TIME: 1:30-2:30 pm, Tuesday, October 14, 2008 PLACE: CSE 503 SPEAKER: Prasad Raghavendra University of Washington TITLE: Optimal Algorithms and Inapproximability Results for every CSP? ABSTRACT: Semidefinite Programming(SDP) is one of the strongest algorithmic techniques used in the design of approximation algorithms. In recent years, the Unique Games Conjecture(UGC) has proved to be intimately connected to the limitations of Semidefinite Programming. Making this connection precise, we show the following result: If the UGC is true, then for every constraint satisfaction problem(CSP) the best approximation ratio is given by certain simple SDP. Specifically, we show a generic conversion from SDP integrality gap instances to UGC hardness results. This result holds both for maximization and minimization problems over arbitrary finite domains. Using this connection between integrality gaps and hardness results we obtain a generic polynomial-time algorithm for all CSPs. Assuming the Unique Games Conjecture, this algorithm achieves the optimal approximation ratio for every CSP. Unconditionally, for all 2-CSPs the algorithm achieves an approximation ratio equal to the integrality gap of the natural SDP. Thus the algorithm achieves at least as good an approximation ratio as the best known algorithms for several problems like MaxCut, Max2SAT and Unique Games.