Synchronizing a database to Improve Freshness

Junghoo Cho

Hector Garcia-Molina

Stanford University
{cho, hector}@cs.stanford.edu

Abstract

In this paper we study how to refresh a local copy of an
autonomous data source to maintain the copy up-to-date.
As the size of the data grows, it becomes more difficult to
maintain the copy “fresh,” making it crucial to synchronize
the copy effectively. We define two freshness metrics, change
models of the underlying data, and synchronization policies.
We analytically study how effective the various policies are.
We also experimentally verify our analysis, based on data
collected from 270 web sites for more than 4 months, and
we show that our new policy improves the “freshness” very
significantly compared to current policies in use.

1 Introduction

Local copies of remote data sources are frequently made
to improve performance or availability. For instance, a
data warehouse may copy remote sales and customer
tables for local analysis. Similarly, a web search
engine copies portions of the web, and then indexes
them to help users navigate the web. In many cases,
the remote source is updated independently without
pushing updates to the client that has a copy, so
the client must periodically poll the source to detect
changes and refresh its copy. This scenario is illustrated
in Figure 1.

Clearly, a portion of the local copy may get temporar-
ily out-of-date, due to the delay between source updates
and the refresh of the local copy. In many applications
it may be important to control how out-of-date infor-
mation becomes, and to perform the refresh process so
that data “freshness” is improved. In this paper we ad-
dress some important questions regarding this refresh or
synchronization process. For instance, how often should
we synchronize the copy to maintain, say, 80% of the
copy up-to-date? How much fresher does the copy get if
we synchronize it twice as often? In what order should
data items be synchronized? For instance, would it be
better to synchronize a data item more often when we

Data source Local copy
Update M Query
> AN
-

Figure 1: Conceptual diagram of the problem

believe that it changes more often than the other items?
(Surprisingly, the answer to this last question is no in
some cases!)

Although the synchronization and freshness problem
arises in various contexts, our work is driven by the need
to manage web data. At Stanford, we maintain a local
repository called WebBase, containing a significant
portion of the web (currently 42 million pages), that
supports researchers experimenting with web searching
and mining [10, 5]. (The Google search engine
used this repository before it became a commercial
product [1].) Web search engines and services, such
as Alexa, AltaVista and Infoseek, also maintain similar
copies of the web, or indexes based on the web data
collected. To maintain the repository and/or index up-
to-date, the web pages must be periodically revisited.
This work is done by a program called a web crawler.

As the size of the web grows rapidly, it becomes
crucial to synchronize the data more effectively. A
recent study shows that it takes up to 6 months for
a new page to be indexed by popular web search
engines [9]. Also, alot of users express frustration, when
a search engine returns obsolete links, and the users
follow the links in vain. According to the same study,
up to 14% of the links in the search engines are broken.
By tuning the synchronization policy, we believe we can
reduce the wasted resources and time significantly.

The effective synchronization of a local copy intro-
duces many interesting challenges. First of all, measur-
ing the freshness of the copy is not trivial. Intuitively,
the copy is considered fresh when it is not different from
the “real-world” remote data. Therefore, we can mea-
sure its freshness only when we know the current status
of the real-world data. But how can we know the cur-
rent status of the real-world data, when it is spread
across thousands of web sites? Second, we do not know

exactly when a particular data item will change, even
if it changes at a certain average rate. For instance,
the pages in the CNN web site are updated about once
a day, but the update of a particular page depends on
how the news related to that page develops over time.
Therefore, visiting the page once a day does not guar-
antee its freshness.

In this paper, we will formally study how to syn-
chronize the data to maximize its freshness. The main
contributions we make are:

e We present a formal framework to study the syn-
chronization problem, and we define the notions of
freshness and age of a copy. While our study focuses
on the web environment, we believe our analysis can
be applied to other contexts, such as a data ware-
house. In a warehouse, materialized views are main-
tained on top of autonomous databases, and again,
we need to poll the underlying database periodically
to guarantee some level of freshness.

e We present several synchronization policies that are
currently employed, and we compare how effective
they are. Our study will show that some policies
that may be intuitively appealing might actually
perform worse than a naive policy.

e We also propose a new synchronization policy which
may improve the freshness by orders of magnitude
in certain cases.

e We validate our analysis using experimental data
collected from 270 web sites over 4 months. The
data will show that our new policy is indeed better
than any of the current policies.

The rest of this paper is organized as follows. In Sec-
tion 2, we present a framework for the synchronization
problem. Then in Section 3, we explain what options
exist for synchronizing the local copy, and we compare
these options in Section 4 and 5. In Section 6, we verify
our analysis using data collected from the world wide
web.

2 Framework

To study the synchronization problem, we first need to
understand the meaning of “freshness,” and we need to
know how the data change over time. In this section we
present our framework to address these issues. In our
discussion, we refer to the data source that we monitor
as the real-world database and its local copy as the local
database when we need to distinguish them. Similarly,
we refer to their data items as the real-world elements
and as the local elements.

In Section 2.1, we start our discussion with the
definition of two freshness metrics, freshness and age.
Then in Section 2.2, we discuss how we model the
evolution of individual real-world elements. Finally in
Section 2.3 we discuss how we model the real-world
database as a whole.

2.1 Freshness and age

Intuitively, we consider a database “fresher” when the
database has more up-to-date elements. For instance,
when database A has 10 up-to-date elements out of

20 elements, and when database B has 15 up-to-date
elements, we consider B to be fresher than A. Also, we
have a notion of “age:” Even if all elements are obsolete,
we consider database A “more current” than B, if A was
synchronized 1 day ago, and B was synchronized 1 year
ago. Based on this intuitive notion, we define freshness
and age as follows:

1. Freshness: Let S = {ej,...,en} be the local
database with IV elements. Ideally, all N elements
will be maintained up-to-date, but in practice, only
M(< N) elements will be up-to-date at a specific
time. (By up-to-date we mean that their values
equal those of their real-world counterparts.) We
define the freshness of S at time ¢ as F'(S;t) = M/N.
Clearly, the freshness is the fraction of the local
database that is up-to-date. For instance, F(S;t)
will be one if all local elements are up-to-date, and
F(S;t) will be zero if all local elements are out-of-
date. For mathematical convenience, we reformulate
the above definition as follows:

Definition 1 The freshness of a local element e; at
time t is
Fleist) = 1 if e; is up-to-date at time ¢
& 0 otherwise.

Then, the freshness of the local database S at time
tis

1 N
i=1 O

Note that freshness is hard to measure exactly
in practice, since we need to “instantaneously”
compare the real-world data to the local copy. But
as we will see, it is possible to estimate freshness
(and age) given some information about how the
real-world data changes.

2. Age: To capture “how old” the database is, we
define the metric age as follows:

Definition 2 The age of the local element e; at
time ¢ is
Alesst) = { 0 if e; is up-to-date at time ¢

v (t — modification time of e;) otherwise.

Then the age of the local database S is

N
A(S;t) = N g Ale;;t).
i=1 -

The age of S tells us the average “age” of the local
database. For instance, if all real-world elements
changed one day ago and we have not synchronized
them since, A(S;t) is one day.

In Figure 2, we show the evolution of F(e;;t) and
A(e;;t) of an element e;. In this graph, the horizontal
axis represents time, and the vertical axis shows the
value of F(e;;t) and A(e;;t). We assume that the
real-world element changes at the dotted lines and the
local element is synchronized at the dashed lines. The
freshness drops to zero when the real-world element

1 o
F(el)

0 . . . Time

| |

I I

Aei) ! !

|

I
0 0 t - ! - Time

. i . i .
I I

- - - element is synchronized
-~ element is modified

Figure 2: An example of the time evolution of F(e;;t)
and A(e;;t)

changes, and the age increases linearly from that point
on. When the local element is synchronized to the real-
world element, its freshness recovers to one, and its age
drops to zero.

Obviously, the freshness (and age) of the local
database may change over time. For instance, the
freshness might be 0.3 at one point of time, and it
might be 0.6 at another point of time. To compare
different synchronization methods, it is important to
have a metric that fairly considers freshness over a
period of time, not just at one instant. In this paper,
we use the freshness averaged over time as this metric.

Definition 3 We define the freshness of element e;
averaged over time, F'(e;), and the freshness of database
S averaged over time, F(S), as

t

_ 1
F(e;) = tlim = | Fle;t)dt
_ 1 [t
F(S)= tlim - | F(S;t)dt.
— 00 0
The time average of age can be defined similarly. o

From the definition, we can prove that F(S) is the sum
of F(e;): F(S) = + Zi\il F(e;). For detailed proof,
see [3].

2.2 Poisson process and probabilistic
evolution of an element

To study how effective different synchronization meth-
ods are, we need to know how the real-world element
changes. In this paper, we assume that the elements
are modified by a Poisson process. A Poisson process is
often used to model a sequence of events that happen
randomly and independently with a fired rate over time.
For instance, the occurrences of fatal auto accidents, or
the arrivals of customers at a service center, are usually
modeled by Poisson processes. Under a Poisson pro-
cess, it is well-known that the time to the next event is
exponentially distributed [11].

Lemma 1 LetT be the time when the next event occurs

in a Poisson process with change rate \. Then the
probability density function for T is
[xe™ fort>0
fT(t)_{ 0 for t < 0. .

In this paper, we assume that each element e; is
modified by the Poisson process with change rate \;.
That is, each element changes at its own rate \;, and
this rate may differ from element to element. For
example, one element may change once a day, and
another element may change once a year. Later in
Section 6, we will experimentally verify that the Poisson
process describes well the changes of real web pages.

Under the Poisson process model, we can analyze the
freshness and age of the element e; over time. More
precisely, let us compute the expected value of freshness
and age of e; at time ¢. For the analysis, we assume
that we synchronize e; at t =0 and at t = 1.

By integrating the probability density function of
Lemma 1, we can obtain the probability that e; changes
in the interval (0, ¢]:

t
Pr{T < 1} — / Fr(t)dt =1 — e
0

Since e; is not synchronized in the interval (0,7), the
local element e; may get out-of-date with probability
Pr{T <t} = 1—e at time t € (0,1). Hence, the
expected freshness is

E[F(eist)]=0-(1—e) +1-eM=e* forte(0,]).

Note that the expected freshness is 1 at time ¢ = 0 and
that the expected freshness approaches 0 as time passes.

We can obtain the expected value of age of e; similarly.
If e; is modified at time s € (0, I), the age of e; at time
t € (s,1)is (t — s). From Lemma 1, e; changes at time
s with probability Ae™*, so the expected age at time
te(0,1)is

1— e—)\t

)\t>

¢
E[A(e; t)] = / (t —s)(Ae *)ds = t(1 —
0
Note that E[A(e;t)] — 0 as ¢ — 0 and that
E[A(e;;t)] &~ t as t — o0o; the expected age is 0 at time 0
and the expected age is approximately the same as the
elapsed time when ¢ is large. In Figure 3, we show the
graphs of E[F(e;;t)] and E[A(e;;t)]. Note that when
we resynchronize e; at t = I, E[F(e;;t)] recovers to one
and E[A(e;; t)] goes to zero.

2.3 Evolution model of database

In the previous subsection we modeled the evolution of
an element. Now we discuss how we model the database
as a whole. Depending on how its elements change over
time, we can model the real-world database by one of
the following:

e Uniform change-frequency model: In this
model, we assume that all real-world elements

0 Time O | Time

(a) E[F(es;;t)] graph (b) E[A(es;t)] graph
over time over time

Figure 3: Time evolution of E[F(e;;t)] and E[A(e;;t)]

% of elements
0.14
0.12
0.1
0.08
0.06 g()\)
0.04
0.02

6 8 10 12 14

Figure 4: Histogram of the change frequencies

change at the same frequency A. This is a simple
model that could be useful when:

— we do not know how often the individual element
changes over time. We only know how often
the entire database changes on average, so we
may assume that all elements change at the same
average rate \.

— the elements change at slightly different frequen-
cies. In this case, this model will work as a good
approximation.

e Non-uniform change-frequency model: In this
model, we assume that the elements change at
different rates. We use A; to refer to the the
change frequency of the element e;. When the
Ai’s vary, we can plot the histogram of \;’s as we
show in Figure 4. In the figure, the horizontal axis
shows the range of change frequencies (e.g., 9.5 <
A; < 10.5) and the vertical axis shows the fraction
of elements that change at the given frequency
range. We can approximate the discrete histogram
by a continuous distribution function g(\), when
the database consists of many elements. We will
adopt the continuous distribution model whenever
convenient.

For the reader’s convenience, we summarize our
notation in Table 1. As we continue our discussion,
we will explain some of the symbols that have not been
introduced yet.

3 Synchronization policy

So far we discussed how the real-world database changes
over time. In this section we study how the local copy

can be refreshed. There are several dimensions to this
synchronization process:

1.

3.

Synchronization frequency: We first need to
decide how frequently we synchronize the local
database. Obviously, as we synchronize the database
more often, we can maintain the local database
fresher. In our analysis, we assume that we synchro-
nize N elements per I time-units. By varying the
value of I, we can adjust how often we synchronize
the database.

. Resource allocation: Even after we decide how

many elements we synchronize per unit interval, we
still need to decide how frequently we synchronize
each individual element. We illustrate this issue by
an example.

Example 1 The database consists of three ele-
ments, ey, eo and eg. It is known that the ele-
ments change at the rates Ay = 4, Ay = 3, and
A3 = 2 (times/day). We have decided to synchro-
nize the database at the total rate of 9 elements/day.
In deciding how frequently we synchronize each ele-
ment, we consider the following options:

e Synchronize all elements uniformly at the same
rate. That is, synchronize e;, es and e3 at the
same rate of 3 (times/day).

e Synchronize an element proportionally more often
when it changes more often. In other words,
synchronize the elements at the rates of f; = 4,
f2 =3, f3 =2 (times/day). o

Based on how the fixed synchronization-resource is
allocated to the individual elements, we can classify
synchronization policies as follows. We study these
policies later in Section 5.

(a) Uniform allocation policy: We synchronize

all elements at the same rate, regardless of how
often they change. That is, each element e;
is synchronized at the fixed frequency f. In
Example 1, the first option corresponds to this
policy.

(b) Non-uniform allocation policy: We synchro-

nize elements at different rates. In particular,
with a proportional allocation policy we syn-
chronize element e; at a frequency f; that is pro-
portional to its change frequency A;. Thus, the
frequency ratio \;/f;, is the same for any ¢ under
the proportional allocation policy. In Example 1,
the second option corresponds to this policy.

Synchronization order: Now we need to decide
in what order we synchronize the elements in the
database.

Example 2 We maintain a local database of 10,000
web pages from site A. In order to maintain the
local copy up-to-date, we continuously update our
local database by revisiting the pages in the site.
In performing the update, we may adopt one of the
following options:

| symbol | meaning

Freshness of database S (and element e;) averaged over time

Age of database S (and element e;) averaged over time

frequency f;

€i)

i)
(c) (fz) A(N;, fi) | Freshness (and age) of element e; averaged over time, when
the element changes at the rate A; and is synchronized at the

i) A Change frequency of element e;

Synchronization frequency of element e;

Average change frequency of database elements

Average synchronization frequency of database elements

Table 1: The symbols that are used throughout this paper and their meanings

e We maintain an explicit list of all URLs in the
site, and we visit the URLs repeatedly in the same
order. Notice that if we update our local database
at a fixed rate, say 10,000 pages/day, then we
synchronize a page, say p;, at the fixed interval
of one-day.

e We only maintain the URL of the root page
of the site, and whenever we crawl the site,
we start from the root page, following links.
Since the link structure (and the order) at a
particular crawl determines the page visit order,
the synchronization order may change from one
crawl to the next. Notice that under this
policy, we synchronize a page, say p1, at variable
intervals. For instance, if we visit p; at the end of
one crawl and at the beginning of the next crawl,
the interval is close to zero, while in the opposite
case it is close to two days.

e Instead of actively synchronizing pages, we syn-
chronize pages on demand, as they are requested
by a user. Since we do not know which page the
user will request next, the synchronization order
may appear random. Under this policy, the syn-
chronization interval of p; is not bound by any
value. It may range from zero to infinity. o

We can summarize the above options as follows:

(a) Fixed order: We synchronize all elements in the
database in the same order repeatedly. Therefore,
a particular element is synchronized at a fized
interval under this policy. This policy corresponds
to the first option of the above example.

(b) Random order: We synchronize all elements
repeatedly, but the synchronization order may
be different in each iteration. This policy cor-
responds to the second option in the example.

(¢) Purely random: At each synchronization point,
we select an arbitrary element from the database
and synchronize it. Therefore, an element is
synchronized at intervals of arbitrary length. This
policy corresponds to the last option in the
example.

In Section 4 we will compare how effective these
synchronization order policies are.

@ ¢ {

-

(b) ¢ . . .
(© ¢ o o o o o o o o ¢
s<— 1day ————=

e : page synchronization point

Figure 5: Several options for the synchronization points

4. Synchronization points: In some cases, we may

need to synchronize the database only in a limited
time-window. For instance, if a web site is heavily
accessed during day-time, it might be desirable to
crawl the site only in the night, when it is less
frequently visited. We illustrate several options due
to this constraint by an example.

Example 3 We maintain a local database of 10
pages from site A. The site is heavily accessed dur-
ing day-time. We consider several synchronization
policies, including the following:

e Figure 5(a): We synchronize all 10 pages in the
beginning of the day, say midnight.

e Figure 5(b): We synchronize most pages in the
beginning of the day, but we still synchronize some
pages during the rest of the day.

e Figure 5(c): We synchronize 10 pages uniformly
over a day. o

In this paper, we assume that we synchronize
the database uniformly over time. We believe
this assumption is valid especially for the web
environment. Because the web sites are located in
many different time zones, it is not easy to identify
which time zone a particular web site resides in.
Also, the access pattern to a web site varies widely.
For example, some web sites are heavily accessed
during day time, while others are accessed mostly
in the evening, when users are at home. Since
crawlers cannot guess the best time to visit each
site, they typically visit sites at a uniform rate that
is convenient to the crawler.

policy Freshness F(S)

- e
Fixed-order e

Random-order %(1 — (==](% +(E-52- (1:,27T)%)

r

Purely-random ﬁ ()

Table 2: Freshness and age formula for various
synchronization-order policies

4 Comparison of synchronization-order
policies

Clearly, we can increase the database freshness by
synchronizing more often. But exactly how often
should we synchronize, for the freshness to be, say,
0.87 Conversely, how much freshness do we get if
we synchronize 100 elements per second? In this
section, we will address these questions by analyzing
synchronization order policies. Through the analysis,
we will also learn which synchronization-order policy is
the best in terms of freshness and age.

In this section we assume that all real-world elements
are modified at the same average rate A. That
is, we adopt the wuniform change-frequency model
(Section 2.3). When the elements change at the
same rate, it does not make sense to synchronize the
elements at different rates, so we also assume the
uniform allocation policy (Item 2a in Section 3). These
assumptions significantly simplify our analysis, while
giving us solid understanding on the issues that we
address.

Based on these assumptions, we analyze different
synchronization-order policies in detail in [3], and we
we summarize the result in Table 2. In the table, we
use r to represent the frequency ratio \/f, where X\ is
the frequency at which a real-world element changes and
f(= 1/I) is the frequency at which a local element is
synchronized. When r < 1, we synchronize the elements
more often than they change, and when r > 1, the
elements change more often than we synchronize them.

To help readers interpret the formulas, we show the
freshness and the age graphs in Figure 6. In the figure,
the horizontal axis is the frequency ratio r, and the
vertical axis shows the freshness and the age of the local
database. Notice that as we synchronize the elements
more often than they change (A < f, thus r = \/f —
0), the freshness approaches 1 and the age approaches 0.
Also, when the elements change more frequently than
we synchronize them (r = A/f — o0), the freshness
becomes 0, and the age increases. Finally, notice that
the freshness is not equal to 1, even if we synchronize
the elements as often as they change (r = 1). This
result comes for two reasons. First, an element changes
at random points of time, even if it changes at fixed
average rate. Therefore, the element may not change
between some synchronizations, and it may change
more than once between other synchronizations. For
this reason, it cannot be always up-to-date. Second,
some delay may exist between the change of an element
and its synchronization, so some elements may be

“temporarily obsolete,” decreasing the freshness of the
database.

The graphs of Figure 6 have many practical implica-
tions. For instance, we can answer all of the following
questions by looking at the graphs.

¢ How can we measure how fresh the local
database is? By measuring how frequently the
real-world elements change,! we can estimate how
fresh the local database is. For instance, when the
real-world elements change once a day, and when
we synchronize the local elements also once a day
(A= f or r = 1), the freshness of the local database
is (e — 1)/e =~ 0.63, under the fixed-order policy.

Note that we derived the equations in Table 2 as-
suming that the real-world elements change at the
same rate A. Therefore, the equations may not be
true when the real-world elements change at differ-
entrates. However, we can still interpret \ as the av-
erage rate at which the whole database change, and
we can use the formulas as approximations. Later
in Section 5, we derive exact formula when the ele-
ments change at different rates.

¢ How can we guarantee a certain freshness
of the local database? From the graph, we can
find how frequently we should synchronize the local
elements in order to achieve a certain freshness.
For instance, if we want at least 0.8 freshness, the
frequency ratio r should be less than 0.46 (fixed-
order policy). That is, we should synchronize the
local elements at least 1/0.46 ~ 2 times as frequently
as the real-world elements change.

e Which synchronization-order policy is the
best? The fixed-order policy performs best by
both metrics. For instance, when we synchronize
the elements as often as they change (r = 1), the
freshness of the fixed-order policy is (e—1)/e ~ 0.63,
which is 30% higher than that of the purely-random
policy. The difference is more dramatic for age.
When r = 1, the age of the fixed-order policy is only
one fourth of the random-order policy. In general, as
the variability in the time between visits increases,
the policy gets less effective.

5 Comparison of resource-allocation
policies

In the previous section, we addressed various questions,
assuming that all elements in the database change at the
same rate. But what can we do if the elements change
at different rates and we know how often each element
changes? Is it better to synchronize the element more
often when it changes more often? In this section, we
address this question by analyzing different resource-
allocation policies (Item 2 in Section 3). For the anal-
ysis, we model the real-world database by the non-
uniform change-frequency model (Section 2.3), and we

In Section 6, we briefly discuss how we can measure the
frequency of change. To learn more on this topic, please refer
to [4].

Freshness

— fixed-order
\ __— random order
..... purel y-random

/
[i
g

(a) Freshness graph over r = \/f

— fixed-order
——- randomorder s
0.8y ____ purel y—randor_n_ _____________
0.6
0.4 ="
o.2f /o=
[7- ==
P2 E r
1 2 3 4 5

(b) Age graph over r = \/f

Figure 6: Comparison of freshness and age of various synchronization policies

assume the fized-order policy for the synchronization-
order policy (Item 3 in Section 3), because the fixed-
order policy is the best synchronization-order policy.
In other words, we assume that the element e; changes
at the frequency A; (A\;’s may be different from element
to element), and we synchronize e; at the fized interval
I;(= 1/fi, fi: synchronization frequency of e;). Re-
member that we synchronize N elements in I(= 1/f)
time units. Therefore, the average synchronization fre-
quency (% Zi\il fi) should be equal to f.

In Section 5.1, we start our discussion by comparing
the uniform allocation policy with the proportional
allocation policy. Surprisingly, the uniform policy turns
out to be always more effective than the proportional
policy. Then in Section 5.2 we try to understand why
this happens by studying a simple example. Finally in
Section 5.3 we study how we should allocate resources
to the elements to achieve the optimal freshness or age.

5.1 Uniform and proportional allocation
policy

In this subsection, we first assume that change frequen-
cies of real-world elements follow the gamma distribu-
tion and compare how effective the proportional and the
uniform policies are. In [3], we prove that the conclu-
sion of this section is valid for any distribution.

The gamma distribution is often used to model a
random variable whose domain is non-negative num-
bers. Also, the distribution is known to cover a wide
array of distributions. For instance, the exponential
and the chi-square distributions are special instances of
the gamma distribution, and the gamma distribution
is close to the normal distribution when the variance
is small. This mathematical property and versatility
makes the gamma distribution a desirable one for de-
scribing the distribution of the change frequency.

Under these assumptions, we analyzed the uniform
and proportional allocation policies for a database
S [3], and we summarize the result in Table 3. In
the table, r represents the frequency ratio A/f, where
A is the average rate at which elements change (the
mean of the gamma distribution), and f is the average
rate at which we synchronize them (1/I). Also, ¢
represents the standard deviation of change frequencies

(a) F(S)p/F(S)u graph
over r and §

(b) A(S)u/A(S)p graph

over r and §

Figure 7: F(S),/F(S), and A(S),/A(S), graphs over
r and ¢

(more precisely, §% =(variance)/(mean)? of the gamma
distribution).

To help the discussion, we use the subscript p to
refer to the proportional allocation policy and the
subscript u to refer to the uniform allocation policy.
Then, the uniform policy is better than the proportional
one, when F(5), < F(S), and A(S), < A(S),. To
compare the two policies, we plot F(S),/F(S), and
A(S)u/A(S), graphs in Figure 7. Note that when
the uniform policy is better, the ratios are below 1
(F'(S)p/F(S)u < 1 and A(S)./A(S)p < 1), and when
the proportional policy is better, the ratios are above 1
(F'(S)p/F(S)y > 1 and A(S)u/A(S)p > 1).

Surprisingly, we can clearly see that the ratios are
below 1 for any r and ¢ values: The uniform policy
is always better than the proportional policy! In fact,
the uniform policy gets more effective as the elements
change at more different frequencies. That is, when
the variance of change frequencies is zero (6 = 0),
all elements change at the same frequency, so two
policies give the same result (F(S),/F(S), = 1 and
A(S)u/A(S), = 1). But as ¢ increases (i.e., as the
elements change at more different frequencies), F(S),
grows larger than F(S), (F(S)p/F(S)y — 0) and
A(S). gets smaller than A(S), (A(S)./A(S), — 0).
Interestingly, we can observe that the age ratio does
not change much as r increases, while the freshness ratio

allocation policy

Freshness F(S)

Age A(S)

.
1-(1+r82)' 732

_ 1
LN O W L A

Uniform r(1—582) -l 2 7 r2(1—-262)
Proportional e ® (1_;52)[% — Lyl

Table 3: Freshness and age formula for various resource-allocation policies

1 day
L V |

v : element modification time

Figure 8: A database with two elements with different
change frequency

heavily depends on the r value.

While we showed that the uniform policy is better
than the proportional one only for the gamma distribu-
tion model, it is in fact very general conclusion. In [3],
we prove that the uniform policy is always better than
the proportional policy under any distribution.

5.2 Two element database

Intuitively, we expected that the proportional policy
would be better than the uniform policy, because we
allocate more resources to the elements that change
more often, which may need more of our attention. But
why is it the other way around? In this subsection, we
try to understand why we get the unintuitive result, by
studying a very simple example: a database consisting
of two elements. The analysis of this simple example
will let us understand the result more concretely, and
it will reveal some intuitive trends. We will confirm
the trends more precisely when we study the optimal
synchronization policy later in Section 5.3.

Now we analyze a database consisting of two ele-
ments: e; and ez. For the analysis, we assume that
e1 changes at 9 times/day and es changes at once/day.
We also assume that our goal is to maximize the fresh-
ness of the database averaged over time. In Figure 8,
we visually illustrate our simple model. For element e,
one day is split into 9 intervals, and e; changes once
and only once in each interval. However, we do not
know exactly when the element changes in one interval.
For element eq, it changes once and only once per day,
and we do not know when it changes. While this model
is not exactly a Poisson process model, we adopt this
model due to its simplicity and concreteness.

Now let us assume that we decided to synchronize
only one element per day. Then what element should
we synchronize? Should we synchronize e; or should
we synchronize es? To answer this question, we need
to compare how the freshness changes if we pick one
element over the other. If the element es changes in the
middle of the day and if we synchronize ey right after it
changed, it will remain up-to-date for the remaining half

row | fi+ fo | f1 fo | benefit best
(a) 1 1 0 |ixg=5% 0 1
(b) 0 1 |3x5=75

(c) 2 2 0 |ixf+sxXs=%0 2
(d) 1 1|3x3+3%x3=13

(e) 0 2 |ix24ixi=2

(f) 5 3 2 (24+2=98 2 3
() 2 3| gtH=%

)| 10 |9 1|x+i=% 703
(i) T3 | Gth=n

§) 5 5| mtm=n

Table 4: Estimation of benefits for different choices

of the day. Therefore, by synchronizing element e; we
get 1/2 day “benefit” (or freshness increase). However,
the probability that e5 changes before the middle of the
day is 1/2, so the “expected benefit” of synchronizing
e2 18 1/2 x 1/2 day = 1/4 day. By the same reasoning,
if we synchronize e; in the middle of an interval, e; will
remain up-to-date for the remaining half of the interval
(1/18 of the day) with probability 1/2. Therefore, the
expected benefit is 1/2 x 1/18 day = 1/36 day. From
this crude estimation, we can see that it is more effective
to select ey for synchronization!

Table 4 shows the expected benefits for several
other scenarios. The second column shows the total
synchronization frequencies (f1 + f2) and the third
column shows how much of the synchronization is
allocated to f1 and f5. In the fourth column we estimate
the expected benefit, and in the last column we show the
f1 and f5 values that give the highest expected benefit.
To save space, when f; + fo = 5 and 10, we show only
some interesting (f1, f2) pairs. Note that since A\; = 9
and A2 = 1, row (h) corresponds to the proportional
policy (f1 =9, f2 = 1), and row (j) corresponds to the
uniform policy (fi = f2 = 5). From the table, we can
observe following interesting trends:

1. Rows (a)-(e): When the synchronization fre-
quency (f1 + f2) is much smaller than the change
frequency (A1 + A2), it is better to give up synchro-
nizing the elements that change too fast. In other
words, when it is not possible to keep up with ev-
erything, it is better to focus on what we can track.

2. Rows (h)-(j): Even if the synchronization fre-
quency is relatively large (f1 + fo = 10), the uniform
allocation policy (row (j)) is more effective than the
proportional allocation policy (row (h)). The opti-

Freshness

1.2

Freshness

Freshness

0 0.2 0.4 0.6 0.8 1 0 0.2
0.8

(a) i+ fa=1

(b) f1+f2=3

0.6 0.8 —1

B ——
0.4 B 0.8 1

0.8

0.6

0.2

() fi+ fo=

Figure 9: Series of freshness graphs for different synchronization frequency constraints. In all of the graphs, A1 =9

and)\2 =1.

mal point (row (i)) is located somewhere between
the proportional policy and the uniform policy.

We can verify this trend using our earlier analysis
based on a Poisson process. We assume that the
changes of e; and ez are Poisson processes with change
frequencies A\; =9 and A2 = 1. To help the discussion,
we use F'()\;, f;) to refer to the time average of freshness
of e; when it changes at)\; and is synchronized at f;.
Then, the freshness of the database is

F(S) = 5(F(e1) + Fle2)) = 5 (F(M, 1) + F(X2, f2))

(F(9, f1) + F(L, f2))-

Il
N = N =
— N

When we fix the value of fi; + f2, the above equation
has only one degree of freedom, and we can plot F(.9)
over, say, fo. In Figure 9, we show a series of graphs
obtained this way. The horizontal axis here represents
the fraction of the synchronization allocated to es. That
is, when x = 0, we do not synchronize element es at all
(f2 = 0), and when = = 1 we synchronize only element
ea (f1 =0or fo = f1+ f2). Therefore, the middle point
(x = 0.5) corresponds to the uniform policy (f1 = fa2),
and z = 0.1 point corresponds to the proportional
policy (Remember that A\; = 9 and Ay = 1). The
vertical axis in the graph shows the normalized freshness
of the database. We normalized the freshness so that
F(S) =1 at the uniform policy (z = 0.5). To compare
the uniform and the proportional policies more clearly,
we indicate the freshness of the proportional policy by
a dot, and the x and the y axes cross at the uniform
policy.

From these graphs, we can clearly see that the
uniform policy is always better than the proportional
policy, since the dots are always below the origin. Also
note that when the synchronization frequency is small
(graph (a)), it is better to give up on the element that
changes too often (We get the highest freshness when
x = 1or f; = 0). When f; + fy is relatively large
(graph (c)), the optimal point is somewhere between
the uniform policy and the proportional policy. The
freshness is highest when = ~ 0.3 in Figure 9(c) (the
star in the graph).

5.3 The optimal resource-allocation policy

From the previous discussion, we learned that the
uniform policy is indeed better than the proportional
policy. Also, we learned that the optimal policy is
neither the uniform policy nor the proportional policy.
For instance, we get the highest freshness when ~ 0.3
for Figure 9(c). Then, what is the best way to allocate
the resource to elements for a general database S?
In this section, we will address this question. More
formally, we will study how often we should synchronize
individual elements when we know how often they
change, in order to maximize the freshness or age.
Mathematically, we can formulate our goal as follows:

Problem 1 Given A;’s (i N)7 find the
values of f;’s (i=1,2,..., N) Whlch maximize

LN N
ZF €i :NEF)\zafz)

z:l

when f;’s satisfy the constraints

N
%Zﬁ:f and f;>0 (i=12,...,N)
=1

Because we can derive the closed form of F()\;, f;),2
we can solve the above problem by the method of
Lagrange multipliers [12]. To illustrate the property of
its solution, we use the following example.

Example 4 The real-world database consists of five
elements, which change at the frequencies of 1, 2,
..., 5 (times/day). We list the change frequencies in
row (a) of Table 5 (We explain the meaning of rows (b)
and (c) later, as we continue our discussion.). We
decided to synchronize the local database at the rate
of 5 elements/day total, but we still need to find out
how often we should synchronize each element.

For this example, we can solve the above problem
numerically, and we show the graph of its solution

2For instance, F'(\;, fi) = (1 — e=*i/fi)/(A\;/ f;) for the fixed-
order policy.

ceoeoeoprpr
NSO ®O

N
[0
Y

[

(a) change frequency vs. synchronization fre-
quency for freshness optimization

S
[

[]
S
[2],

(b) change frequency vs. synchronization fre-
quency for age optimization

Figure 10: Solution of the freshness and age optimization problem of Example 4

€1 € €3 ey es
(a) change frequency 1 2 3 4 5
(b) synchronization frequency

(freshness) 1.15 | 1.36 | 1.35 | 1.14 | 0.00
(¢) synchronization frequency

(age) 0.84 | 0.97 | 1.03 | 1.07 | 1.09

Table 5: The optimal synchronization frequencies of
Example 4

in Figure 10(a). The horizontal axis of the graph
corresponds to the change frequency of an element,
and the vertical axis shows the optimal synchronization
frequency of the element with that given change
frequency. For instance, the optimal synchronization
frequency of e; is 1.15 (f = 1.15), because the change
frequency of element e is 1 (A = 1). Similarly from
the graph, we can find the optimal synchronization
frequencies of other elements, and we list them in
row (b) of Table 5.

Notice that while e; changes twice as often as e,
we need to synchronize e4 less frequently than es.
Furthermore, the synchronization frequency of es is
zero, while it changes at the highest rate. This result
comes from the shape of Figure 10(a). In the graph,
when A > 2.5, f decreases as A increases. Therefore,
the synchronization frequencies of the elements es, ey
and es gets smaller and smaller. o

While we obtained Figure 10(a) by solving Exam-
ple 4, we can prove that the shape of the graph is the
same for any distributions of A;’s [3]. That is, the op-
timal graph for any database S is ezxactly the same as
Figure 10(a), except that the graph of S is scaled by a
constant factor from Figure 10(a). Since the shape of
the graph is always the same, the following statement
is true in any scenario: To improve freshness, we should
penalize the elements that change too often.

Similarly, we can compute the optimal age solution
for Example 4, and we show the result in Figure 10(b).
The axes in this graph are the same as before. Also, we
list the optimal synchronization frequencies in row (c) of
Table 5. Contrary to the freshness, we can observe that
we should synchronize the element more often when
it changes more often (f; < < f5). However,

notice that the difference between the synchronization
frequencies is marginal: All f;’s are approximately close
to one. In other words, the optimal solution is rather
close to the uniform policy than to the proportional
policy. Similarly for age, we can prove that the
shape of the optimal age graph is always the same as
Figure 10(b). Therefore, the trend we observed here is
very general and holds for any database.

6 Experiments

Throughout this paper we modeled database changes
as a Poisson process. In this section, we first verify
the Poisson process model using experimental data
collected from 270 sites for more than 4 months. Then,
using the observed change frequencies on the web, we
compare the effectiveness of our various synchronization
policies. The experimental results will show that our
optimal policy performs significantly better than the
current policies used by crawlers.

6.1 Experimental setup

To collect the data on how often web pages change, we
crawled around 720,000 pages from 270 “popular” sites
every day, from February 17th through June 24th, 1999.
This was done with the Stanford WebBase crawler,
a system designed to create and maintain large web
repositories. The system is capable of high indexing
speeds (about 60 pages per second), and can handle
relatively large data repositories (currently 300GB of
HTML is stored). In this section we briefly discuss how
the particular sites were selected for our experiments.

To select the sites for our experiment, we used
the snapshot of the web in our WebBase repository.
Currently, WebBase maintains the snapshot of 42
million web pages, and based on this snapshot we
identified the top 400 “popular” sites as the candidate
sites. To measure the popularity of sites, we essentially
counted how many pages in our repository have a link
to each site, and we used the count as the popularity
measure of a site.

Then, we contacted the webmasters of all can-
didate sites asking their permission for our experi-

3More precisely, we used PageRank as the popularity measure,
which is similar to the link count. To learn more about PageRank,
please refer to [10, 5].

fraction
1

0. 001

0. 0001

0. 00001

days

Figure 11: Change intervals for pages with the average
change interval of 10 days

ment. After this step, 270 sites remained, including
sites such as Yahoo (http://yahoo.com), Microsoft
(http://microsoft.com), and Stanford (http://www.
stanford.edu). Obviously, focusing on the “popular”
sites biases our results to a certain degree, but we be-
lieve this bias is toward what most people are interested
in.

From each site chosen this way, we selected around
3,000 pages and crawled them every day. From this
daily update information, we can measure how often
a page changes. For instance, when we detected
4 changes during our 4 month experiment, we can
reasonably infer that the page changes every month on
average. Later, we also briefly talk about the limitation
of our experiment when we present the result of our
experiment.

6.2 Verification of Poisson process

In this subsection, we verify whether the Poisson
process adequately models web page changes. In
Lemma 1, we computed how long it takes for a page
to change under the Poisson process. According to the
lemma, the time between changes follow the exponential
distribution Ae™**. We can use this result to verify
our assumption. That is, if we plot the time between
changes of a page p;, the time should be distributed as
Xie Nt if changes of p; follow a Poisson process.

In Figure 11, we show that the changes of a web page
can indeed be modeled by the Poisson process. To plot
this graph, we first selected only those pages whose
average change intervals were 10 days and measured
the time between changes in those pages. (We also
plotted graphs for the pages with other average change
intervals, and got similar results when we had sufficient
data.) From this data we could get the distribution
of the change intervals, which is shown in Figure 11.
The horizontal axis represents the interval between
changes, and the vertical axis shows the fraction of
changes with that interval. The vertical axis in the
graph is logarithmic to emphasize that the distribution
is exponential. The line in the graph is what a
Poisson process would predict. While there exist small
variations, we can clearly see that Poisson process
predicts very well the observed data.

While this result strongly indicates that a Poisson
process is a good model for the web page changes, our

<lday <lweek <lnonth <4nonths >4nonths

Figure 12: Percentage of pages with given average
interval of change

result is also limited. Since we crawled pages on a daily
basis, we could not obtain detailed change histories
for the pages that change very often, and because we
conducted our experiment only for 4 months, we could
not detect changes to the pages that rarely change.
Also, there may exist a set of pages that are updated
at regular intervals, which may not necessarily follow a
Poisson process.

However, we believe that it is safe to use the Poisson
model for the following reasons. First, crawlers rarely
can visit a page every day,? so most crawlers do not
particularly care exactly how often a page changes if
the page changes very often (say, more than once every
day). Also, when the crawler manages hundreds of
millions of pages, it is very difficult to identify the pages
that are updated regularly, so we may assume that the
set of pages managed by the crawler are modified by a
random process on average.

6.3 Frequency of change and its implication

Based on the data that we collected, we report how
many pages change how often, in Figure 12. In the
figure, the horizontal axis represents the average change
interval of pages, and the vertical axis shows the fraction
of pages changed at the given average interval. For
instance, we can see that about 23% of pages changed
more than once a day from the first bar of Figure 12.
From this data, we can estimate how much improve-
ment we can get, if we adopt the optimal-allocation
policy. For the estimation, we assume that we maintain
100 million pages locally and that we synchronize all
pages every month.’ Also based on Figure 12, we as-
sume that 23% of pages change every day, 15% of pages
change every week, etc. For the pages that did not
change in 4 months, we assume that they change every
year. While it is a crude approximation, we believe we
can get some idea on how effective different policies are.
In Table 6, we show the predicted freshness and age
for various resource-allocation policies. To compute the
numbers, we assumed the fixed-order policy (Item 3a in
Section 3) as the synchronization-order policy. We can

4Crawlers should not abuse web sites. Otherwise, the site
administrators sometimes block accesses.
5Many popular search engines report numbers similar to these.

| policy || Freshness | Age |
Proportional 0.12 400 days
Uniform 0.57 5.6 days
Optimal 0.62 4.3 days

Table 6: Freshness and age prediction based on the real
web data

clearly see that the optimal policy is significantly better
than any other policies. For instance, the freshness
increases from 0.12 to 0.62 (500% increase!), if we use
the optimal policy instead of the proportional policy.
Also, the age decreases by 23% from the uniform policy
to the optimal policy. From these numbers, we can
also learn that we need to be very careful when we
optimize the policy based on the frequency of change.
For instance, the proportional policy, which people may
intuitively prefer, is significantly worse than any other
policies: The age of the proportional policy is 100 times
worse than that of the optimal policy!

7 Related work

References [5] and [2] also study how to improve a web
crawler. However, these references focus on how to
select the pages to initially crawl, in order to improve
the “quality” of the local collection. Contrary to these
works, we studied how to maintain the collection up-
to-date. Reference [6] studies how to schedule the web
crawler to improve the freshness. The model used for
web pages is similar to ours; however, the model for
the crawler and freshness is very different. In data
warehousing context, a lot of work has been done to
efficiently maintain the local copy, or the materialized
view [7, 8, 13]. However, most of the work focused on
different issues, such as minimizing the size of the view
while reducing the query response time [8].

8 Conclusion

In this paper we studied how to synchronize a local
database to improve its freshness and age. We pre-
sented a formal framework, which provides a theoret-
ical foundation for this problem, and we studied the
effectiveness of various refresh policies. In our study we
identified a potential pitfall (proportional synchroniza-
tion), and proposed an optimal policy that can improve
freshness and age very significantly. Finally, we investi-
gated the changes of real web pages and validated our
analysis based on this experimental data.

In our current framework, we assumed that for
users the freshness or age of every element is equally
important. But what if the elements have different
“importance”? For example, if the database S consists
of two elements (e; and e3), and if ey is twice as
important as ey (F(S) = %[2F(e1) + F(e2)]), how
should we synchronize them to maximize the freshness?
While we need more thorough analysis to answer
this question, our preliminary result indicates that we
need to synchronize e; more often than ey, but not
necessarily twice as often.

As more and more digital information becomes

available, it will be increasingly important to collect
it effectively. A crawler or a data warehouse simply
cannot refresh all its data constantly, so it must be
very careful in deciding what data to poll and check for
freshness. The policies we have studied in this paper can
make a significant difference in the “temporal quality”
of the data that is collected.

Acknowledgement

We thank Vasilis Vassalos for his thoughtful comments
at the early stage of this work. We also thank Chris
Jihye Won for her constant support and encouragement.

References
[1] Google Inc. http://www.google.com.

[2] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: A new approach to topic-specific
web resource discovery. In The Sth International
World Wide Web Conference, 1999.

[3] J. Cho and H. Garcia-Molina. Synchronizing
a database to improve freshness. Technical re-
port, Stanford University, 1999. http://www-db.
stanford.edu/~cho/papers/cho-synch.ps.

[4] J. Cho and H. Garcia-Molina. Estimating fre-
quency of change. Technical report, Stanford Uni-
versity, 2000.

[5] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through URL ordering. Computers net-
works and ISDN systems, 30:161-172, 1998.

[6] E. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal
robot scheduling for web search engines. Technical
report, INRTA, 1997.

[7] J. Hammer, H. Garcia-Molina, J. Widom, W. J.
Labio, and Y. Zhuge. The Stanford data ware-
housing project. IEEE Data Engineering Bulletin,
June 1995.

[8] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In ACM
SIGMOD Conference, 1996.

[9] S. Lawrence and C. L. Giles. Accessibility of
information on the web. Nature, 400:107-109,
1999.

[10] L. Page and S. Brin. The anatomy of a large-
scale hypertextual web search engine. Computers
networks and ISDN systems, 30:107-117, 1998.

[11] H. M. Taylor and S. Karlin. An Introduction To
Stochastic Modeling. Academic Press, 3rd edition,
1998.

[12] G.B. Thomas, Jr. Calculus and analytic geometry.
Addison-Wesley, 4th edition, 1969.

[13] Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance in a warehousing
environment. In ACM SIGMOD Conference, 1995.

