. Sagiv. Semantic query optimization in
datalog programs. In Proc. 14th Symposium on
Principles of Database Systems, pages 163-173, San
Jose (California, USA), Proc. 14th Symposium on
Principles of Database Systems 1995. ACM Press.

[12] W. Nutt, Y. Sagiv, and S. Shurin. Deciding
equivalences among aggregate queries. In
J. Paredaens, editor, Proc. 17th Symposium on
Principles of Database Systems, pages 214-223,
Seattle (Washington, USA), June 1998. ACM Press.
Long version as Report of Esprit LTR DWQ.

[13] Y. Sagiv and M. Yannakakis. Equivalence among
relational expressions with the union and difference
operators. J. ACM, 27(4):633-655, 1981.

[14] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, volume 1. Computer Science
Press, 1988.

[15] R. van der Meyden. The complexity of querying
indefinite data about linearly ordered domains. In
Proc. 11th Symposium on Principles of Database
Systems, pages 331-345, San Diego (California, USA),
May 1992. ACM Press.

APPENDIX
A. PROOF FOR SECTION 6

In this section we prove Theorem 6.2. We consider the
queries ¢ and ¢’ defined as

q(z,a(7)) « \/ P & N: & C;
i€

- 1\ ! ’ !

q(z,a(y)) « \/PJ&NJ&CJ
J€J

where P;, P]' are conjunctions of positive relational atoms,
Ni, N, are conjunctions of negated relational atoms and
Ci,C]' are conjunctions of comparisons. We use L; as a
shorthand for P; & N; & C; and we use L; as a shorthand
for P, & N, & Cj.

Let D be a database and let d be a tuple. We must show
that there exists a decomposition of D with respect to q, ¢’

and d.

We create a decomposition of D with respect to ¢, ¢' and
d in a two step process. We first create databases out of
the satisfying assignments of g and of ¢’ into D that retrieve
d. Next, we extend these databases using the procedure
Extend_Database to prevent them from satisfying negated
atoms that were not satisfied in D.

Recall that T'z(g, D) is the set of satisfying assignments from
g into D that retrieve d. We denote the disjunct of ¢ satisfied
by v € I'3(¢q, D) as L,. For each v € I'3(q, D) we define a
database

Dy :={v(a) | a € P4}.

We use this notation since we consider a database to be a set
of ground positive relational atoms. Note that D, satisfies
the positive atoms in L., with respect to the assignment ~.
However, we must extend the databases D, to ensure that
D., does not satisfy negated atoms that were not satisfied in
D. We now create a database D’ out of D~ using the pro-
cedure Extend_Database presented in Figure 2.> Formally,

we define D} := Extend_Database(D~,q,q', D).

In a similar fashion, we create databases D.s out of the satis-
fying assignments v’ € I'3(¢’, D) of ¢’ into D that retrieve d.
As above, these databases are extended to derive databases
D’ using the procedure Extend Database.

We now define
A:={D} |y €T4(q, D)} U{D} | v €T4(d, D)}.

We present a series of lemmas that will enable us to prove
that A is a decomposition of D w.r.t. ¢, ¢’ and d. We first
note that clearly for all D* € A, it holds that D* C D.

The first lemma states that the databases in A have the
correct number of constants, i.e., that Property 1 of decom-
positions holds for A.

LEMMA A.1. For all databases D* € A, it holds that
|carr(D")| < 7(q,q').

2This process does not necessarily uniquely determine the
database D7. However, this is not important for our proof.

Procedure: Extend_Database(D,q,q',D)
Input: Database D~ to be extended
Queries q.,q'
Original database D
Output:

. 1:=0

. Dy =D,

. Repeat
l=14+1
Dl = Dl—l

oUW N

(Ja)[~a € N5 A 6(a) € D]

10. Until D; := Dy,
11. Return D;

Extension of D, with respect to ¢, ¢’ and D

If there is an assignment é of ¢ into D;_; that satisfies some L; in g such that

7. then D, := D, U {é(a) | ~a € N5 A b(a) € D}

8. If there is an assignment 6’ of ¢’ into D;_; that satisfies some L%, in ¢’ such that
(Ja)[-~a € Nj A §'(a) € D]

9 then D, := Dy U {6 (a) | ma € Nj, Ad(a) € D}

Figure 2: Procedure used to extend a database.

ProoF. Consider a database D} € A. Clearly, D, con-
tains at most 7(g) constants. Note that when an atom is
added during the procedure, the constants appearing in the
atom must have already appeared in the database, or must
appear in q or q'. This follows since the queries are safe [14]
and all variables in negated atoms must also appear in pos-
itive atoms. Thus, D} contains at most 7(g,q’) constants.

Similarly, one can show that for D:, € A, it holds that
|carr(DZ)| < 7(q, q'). Thus, it easily follows that for all
D* € A, |carr(D*)| < 7(q,q")- O

We show Property 2 of decompositions for A.

LEMMA A.2. The following relationships hold between
the assignments of ¢ and ¢' into D and into databases in

A

1. Fc](qv D) = UD*GA F(i(qv D*)f
Q‘ F&(ql7 D) = UD*GA F&(q/, D*)

Proor. We show Equation 1. Equation 2 is proved anal-
ogously. We show that I'z(q, D) € Up.ca Fale, D*). To
prove this it is enough to show that for all v € T";(q, D), the
assignment v satisfies ¢ in D7, i.e.,

Suppose that a is a positive relational atom in the conjunct
L., then v(a) € D, by definition. Clearly, D, C D, and
thus, v(a) € D). If =bis a negated relational atom in L,
then v(b) ¢ D. Otherwise, v would not be a satisfying
assignment of ¢ in D. According to the definition of DJ, it

holds that D3 C D, and therefore, v(b) ¢ D;. Satisfaction

of C, (the comparisons in L.) are dependent only on v and
not on a database. Thus, v is a satisfying assignment of q
into DJ.

We now show the other direction of containment, i.e., that
L3(q, D) 2 Upeea l'alg, P*). 1t suffices to show that for all
D* € A it holds that T'3(q, D) D T'4(q, D*).

Suppose that v € I';(q, D*). Suppose that = satisfies con-
junct L, of g in D*. Consider an literal { in L. If I is
a positive relational atom then v(I) € D*. We know that
D* C D, thus, ¥(I) € D. Suppose that [is a negated rela-
tional atom of the form —b, and suppose, by way of contra-
diction, that vy(b) € D. Then v satisfies the condition in line
6 of the procedure Extend_Database presented above. Thus,
v(b) would have been added to D* in contradiction to the
fact that v is a satisfying assignment of g into D*. Finally,
note that satisfaction of comparisons is only dependent on
the assignment. Thus, v is a satisfying assignment of ¢ into

D. (]

In Lemma A.3 Property 3 of decompositions is proved for

Al

LEMMA A.3. The following relationships hold between in-
tersections of sets of assignments and intersections of sets
of databases:

1. nh F&(qv D;) = F&(qv nh DZ)f
2. nh Fé(qlv DZ) = Fé(qlv nh Dlt)

for all subfamilies D}, of A.

Proor. We show Equation 1. Equation 2 is proved anal-
ogously. We first show that I';(q, (" Dy) C (1 T4(q, D). Let

v be an assignment in I'3(g, () D}). Suppose that v satisfies
L of g in (] Dj. Satisfaction of C is dependent only on 7.
Let a be a positive atom in L,. The atom v(a) appears in
() Dy, and thus, y(a) appears in D}, for all h. Thus, v satis-
fies the positive atoms of L in each of D}. Now, let I be a
negated atom in L, of the form —b. Clearly, v(b) ¢ () D},
Suppose, by way of contradiction, that y(b) € Dj, for some
h. Then v(b) € D, since Dj C D. However, it follows
that we would have added (b) to Dj, for all h, since v sat-
isfies the condition in line 6 of Extend_Database. Thus,
v(b) € N D} in contradiction to the assumption. Hence,
T'i(q, N Dr) CNT4(g, Dy) as required.

We now show that I';(q, (D7) 2 (T'4(q, Dy). Suppose that
v € NT4(q, Dy). Then v € T'y(q, Dy) for all h. Let L, be
a conjunct such that v satisfies L, in Dy, for all h. Once
again, satisfaction of C, is dependent only on v. Consider
a positive relational atom a in L,. Then y(a) € Dj for
all h. Thus, v(a) € [D}. Similarly, consider a negated
atom ! of the form =bin L,. Then v(b) ¢ D}, for all h, and
thus, v(b) € (Dj. Clearly it follows that v € T'3(q, () D},).
Hence, the equality required holds. O

We can now prove our theorem about the existance of de-
compositions.

THEOREM A.4. Let q, q'ibe a pair of disjunctive queries,
let D be a database, and d be tuple of constants from D.
Then there exists a decomposition of D with respect to q, q'

and d.

PrOOF. From Lemmas A.1, A.2 and A.3 it follows that
A is a decomposition of D w.r.t. q, ¢’ and d as required. []

