
An Approximate L1-Difference Algorithm for Massive Data Streams
(Extended Abstract)�

J. Feigenbaum S. Kannany M. Strauss
AT&T Labs – Research

180 Park Avenue
Florham Park, NJ 07932 USA

fjf,skannan,mstrauss g@research.att.com

M. Viswanathanz

Computer and Information Sciences
University of Pennsylvania

Philadelphia, PA 19104 USA
maheshv@saul.cis.upenn.edu

Abstract

We give a space-efficient, one-pass algorithm for approx-
imating theL1 difference

P
i jai � bij between two func-

tions, when the function valuesai andbi are given as data
streams, and their order is chosen by an adversary. Our
main technical innovation is a method of constructing fam-
ilies fVjg of limited-independence random variables that
are range-summable, by which we mean that

Pc�1
j=0 Vj(s)

is computable in timepolylog(c), for all seedss. These
random-variable families may be of interest outside our
current application domain, i.e., massive data streams gen-
erated by communication networks. OurL1-difference al-
gorithm can be viewed as a “sketching” algorithm, in
the sense of [Broder, Charikar, Frieze, and Mitzenmacher,
STOC ’98, pp. 327-336], and our algorithm performs bet-
ter than that of Broder et al. when used to approximate the
symmetric difference of two sets with small symmetric dif-
ference.

1. Introduction

Massive data sets are increasingly important in a wide
range of applications, including observational sciences,
product marketing, and monitoring and operations of large
systems. In network operations, raw data typically arrive
in streams, and decisions must be made by algorithms that
make one pass over each stream, throw much of the raw
data away, and produce “synopses” or “sketches” for further
processing. Moreover, network-generated massive data sets

�An expanded version of this paper has been submitted
for journal publication and is available in preprint form at
http://www.research.att.com/˜jf/pubs/L1diff.ps

yOn leave from the Univ. of Pennsylvania. Part of this work was done
at the Univ. of Pennsylvania, supported by grants NSFCCR96-19910 and
ARO DAAH04-95-1-0092.

zSupported by grant ONR N00014-97-1-0505, MURI.

are oftendistributed: Several different, physically separated
network elements may receive or generate data streams that,
together, comprise one logical data set; to be of use in oper-
ations, the streams must be analyzed locally and their syn-
opses sent to a central operations facility. The enormous
scale, distributed nature, and one-pass processing require-
ment on the data sets of interest must be addressed with
new algorithmic techniques.

We present one fundamental new technique here: a
space-efficient, one-pass algorithm for approximating the
L1 difference

P
i jai � bij between two functions, when

the function valuesai andbi are given as data streams, and
their order is chosen by an adversary. This algorithm fits
naturally into a toolkit for Internet-traffic monitoring. For
example, Cisco routers can now be instrumented with the
NetFlow feature [6]. As packets travel through the router,
the NetFlow software produces summary statistics on each
flow.1 Three of the fields in the flow records are source IP-
address, destination IP-address, and total number of bytes
of data in the flow. At the end of a day (or a week, or an
hour, depending on what the appropriate monitoring inter-
val is and how much local storage is available), the router
(or, more accurately, a computer that has been “hooked up”
to the router for monitoring purposes) can assemble a set of
values(x; ft(x)), wherex is a source-destination pair, and
ft(x) is the total number of bytes sent from the source to the
destination during a time intervalt. TheL1 difference be-
tween two such functions assembled during different inter-
vals or at different routers is a good indication of the extent
to which traffic patterns differ.

Our algorithm allows the routers and a central control

1Roughly speaking, a “flow” is a semantically coherent sequence of
packets sent by the source and reassembled and interpreted at the destina-
tion. Any precise definition of “flow” would have to depend on the applica-
tion(s) that the source and destination processes were using to produce and
interpret the packets. From the router’s point of view, a flow is just a set of
packets with the same source and destination IP-addresses whose arrival
times at the routers are close enough, for a tunable definition of “close.”

and storage facility to computeL1 differences efficiently
under a variety of constraints. First, a router may want the
L1 difference betweenft andft+1. The router can store a
small “sketch” offt, throw out all other information about
ft, and still be able to approximatekft � ft+1k1 from the
sketch offt and (a sketch of)ft+1.

The functionsf (i)t assembled at each of several remote
routersRi at time t may be sent to a central tape-storage
facility C. As the data are written to tape,C may want to
compute theL1 difference betweenf (1)t andf (2)t , but this
computation presents several challenges. First, each router
Ri should transmit its statistical data whenRi’s load is low
and theRi-C paths have extra capacity; therefore, the data
may arrive atC from theRi’s in an arbitrarily interleaved
manner. Also, typically thex’s for whichf(x) 6= 0 consti-
tute a small fraction of allx’s; thus,Ri should only trans-
mit (x; f (i)t (x)) whenf (i)t (x) 6= 0. The set of transmitted
x’s is not predictable byC. Finally, because of thehuge
size of these streams,2 the central facility will not want to
buffer them in the course of writing them to tape (and can-
not read from one part of the tape while writing to another),
and tellingRi to pause is not always possible. Neverthe-
less, our algorithm supports approximating theL1 differ-
ence betweenf (1)t and f (2)t at C, because it requireslit-
tle workspace, requireslittle time to processeach incoming
item, and can process in one pass all the values of both func-
tionsf(x; f (1)t (x))g [f(x; f

(2)
t (x))g in any permutation.

OurL1-difference algorithm achieves the following per-
formance:

Consider two data streams of length at most
n, each representing thenon-zero points on
the graph of an integer-valued function on a
domain of sizen. Assume that the maxi-
mum value of either function on this domain
is M . Then a one-pass streaming algorithm
can compute with probability1 � � an approx-
imation A to the L1-differenceB of the two
functions, such thatjA � Bj � �B, using
spaceO(log(M) log(n) log(1=�)=�2) and time
O(log(n) log log(n) + log(M) log(1=�)=�2) to
process each item. The input streams may be in-
terleaved in an arbitrary (adversarial) order.

The main technical innovation used in this algorithm is
a limited-independence random-variable construction that
may prove useful in other contexts:

A family fVj(s)g of uniform �1-valued
random variables is calledrange-summableifPc�1

0 Vj(s) can be computed in timepolylog(c),
for all seedss. We construct range-summable

2A WorldNet gateway router now generates more that 10Gb of NetFlow
data each day.

families of random variables that aren2-bad 4-
wise independent.3

The property ofn2-bad 4-wise independence suffices for
the time- and space-bounds on our algorithm. Construc-
tion of truly 4-wise independent, range-summable random-
variable families for which the range sums can be computed
as efficiently as in our construction remains open.

The rest of this paper is organized as follows. In Sec-
tion 2, we give precise statements of our “streaming” model
of computation and complexity measures for streaming and
sketching algorithms. In Section 3, we present our main
technical results. Section 4 explains the relationship of our
algorithm to other recent work, including that of Broderet
al. [4] on sketching and that of Alonet al. [1] on frequency
moments. Some details have been omitted from this ex-
tended abstract because of space limitations; they can be
found in our journal submission [8].

2 Models of Computation

Our model is closely related to that of Henzinger, Ragha-
van, and Rajagopalan [11]. We also describe a related
sketch model that has been used,e.g.,in [4].

2.1 The Streaming Model

As in [11], a data streamis a sequence of data items
�1; �2; : : : ; �n such that, on eachpassthrough the stream,
the items are read once in increasing order of their indices.
We assume the items�i come from a set of sizeM , so that
each�i has sizelogM . In our computational model, we
assume that the input is one or more data streams. We focus
on two resources—theworkspacerequired in words and the
time to processan item in the stream. An algorithm will typ-
ically also require pre- and post-processing time, but usually
applications can afford more time for these tasks.

Definition 1 The complexity class
PASST(s(�; �; n;M); t(�; �; n;M)) (to be read as
“probably approximately streaming space complexity
s(�; �; n;M) and time complexityt(�; �; n;M)”) contains
those functionsf for which one can output a random
variableX such thatjX � f j < �f with probability at least
1�� and computation ofX can be done by making a single
pass over the data, using workspace at mosts(�; �; n;M)
and taking time at mostt(�; �; n;M) to process each of the
n items, each of which is in the range0 toM � 1.

If s = t, we also writePASST(s) for PASST(s; t).

We will also abuse notation and writeA 2 PASST(s; t)
to indicate that an algorithmA for f witnesses thatf 2
PASST(s; t).

3The property ofn2-bad 4-wise independence is defined precisely in
Section 3 below.

2.2 The Sketch Model

Sketches were used in [4] to check whether two docu-
ments are nearly duplicates. A sketch can also be regarded
as asynopsis data structure[10].

Definition 2 The complexity classPAS(s(�; �; n;M))) (to
be read as “probably approximately sketch complexity
s(�; �; n;M)”) contains those functionsf : X � X ! Z
of two inputs for which there exists a setS of size 2s,
a randomizedsketch functionh : X ! S, and a ran-
domizedreconstruction function� : S � S ! Z such
that, for all x1; x2 2 X, with probability at least1 � �,
j�(h(x1); h(x2)) � f(x1; x2)j < �f(x1; x2).

By “randomized function” ofk inputs, we mean a func-
tion of k+1 variables. The first input is distinguished as the
source of randomness. It is not necessary that, for all set-
tings of the lastk inputs, for most settings of the first input,
the function outputs the same value.

Note that we can also define the sketch complexity of a
functionf : X � Y ! Z for X 6= Y . There may be two
different sketch functions involved.

There are connections between the sketch model and the
streaming model. LetXY denote the set of concatenations
of x 2 X with y 2 Y . It has been noted in [12] and else-
where that a function onXY with low streaming complex-
ity also has low one-round communication complexity (re-
garded as a function onX �Y), because it suffices to com-
municate the memory contents of the hypothesized stream-
ing algorithm after reading theX part of the input. Some-
times one can also produce a low sketch-complexity algo-
rithm from an algorithm with low streaming complexity.4

Our main result is an example.
Also, in practice, it may be useful for the sketch func-

tion h to have low streaming complexity. If the setX is
large enough to warrant sketching, then it may also warrant
processing by an efficient streaming algorithm.

Formally, we have:

Theorem 3 If f 2 PAS(s(�; �; n;M)) via sketch func-
tion h 2 PASST(s(�; �; n;M); t(�; �; n;M)), thenf 2
PASST(2s(�; �; n=2;M); t(�; �; n=2;M)).

2.3 Arithmetic and Bit Complexity

Often one will run a streaming algorithm on a stream of
n items of sizelogM on a computer with word size at least
max(logM; logn). We assume that the following opera-
tions can be performed in constant time on words:

� Copyx into y

4This is not always possible,e.g.,not if f(x; y) is thex’th bit of y.

� Shift the bits ofx one place to the left or one place to
the right.

� Perform the bitwise AND, OR, or XOR ofx andy.

� Add x andy or subtractx from y.

� Assign toz the number of 1’s among the bits ofx.

We call such a model anarithmeticmodel and give com-
plexity bounds in it. These operations all take at most lin-
ear time in a bit model; thus a machine that performs such
operations bit by bit will run more slowly by a factor of
max(logM; logn). Multiplication over a finite field may
take more thanlogn time in a bit model; we use this opera-
tion but donot assume that it can be performed in constant
time.

3 TheL1 Difference of Functions

3.1 Algorithm for Known Parameters

We consider the following problem. The input stream
is a sequence of tuples of the form(i; ai;+1) or (i; bi;�1)
such that, for eachi in the universe[n], there is at most one
tuple of the form(i; ai;+1) and at most one tuple of the
form (i; bi;�1). If there is no tuple of the form(i; ai;+1)
then defineai to be zero for our analysis, and similarly for
bi. It is important that tuples of the form(i; 0;�1) not con-
tribute to the size of the input. Also note that, in general, a
small-space streaming algorithm cannot know for whichi’s
the tuple(i; ai;+1) does not appear. The goal is to approx-
imate the value ofF1 =

P
jai � bij to within��F1, with

probability at least1� �.
Let M be an upper bound onai and bi. We assume

thatn andM are known in advance; in Section 3.6 we dis-
cuss small modifications to make when either of these is not
known in advance.

Our algorithm will need a special family of uniform�1-
valued random variables. Foreachk, 1 � k � 4 log(1=�),
and each̀ , 1 � ` � 72=�2, choose amaster seedSk;` and
useSk;` to define a 4-wise independent familyfsi;k;`g of
n seeds, each of lengthlogM + 1. Each seedsi;k;` in turn
defines a range-summable,n2-bad 4-wise independent fam-
ily fVi;j;k;`g of M uniform�1-valued random variables, an
object that we now define.

Definition 4 A family fVj(s)g of uniform�1-valued ran-
dom variables with sample point (seed)s is calledrange-
summable,n2-bad 4-wise independentif the following
properties are satisfied:

1. The familyfVjg is 3-wise independent.

2. For alls,
Pc�1

j=0 Vj(s) can be computed in time poly-
logarithmic inc.

3. For alla < b,

E

2
64
0
@b�1X
j=a

Vj(s)

1
A

4
3
75 = O((b� a)2):

Note that 4-wise independence is sufficient to achieve prop-
erty 3 and that the trivial upper bound isO((b � a)4);
we don’t know how to achieve property 2 for truly 4-wise
independent random variables. The 3-wise independence
insures that most 4-tuples ofV ’s are independent. Of
the remaining 4-tuples, withO((b � a)2) exceptions, the
(j1; j2; j3; j4) makingVj1Vj2Vj3Vj4 = +1 are balanced by
(j1; j2; j3; j4) makingVj1Vj2Vj3Vj4 = �1, and thus the net
contribution to the expected value is zero.

We can use any standard construction to define a fam-
ily of seeds from a master seed,e.g.,the construction based
on BCH codes in [3]. From a master seedSk;` and num-
bersi; c, one can construct the seedsi;k;` and then the valuePc�1

j=0 Vi;j;k;`(si;k;`) quickly when needed.
The high level algorithm is given in Figure 1.

Figure 1. High level L1 algorithm

Algorithm L1(h(i; ci; �i)i)

Initialize: Fork = 1 to 4 log(1=�) do
For ` = 1 to (8 �A)=�2 do
// anyA � A0 will work for A0 known
// to be between 7.5 and 9.

fZk;` = 0;
pick a master seedSk;`

from the(k; `)’th sample spaceg
// This implicitly definessi;k;`
// for 0 � i < n and in turn implicitly defines
// Vi;j;k;` for 0 � i < n and0 � j < M .

For each tuple(i; ci; �i) in the input stream do
Fork = 1 to 4 log(1=�) do

For ` = 1 to (8 �A)=�2 do
Zk;` += �i

Pci�1
j=0 Vi;j;k;`

Outputmediankavg`Z
2
k;`.

3.2 The Construction of Random Variables

This construction is the main technical innovation of our
paper. It is also a significant point of departure from the
work on frequency moments by Alonet al. [1]. The rela-
tionship between our algorithm and the frequency-moment
algorithms is explained in Section 4.

Fix and forgeti; k, and `. We now describe the con-
struction of a single family ofM random variablesVj ,
0 � j < M , such that, for allc � M , one can computePc�1

j=0 Vj quickly.
Suppose, without loss of generality, thatM is a power of

2. LetH(logM) be the matrix withM columns andlogM
rows such that thej’th column is the binary expansion ofj.
For example,

H(3) =

2
4 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

3
5 :

Let Ĥ(logM) be formed fromH(logM) by adding a row
of 1’s at the top.

Ĥ(3) =

2
664

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

3
775 :

We will index thelogM +1 rows ofĤ starting with�1
for the row of all 1’s, then0 for the row consisting of the20-
bits of the binary expansions, and continue consecutively up
to the(log(M)�1)st row. We will left multiplyĤ by a seed
s of lengthlogM +1 and use the same indexing scheme for
bits of s as for rows ofĤ. We will also refer to the last bit
of s and the last row of̂H as the “most significant.”

Given a seeds 2 f0; 1glogM+1, let s � Ĥj denote the
inner product overZ2 of s with thej’th column ofĤ. Let
ik denote thek’th bit of the binary expansion ofi, starting
from zero. Definef(i) by

f(i) = (i0_i1)�(i2_i3)�� � ��(ilogM�2_ilogM�1): (1)

Thus the sequencep of valuesf(i), i = 0; 1; 2; : : :, is given
as:

0111 1000 1000 1000 1000 0111 0111 0111

1000 0111 0111 0111 1000 0111 0111 0111 : : : ;

by starting withp0 = 0, puttingpk+2 = pkpkpkpk, where
� denotes the bitwise negation of the pattern�, and taking
the limit. Finally, putVj = (�1)(s�Ĥj)+f(j).

Proposition 5 The quantity
Pc�1

j=0 Vj(s) can be computed
in time polylogarithmic inc.

Proof. First assume thatc is a power of 4. We may then
assume thatc =M . ThenĤ(logM) is given recursively by2
664

1 � � �1 1 � � �1 1 � � �1 1 � � �1
H(logM�2) H(logM�2) H(logM�2) H(logM�2)

0 � � �0 1 � � �1 0 � � �0 1 � � �1
0 � � �0 0 � � �0 1 � � �1 1 � � �1

3
775 :

Also, note that the firstM bits ofp have the formplogM =
plogM�2plogM�2plogM�2plogM�2. Let s0 be a string of
length logM � 2 that is equal tos without the�1’st bit
and without the two most significant bits, and letf 0 denote
the fraction of 1’s ins0 � H(logM�2). Also, for bitsb1; b2,

let fb1b2 denote the fraction of 1’s ins �

2
664

1 � � �1
H(logM�2)

b1 � � �b1
b2 � � �b2

3
775 :

Thenfb1b2 = f 0 or fb1b2 = 1�f 0, depending onb1; b2, and
the three bits ofs dropped froms0 (namely,�1, logM � 2,
andlogM � 1). Recursively computef 0, and use the value
to compute all thefb1b2 ’s and, from that, the number of 1’s
in
Pc�1

j=0 Vj(s). This procedure requires recursive calls of
depth that is logarithmic inc.

Similarly, one can compute
P(q+1)4r�1

j=q4r Vj.
Finally, if c is not a power of4, write the interval

f0; : : : ; (c � 1)g = [0; c) as the disjoint union of at most
O(log(c)) intervals, each of the form[q4r; (q + 1)4r). Use
the above technique to compute the fraction ofV ’s equal to
1 over each subinterval, and then combine. If one is care-
ful to perform the procedure bottom up, the entire proce-
dure requires justlog(c) time, notlog2(c) time, in an arith-
metic model. For example, supposec = 22. Write [0; 22)
as [0; 16) [[16; 20) [[20; 21) [[21; 22). A naı̈ve way
to proceed would be to perform recursive calls 3 deep to
compute

P15
j=0 Vj , then calls 2 deep for

P19
j=16Vj , then 1

deep for each ofV20 andV21. Better would be to compute
V20 directly, use this value to computeV21 and

P19
j=16 Vj

(note thatV16 is easy to compute fromV20), and finally useP19
j=16 Vj to compute

P15
j=0 Vj .

Altogether, this requires timeO(log(c)) in an arithmetic
model and in any caselogO(1)(c) time in a bit-complexity
model.

We now show that this construction yields a family of
random variables that isn2-bad 4-wise independent. The
fact thatfVjg is three-wise independent is in [3].

Proposition 6 For all a < b we have

E

2
64
0
@b�1X
j=a

Vj(s)

1
A

4
3
75 � 4(b� a)2:

Proof. First, note that, for some tuples(j1; j2; j3; j4),
the j1’st, j2’d, j3’d, and j4’th columns ofĤ are indepen-
dent. These tuples do not contribute to the expectation on

the left of the inequality, since, foreach desired outcome
(v1; v2; v3; v4), the sets

fs : (Vj1 (s); Vj2(s); Vj3 (s); Vj4(s)) = (v1; v2; v3; v4)g

have the same size by linear algebra.
Secondly, observe that, because any three columns ofĤ

are independent, if the columnŝHj1; Ĥj2; Ĥj3; andĤj4 are
dependent, then their mod 2 sum is zero. In that case, the
seeds is irrelevant because

4Y
k=1

Vjk(s) =
4Y

k=1

(�1)(s�Ĥjk
)+f(jk)

= (�1)f(j1)+f(j2)+f(j3)+f(j4): (2)

Line (2) follows from the fact that the columns
Ĥj1; Ĥj2; Ĥj3; and Ĥj4 sum to zero. Thus it is sufficient
to show that

U (a; b)
�
=

X
a�j1;j2;j3;j4<b

j1�j2�j3�j4=0

(�1)f(j1)+f(j2)+f(j3)+f(j4)

� A(a; b)(b� a)2;

for someA(a; b) that we find in the course of the proof. We
will give a recurrence forA(a; b) and discuss a computer
search overa; b with b � a small that yields a better overall
bound.

Claim 7 U (4a; 4b) = 16U (a; b).

Proof. Let (j1; j2; j3; j4) be a dependent tuple in[4a; 4b)4.
Consider the two least significant bits of thej’s. Of the
64 possibilities making the columns dependent, 24 are odd
(i.e., Vj1Vj2Vj3Vj4 = �1) and 40 are even. Given a tuple
(j1; j2; j3; j4) with odd configuration of the two least sig-
nificant bits (i.e., such that for an odd number ofi’s bit 0
or bit 1 of ji is 1), pair it with (j01; j

0
2; j

0
3; j

0
4) such thatj0i

and ji agree on all but the least two significant bits, and
(j01; j

0
2; j

0
3; j

0
4) has an even configuration of the two least

significant bits. If(j1; j2; j3; j4) is a tuple having one of
the 16 other configurations of the two least significant bits,
attempt to pair it inductively with(j01; j

0
2; j

0
3; j

0
4) such that

ji and j0i have the same two least significant bits. Thus
U (4a; 4b) = 16U (a; b). |

We now return to generala andb. First assumeb � a �
16. Let a0 be the smallest multiple of 4 that is at leasta,
and letb0 be the greatest multiple of 4 that is at mostb.
(Sinceb � a � 16 � 4, it follows that a � a0 � b0 �
b.) The number of unpaired tuples in[a; b)4 is at most the
number of unpaired tuples in[a0; b0)4 plus the number of
unpaired tuples having at least one column in[a; a0)[[b0; b).
The number of unpaired tuples in[a0; b0)4 is U (a0; b0) =
16U (a0=4; b0=4) � A(a0=4; b0=4)(b0 � a0)2, by induction.

We now count the number of unpaired tuples having at least
one column in[a; a0) [[b0; b).

There are at most six tuples such thatj1 = j2 = j3 = j4
is in [a; a0)[[b0; b). There are at most36(b�a) tuples such
that two of the columns are in[a; a0)[[b0; b) and two of the
columns are identical and equal to some other value. (A fac-
tor
�
4
2

�
= 6 is needed to assign the four columns to the two

values). We now count the tuples whose the columns are
all different. Pick an assignment of roles for the columns,
which contributes a factor 24. There are at most 6 ways to
pick j1 in [a; a0)[[b0; b). Next we will pickj2 andj3. Sup-
pose that the least significant bit in whichj2 andj3 differ is
thek’th. Let � be the least multiple of2k

0+1 that is at least
a, and let� be the greatest multiple of2k

0+1 that is at most
b, where

k0 =

�
k � 1; k odd
k + 1; k even:

If � � j2; j3 < �, then we can formj02 andj03 by tog-
gling thek0’th bit of j2 andj3 and pair(j1; j2; j3; j4) with
(j1; j02; j

0
3; j4). We then have

� a � � � j02; j
0
3 < � � b

� (j1; j02; j
0
3; j4) is a dependent tuple

� (j1; j
0
2; j

0
3; j4) and(j1; j2; j3; j4) have opposite parity.

To see this, assume without loss of generality that the
k’th bits of j2 andj3 are0 and1, respectively. Then
the disjunction in expansion (1) corresponding to bits
k andk0 for each off(j03) andf(j3) is odd because
of the 1 in bitk but thek-k0 disjunction forf(j02) and
f(j2) differ because thek’th bits are zero but thek0’th
bits differ. All the other disjunctions are the same in
f(j2) asf(j02) and inf(j3) asf(j03).

Thus we need only considerj2 andj3 such thatj2 is less
than� or greater than�. If � � a � 2k

0

then clearly there
are at most2k

0

ways to choosej2 2 [a; �). Otherwise, if
� � a > 2k

0

, then the set[a; � � 2k
0

) [[a + 2k
0

; �) is
closed under toggling thek0’th bit; so, if j2 andj3 are both
in [a; �� 2k

0

) [[a + 2k
0

; �) [[�; �), then we can pairj2
andj3 (and similarly at theb end). The set of remaining
possibilities forj2 and j3 is [� � 2k

0

; a + 2k
0

) � [� �
2k

0

; �), which has size at most2k
0

. Thus, whether or not
a � � � 2k

0

and whether or notb � � + 2k
0

, there are
at most2k

0

possibilities forj2 in [� � 2k
0

; a + 2k
0

) and
another2k

0

possibilities in[b � 2k
0

; � + 2k
0

), so we get
2k

0+1 � 2k+2 possibilities forj2 in total. Thek + 1 least
significant bits ofj3 are determined (thek least significant
are the same as inj2 and bitk is opposite); so there are at
most

�
(b� a)=2k+1

�
� 17

16(b � a)=2k+1 ways to choose
j3. (Note that, becauseb� a � 16, we have(b � a+ 1) �
17
16(b � a).) Thus there are at most(17=8)(b � a) ways to
pick j2 andj3. After that,j4 is determined. Altogether, for

thisk, there are at most306(b� a) = 24 � 6 � (17=8)(b� a)
ways to pick a dependent unpaired tuple with all columns
different, and at most36(b � a) + 6 � 37(b � a) ways to
pick a tuple with a repeated column, such that all columns
are in[a; b) and some column is in[a; a0)[[b0; b), for a total
of 343(b� a).

We need to sum over allk such that2k � (b� a). Thus
we get thatU (a; b) is

� U (a0; b0) + 343(b� a) log2(b� a)

� 16U

�
a0

4
;
b0

4

�
+ 343(b� a) log2(b� a)

� 16A

�
a0

4
;
b0

4

��
b0 � a0

4

�2
+ 343(b� a) log2(b� a)

� A

�
a0

4
;
b0

4

�
(b0 � a0)2 + 343(b� a) log2(b� a)

� A

�
a0

4
;
b0

4

�
(b� a)2 + 343(b� a) log2(b� a);

and so, ifA(a; b)(b�a)2 � A(a0=4; b0=4)(b�a)2+343(b�
a) log2(b � a), thenU (a; b) � A(a; b)(b � a)2. Dividing
by (b� a)2, we get

A(a; b) � A(da=4e ; bb=4c) + 343
log2(b� a)

(b� a)
:

Let
Di = sup

4i<(b�a)�4i+1
A(a; b):

For eachC � 2, we have the recurrence

Di �

�
Di�1 + 343 � 2i4i i � C
MC i < C;

(3)

whereMC = max(D0; : : : ; DC�1) is a bound onA(a; b)
over4i < b � a � 4i+1 for i < C, i.e., b � a � 4C . We
want to find a minimal solution. We will discuss below how
we establishMC precisely using an exhaustive computer
search.

Recurrence (3) has a solution

Di = MC + 343
iX

j=C

2j

4�j

� MC + 686
C + 1=3

3 � 4C�1
;

where the empty sum is taken to be zero. If we putC = 6
we get

Di �M6 + 1:42;

whence, for alla; b,A(a; b) �M6 + 1:42.
It remains to evaluateM6, which we do by direct search.

We now discuss our search strategy.

Claim 8 The valueMC = maxb�a�4C=22C A(a; b) is at
most

M 0
C = max

a�22C�1

b�a+22C

A(a; b):

Proof. Suppose(a; b) is a pair withb � a � 22C but a >
22C�1. We producea0; b0 with a0 < a andb0 < b such that
b0� a0 = b� a andA(a0; b0) = A(a; b). The claim follows.

First, we show that, ifa; b � 2r, thenA(a; b) = A(2r �
b; 2r�a). Given a tuple(j1; j2; j3; j4) 2 [a; b)4, write each
j with r bits, padding with leading zeros if necessary. Form
j0i = 2r � 1� ji, by negating all the bits inji. This proce-
dure toggles the parity of thek-k0 disjunct in the expansion
of f(j) when thek-k0 bits are00 or 11; for eachk, in a
dependent tuple, there are an even number of columns that
are00 or 11 in bitsk andk0 and an even number of columns
that are01 or 10 there. It follows that(j1; j2; j3; j4) and
(j01; j

0
2; j

0
3; j

0
4) have the same parity. Note also that this map-

ping is a bijection from[a; b) to [2r � b; 2r � a). From this
we can conclude thatA(a; b) = A(2r�b; 2r�a). Similarly,
if a; b � 3 � 2r thenA(a; b) = A(3 � 2r � b; 3 � 2r � a).

Finally:

� If 22C�1 < a � 22C, then

– If 22C�1 < b � 22C, then put(a0; b0) = (22C �
b; 22C � a).

– If 22C < b � 3 � 22C�1, then put(a0; b0) = (3 �
22C�1 � b; 3 � 22C�1 � a).

– If 3 � 2C�1 < b, then noteb < a+22C � 22C+1.
Put(a0; b0) = (22C+1 � b; 22C+1 � a).

� If 22C < a, then findq > 2C with 2q < a � 2q+1.

– If b � 2q+1, then2q < a < b � 2q+1. Put
(a0; b0) = (2q+1 � b; 2q+1 � a).

– Otherwise,2q+1 < b � a+ 22C � 2q+1 + 2q =
3 � 2q. Put(a0; b0) = (3 � 2q � b; 3 � 2q � a).

In all cases,a0 < a. |

Thus, if we are interested inM6, i.e., (a; b) with b� a �
4096, we need only considera � 2048. A computer search
was done forA(a; b) overa � 2048 andb � a+ 4096, and
the maximum is2:55334. ThusA(a; b) � 2:56+1:42� 4.

3.3 Correctness

The proof in this section, that the algorithm described in
Figure 1 is correct, closely follows the one given by Alon
et al. [1] for the correctness of their algorithm (see Sec-
tion 4.3).

Theorem 9 The algorithm described in Figure 1 outputs a
random variableW = mediankavg`Z

2
k;` such thatjW �

F1j < �F1 with probability at least1� �.

Proof. Note that, for eachj � min(ai; bi), bothVi;j;k;` and
�Vi;j;k;` are added toZk`, and, forj > max(ai; bi), neither
Vi;j;k;` nor�Vi;j;k;` is added. Thus

Zk` =
X
i

X
min(ai;bi)�j�max(ai;bi)

�Vi;j;k;`:

We shall now computeE[Z2
k`] andE[Z4

k`], for eachk; `.
We shall use the convention that

P
a�i<b = �

P
b�i<a

if b < a. For notational convenience, we letVi;j denote
Vi;j;k;` in the analysis below.

E[Z2
k;`] = E

2
64
0
@X

i

bi�1X
j=ai

Vi;j

1
A

2
3
75

= E

2
4

F1X
m=1

�Vm

!2
3
5 (4)

=

F1X
m=1

E[(�Vm)2] + 2
X

1�m<m0<F1

E[(�Vm)(�Vm0)]

=

F1X
m=1

1 (5)

= F1;

where, in line (4), we have relabeled the indices ofV and in
line (5) we used the pairwise independence ofVm andVm0 .

Next, consider

E[Z4
k;`] = E

2
66666666664

X
0�i1;i2;i3;i4<n

X
ai1�j1<bi1
ai2�j2<bi2
ai3�j3<bi3
ai4�j4<bi4

Vi1;j1Vi2;j2Vi3;j3Vi4;j4

3
77777777775
:

By 3-wise independence and the fact thatE[V odd] = 0,
the only terms with non-vanishing expectation are of the
form V 4

i;j (of which there areF1 terms), V 2
i;jV

2
i0 ;j0 for

(i; j) 6= (i0j0) (of which there are
�4
2

�
F1(F1�1) terms), and

Vi1;j1Vi2;j2Vi3;j3Vi4;j4 for (i1; j1); (i2; j2); (i3; j3); (i4; j4)
all different. Suppose, in the latter case, thati1; i2; i3; i4
are not all the same. LetX =

Q
im=i1

Vim ;jm and
Y =

Q
im 6=i1

Vim;jm . ThenE[X] = 0 by three-wise
independence of theV ’s, andX and Y are independent

by four-wise independence of the seedssi;k;`. There-
fore, if (i1; j1); (i2; j2); (i3; j3); (i4; j4) are all different and
i1; i2; i3; i4 are not all the same,

E[Vi1;j1Vi2;j2Vi3;j3Vi4;j4] = E[XY] = 0:

Thus we have

E[Z4
k;`] � F1 + 6F1(F1 � 1) +

X
i

E

2
64
0
@bi�1X
j=ai

Vi;j

1
A

4
3
75

� 6F 2
1 +

X
i

4(bi � ai)
2 (6)

� 10F 2
1 :

In line (6), we used Proposition 6, which shows that our
construction of random variables isn2-bad 4-wise indepen-
dent, with constant 4.

Thus

Var(Z2
k;`) = E[Z4

k;`]� E2[Z2
k;`] � A � F 2

1 ;

for A = 9. Now, putYk = �2

8�A

P
1�`�(8�A)=�2 Z

2
k;`. Then

Var(Yk) �
�2

8 F
2
1 . By Chebyshev’s inequality,

Pr(jYk � F1j > �F1) �
Var(Yk)

�2F 2
1

� 1=8:

PutW = mediankYk. ThenjW � F1j > �F1 only if
we havejYk�F1j > �F1 for half of thek’s. By Chernoff’s
inequality, the probability of this is at most�.

3.4 Cost

Theorem 10 An implementation of algorithm L1 (in Fig-
ure 1) is in

PASST
�

log(M) log(n) log(1=�)=�2;
log(n) log log(n) + log(M) log(1=�)=�2

�
:

If the input tuples come in the order
(0; a0;+1); (1; a1;+1); : : : ; (0; b0;�1); (1; b1;�1) : : :,
(or, more generally, if thea tuples come in the same order
as theb tuples), then another implementation of algorithm
L1 runs in

PASST
�
log(M) log(n) log(1=�)=�2; log(M) log(1=�)=�2

�
:

Proof. The algorithm stores

� log(1=�)=�2 random variablesZk;` whose values are
at mostMn

� a master seed, specifying the seeds and through the
seeds the values of the(�1)-valued random variables
Vi;j;k;`

The space to store the counters isO((log(M) +
log(n)) log(1=�)=�2). By our construction, each seed
has sizelogM + 1. For eachk; `, we need a family
of n 4-wise independent seeds,i.e., we needlogM +
1 families of n 4-wise independent binary random vari-
ables. This can be generated from a master seed of length
(logM + 1)(2 logn + 1), as in [3]. Thus for eachk; `
we needO(log(M) log(n)) bits of master seed, and so
we would needO(log(M) log(n) log(1=�)=�2) bits of stor-
age for the master seed to haveO(log(1=�)=�2) inde-
pendent parallel repetitions. This dominates the counter
storage. (One can achieve some savings by noting
that the 1=�2 parallel repetitions need not be fully in-
dependent, only pairwise independent. Thus, we need
O(log(M) log(1=�)) families ofn=�2 4-wise independent
binary random variables, requiring master seed space of
onlyO (log(M) log(1=�)(logn+ log(1=�))), which is in-
comparable with the counter storage space.)

We now consider the cost of processing a single item
(i; ci;�1). First, one has to produce the seedssi;k;` from
the master seedsSk;`. Using the construction in [3], fix a
finite field F = Z2[x]=� of characteristic 2 and approxi-
matelyn elements, where� is an irreducible polynomial
of degreelogn. Arbitrarily enumerate the invertible ele-
ments ofF = fxig, for 0 � i < n, such that one can
computexi from i quickly; e.g., let xi (a polynomial inx
overZ2) have coefficients given by the binary representa-
tion of i, so thatxi andi have the same representation. We
first need to computex3i in F , which can be done in time
O(log(n) log log(n)). For eachk and`, we now compute
each bit of the seedsi;k;` by taking a vector of2 log(n) + 1
bits ofSk;` and dotting it with the vector[1; xi; x3i], which
takes constant time in an arithmetic model. Thus, comput-
ing logM + 1 bits ofsi;k;` requiresO(log(M)) time, once
x3i is known. Finally, fromsi;k;` we can compute the sumPc�1

j=0 Vj in timeO(log(c)) = O(log(M)) in an arithmetic
model. Altogether, this takes time

O(log(n) log log(n) + log(M) log(1=�)=�2):

Finally, we consider the restricted order. (These tech-
niques are standard in coding theory [13]; we include them
for completeness.) The savings comes from computingx3i
from x3i�1 rather than fromxi. Suppose we are guaranteed
that the tuples occur in the order

(0; a0;+1); (1; a1;+1); : : : ; (0; b0;�1); (1; b1;�1) : : : ;

or just that thea tuples occur in the same order as theb
tuples. (In the latter case, we can redefinei so that theai

tuple occursi’th.) Note that the polynomialx is a genera-
tor of the nonzero elements ofF = Z2[x]=�. We can then
let xi = xi 2 F , wherexi is represented by the string
of coefficients ofxi mod �. Multiplication of an element
p(x) 2 F by x 2 F consists of givingp(x) a bit shift and
then reducing modulo� (i.e., XORing with (� � xlogn) if
necessary), which could reasonably take constant time in an
arithmetic model. Similarly we can computex3i = x3i from
x3i�1 = x3(i�1) constant time. Thus, under this assumption
about the input, the processing algorithm is somewhat sim-
pler and faster in practice as well as faster in theory. Alto-
gether, the processing time is

O(log(M) log(1=�)=�2)

per item in an arithmetic model.

3.5 Optimality

Our algorithm is quite efficient in the parametersn;M ,
and�, but requires space quadratic in1=�. We now show
that, for some non-trivial settings ofM , for all large settings
of n and all small settings of�, any sketching algorithm that
approximates theL1 difference to within� requires space
close to1=�. Thus our algorithm uses space within a poly-
nomial of optimal.

Theorem 11 Fix M = 1. For sufficiently small� and for
any (large)� and any (small)� > 0, theL1 problem is not
in PAS(log�(n)=�1��).

A similar result holds in the streaming model.

This proof is omitted to save space and may be found in
our journal submission [8].

3.6 Algorithm for Unknown Parameters

If M is not known in advance, we won’t know in advance
how many random variables to construct. Note that, be-
cause of the recursive construction ofH andp, this is not a
problem. If, at any point, we encounter a tuple(i0; c; �)with
c bigger than the maximumC encountered before, we sim-
ply do the following. For eachk; `, we pick(log c� logC)
new master seedsSk;` of lengthO(logn). We use the mas-
ter seeds to extend randomlyeach of then seedssi;k;` to
lengthdlog ce + 1. We also virtually form larger matrices
Ĥ and patternp without actually instantiating them.

It is also possible to run the algorithm with a constant
factor penalty ifn is not known in advance. Initializen to
2. Start reading the stream, performing the calculation for
thisn. As the stream is read, maintainNT = max1�t�T it,
whereT is the current position in the stream andit is the
first component of thet’th item (it; cit; �t).

If, at some pointT , we read a tuple(i; ci; �) with i >
NT , then, for eachk; `, we prepare a new master seed for
a family of i2 4-wise independent seeds. The union of all
seeds is still 4-wise independent. (In fact, for any collection
O of old seeds, the distribution on any set of new seeds is
fully independent of any setting ofO.) We store both the old
and the new master seeds. At the end, we will have a final
value ofn, and, along the way, we will have constructed
master seeds for families of sizen; n1=2; n1=4; n1=8; : : :.
These require storage spacelog(n); 12 log(n);

1
4 log(n) : : :,

and, thus, the total storage isO(log(n)), ignoring the fac-
tor log(M) log(1=�)=�2 that is the same whether or not we
known in advance. The average processing time per item
increases byo(1), but the maximum processing time per
item increases bylogn.

4 Related Work

4.1 Relationship with Sketch Algorithms

Broderet al. [4] consider the problem of detecting near-
duplicate web pages. For their and our purposes, a web
page is a subset of a large universe, and two web pages
A andB are near-duplicates ifr(A;B) = jA\Bj

jA[Bj is large.
They present an algorithm that computes a small fixed-size
“sketch” of each web page such that, with high probability,
r(A;B) can be approximated to within additive error given
the two sketches. A central technique is based on the ob-
servation that, under a random injectionh of the universe
into the integers, the probability that minimum ofh(A[B)
is in h(A \ B) is exactlyr(A;B). Some of the relevant
techniques in [4] were used, earlier, in [7, 5].

Our results on computing theL1 difference between two
functions can be viewed as a sketch algorithm. The sketch
functionh takes as input (the graph of) a single function and
performs the algorithm of Section 3.1, getting a setfZk;`g
of random variables. To reconstruct theL1 difference from
two sketchesfZk;`g; fZ0

k;`g, compute�(fZk;`g; fZ0
k;`g) =

mediankavg`(Zk;` � Z0
k;`)

2.

Theorem 12 The L1 difference of two functions from
f0; : : : ; n� 1g to f0; : : : ;M � 1g is in

PAS(log(n) log(M) log(1=�)=�2):

In particular, theL1 difference (orL2 difference) of two
characteristic functions�A and�B is the size of the sym-
metric differencejA�Bj; we’ve shown how to approxi-
mate it to within small relative error with high probability.
The size of the sketch isO(log(m) log(n) log(1=�)=�2),
the space bound of the streaming algorithm. Finally, note
that computation of these sketches can be performed in the
streaming model, which is sometimes an advantage both
theoretically and in practice.

Table 1. Relative-error approximability via
sketches

jAj, jBj jA \Bj jA [Bj jA�Bj
Here trivial iff large yes yes
Broderet al. [4] trivial iff large yes iff large

Corollary 13 The symmetric difference of two sets from a
universe of sizen is in

PAS(log(n) log(1=�)=�2):

One can now ask which cells of theA-B Venn diagram
can be approximated as functions of(A;B) in the sketch
model using our techniques and using the techniques of
[4]. First note thatjAj, jBj, and jAj + jBj are trivial in
the sketch model. Next, an additive approximation ofr
yields an approximation of(1 + r) with small relative er-
ror; thus, jA [Bj = (jAj + jBj)=(1 + r) can be ap-
proximated with small relative error using the techniques
of [4] or with small relative error as(jAj+ jBj+ jA�Bj)=2
using our techniques. In general, one cannot approxi-
mate jA \ Bj with small relative error, even using ran-
domness [12], but, ifjA \ Bj is sufficiently large com-
pared withjA[Bj, the intersection can be approximated as
jA\Bj = (jAj+jBj)r=(1+r) by the algorithm in [4] and as
jA\Bj = (jAj+jBj�jA�Bj)=2by our algorithm. Finally,
the algorithm of [4] only approximates1�r additively, and,
if 1 � r is smaller than the error� of approximation (i.e., if
jA�Bj < �jA [Bj), then the algorithm of [4], which ap-
proximatesjA�Bj asjA�Bj = (jAj + jBj)1�r1+r , does not
perform well,5 but our algorithm approximatesjA�Bjwith
small relative error regardless of the size ofjA�Bj.

This information is summarized in Table 1. Other cells in
the Venn diagram reduce to these results,e.g.,by comple-
mentingA or B (but note thatA andA-complement may
have different sizes).

4.2 Approximating Sizes of Supports and the Ze-
roth Frequency Moment

In this section, we briefly consider three variants.
Let

F 6=
0 = jfi : ai 6= bigj

F 6=0
0 = jfi : (ai = 0 ^ bi 6= 0) _ (ai 6= 0 ^ bi = 0)gj

F �
0 = jfi : (ai > �bi) _ (bi > �ai)gj

5This approximation was never a stated goal in [4].

Note that these are all generalizations ofF0 =
jfi : ai 6= 0gj, which was studied in [1].

Theorem 14

1. F 6=
0 2 PASST(log(M) log(n) log(1=�)=�2).

2. F 6=0
0 2 PASST(log(M) log(n) log(1=�)=�2).

3. For all fixed� < 1, � < 1=4, andM > 1=� + 2, and
for anyf = o(n), we haveF �

0 62 PASST(f(n)).

Similar results hold for the sketch model.

The proof is omitted because of space limitations and
can be found in our journal submission [8].

4.3 Approximating theL2 Difference and the Sec-
ond Frequency Moment

Alon et al.[1] consider the following problem. The input
is a sequence of elements from[n] = f0; : : : ; n � 1g. An
elementi 2 [n] may occur many times; we letai denote the
number of timesi occurs in the sequence. Now the length
of the sequence is somem unrelated ton. (This notation at-
taches the same semantics ton, ai, andbi as Section 3 does,
namely,n is the number of different types of items and our
goal is to approximate

Pn�1
i=0 jai � bijp. Syntactically, the

parameters(n;m) here play the roles of(M;n) in Defini-
tion 1, since, in the input format of this section, there arem
items, each of which is a number between 0 andn� 1.)

The k’th frequency momentFk of the sequence is de-
fined to be

P
aki . Note that the first frequency moment

F1 =
P

ai is justm and is therefore trivial to compute,
but other frequency moments are non-trivial. Alonet al.[1]
give a variety of upper and lower bounds for frequency mo-
ments. In particular, they show

Theorem 15 ([1]) Let F2 =
P

a2i , whereai is the num-
ber of occurrences ofi in the input stream. ThenF2 2
PASST((logn + logm) log(1=�)=�2; log(n) log log(n) +
log(1=�)=�2):

In this result and the following corollary, the time cost
of logn log logn can be reduced to 1 on a machine that can
perform finite field multiplication on elements of sizelogn
in constant time. It can also be reduced under suitable re-
strictions on the input order.

We sketch the algorithm, without proof, in order to illus-
trate the previous work that is our point of departure. A full
treatment of the correctness and workspace of the algorithm
of Theorem 15 may be found in [1].
Proof. [sketch]

For eachk, 1 � k � O(log(1=�)) and for each̀ , 1 �
` � O(1=�2), let fvk`[i]gi be a set of 4-wise independent
random variables. Outputmediankavg` (

P
aivk`[i])

2.

Consider now a generalization of the input allowing
signed examples. That is, each item in the sequence con-
sists of a typei 2 [n] and a sign�, and there may be many
items of typei of each sign. Denote byai the number of
positive occurrences ofi and bybi the number of negative
occurrences ofi, and letFk denote

P
jai � bijk.

We have obtained the following corollary. It was ob-
tained independently by Alonet al. [2].

Corollary 16 F2 2 PASST((logn + logm) log(1=�)=�2;
log(n) log log(n)+log(1=�)=�2). (HereF2 =

P
(ai�bi)2,

whereai is the number of positive occurrences ofi in the
input andbi is the number of negative occurrences ofi in
the input.)

Proof. [sketch] With k; `, and vk`[i] as above, output
mediankavg` (

P
(ai � bi)vk`[i])

2.

The algorithm of Corollary 16 can be used to approxi-
mate theL2 difference between the two functionsa andb.

Note that, for signed input examples, computing the fre-
quency momentF1 is non-trivial. In fact, we don’t know
how to computeF1 in the input representation of Corol-
lary 16.

For anyp, the problem of computing thep’th frequency
moment and that of computing the correspondingLp dif-
ference of functions differs only in the representation of the
input stream. Given anLp instance streamh(i; ci; �i)i, one
can expand each item(i; ci; �i) into ci occurrences of(�; i)
to get a frequency moment instance. Therefore a frequency
moment algorithm for signed examples can be used to com-
pute theLp difference of functions, but note that, in gen-
eral, one pays a high cost in processing time, even just to
read the input—the input has been expanded exponentially.
The algorithm of Corollary 16 avoids this cost, because it is
efficient in both input representations.

4.4 Earlier work on probabilistic counting

Flajolet and Martin [9] give a small-space randomized
algorithm that approximates the number of distinct ele-
ments in a stream. Their algorithm assumed the existence of
certain ideal hash functions. Later, Alonet al.[1] improved
this result by substituting a practically available family of
hash functions and also gave a variety of other results on
approximating the frequency moments. Many results of this
kind, some old and some new, are described in [10].

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space com-
plexity of approximating the frequency moments. In
Proc. of 28’th Symp. on the Theory of Computing,
ACM Press, New York, pages 20–29, 1996. Ex-
panded version to appear inJ. Comput. System Sci.

[2] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy.
Tracking Join and Self-Join Sizes in Limited Storage.
In Proc. of the 18’th Symp. on Principles of Database
Systems, ACM Press, New York, pages 10–20, 1999.

[3] N. Alon and J. Spencer.The Probabilistic Method.
John Wiley and Sons, New York, 1992.

[4] A. Broder, M. Charikar, A. Frieze, and M. Mitzen-
macher. Min-wise independent permutations. In
Proc. of the 30’th Symp. on the Theory of Comput-
ing, ACM Press, New York, pages 327–336, 1998.

[5] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic Clustering of the Web. InProc. Sixth Int’l.
World Wide Web Conference, World Wide Web Con-
sortium, Cambridge, pages 391–404, 1997.

[6] Cisco NetFlow, 1998.
http://www.cisco.com/warp/public
/732/netflow/ .

[7] E. Cohen. Size-estimation framework with applica-
tions to transitive closure and reachability. In J. Com-
put. System Sci., 55:441–453, 1997. (Special issue of
selected papers from 1994IEEE Symp. on Founda-
tions of Computer Science.)

[8] http://www.research.att.com/˜jf
/pubs/L1diff.ps

[9] P. Flajolet and G. N. Martin. Probabilistic Count-
ing. In Proc. 24’th Foundations of Computer Science
Conference, IEEE Computer Society, Los Alamitos,
pages 76–82, 1983.

[10] P. Gibbons and Y. Matias. Synopsis Data Structures
for Massive Data Sets. To appear inProc. 1998 DI-
MACS Workshop on External Memory Algorithms.
DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, American Mathematical
Society, Providence. Abstract inProc. Tenth Sympo-
sium on Discrete Algorithms, ACM Press, New York
and Society for Industrial and Applied Mathematics,
Philadelphia, pages S909–910, 1999.

[11] M. Rauch Henzinger, P. Raghavan, and S. Ra-
jagopalan. Computing on data streams. Techni-
cal Report 1998-011, Digital Equipment Corporation
Systems Research Center, May 1998.

[12] E. Kushilevitz and N. Nisan.Communication Com-
plexity. Cambridge University Press, 1997.

[13] F. J. MacWilliams and N. J. A. Sloane.The Theory
of Error-Correcting Codes. North Holland Mathe-
matical Library, Vol. 16, North Holland, New York,
1977.

