An Approximate L^{1}-Difference Algorithm for Massive Data Streams (Extended Abstract)*

J. Feigenbaum S. Kannan ${ }^{\dagger}$ M. Strauss
AT\&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932 USA
\{jf,skannan,mstrauss\}@research.att.com

M. Viswanathan ${ }^{\ddagger}$
Computer and Information Sciences
University of Pennsylvania
Philadelphia, PA 19104 USA
maheshv@saul.cis.upenn.edu

Abstract

We give a space-efficient, one-pass algorithm for approximating the L^{1} difference $\sum_{i}\left|a_{i}-b_{i}\right|$ between two functions, when the function values a_{i} and b_{i} are given as data streams, and their order is chosen by an adversary. Our main technical innovation is a method of constructing families $\left\{V_{j}\right\}$ of limited-independence random variables that are range-summable, by which we mean that $\sum_{j=0}^{c-1} V_{j}(s)$ is computable in time polylog(c), for all seeds s. These random-variable families may be of interest outside our current application domain, i.e., massive data streams generated by communication networks. Our L^{1}-difference algorithm can be viewed as a "sketching" algorithm, in the sense of [Broder, Charikar, Frieze, and Mitzenmacher, STOC '98, pp. 327-336], and our algorithm performs better than that of Broder et al. when used to approximate the symmetric difference of two sets with small symmetric difference.

1. Introduction

Massive data sets are increasingly important in a wide range of applications, including observational sciences, product marketing, and monitoring and operations of large systems. In network operations, raw data typically arrive in streams, and decisions must be made by algorithms that make one pass over each stream, throw much of the raw data away, and produce "synopses" or "sketches" for further processing. Moreover, network-generated massive data sets

[^0]are often distributed: Several different, physically separated network elements may receive or generate data streams that, together, comprise one logical data set; to be of use in operations, the streams must be analyzed locally and their synopses sent to a central operations facility. The enormous scale, distributed nature, and one-pass processing requirement on the data sets of interest must be addressed with new algorithmic techniques.

We present one fundamental new technique here: a space-efficient, one-pass algorithm for approximating the L^{1} difference $\sum_{i}\left|a_{i}-b_{i}\right|$ between two functions, when the function values a_{i} and b_{i} are given as data streams, and their order is chosen by an adversary. This algorithm fits naturally into a toolkit for Internet-traffic monitoring. For example, Cisco routers can now be instrumented with the NetFlow feature [6]. As packets travel through the router, the NetFlow software produces summary statistics on each flow. ${ }^{1}$ Three of the fields in the flow records are source IPaddress, destination IP-address, and total number of bytes of data in the flow. At the end of a day (or a week, or an hour, depending on what the appropriate monitoring interval is and how much local storage is available), the router (or, more accurately, a computer that has been "hooked up" to the router for monitoring purposes) can assemble a set of values $\left(x, f_{t}(x)\right)$, where x is a source-destination pair, and $f_{t}(x)$ is the total number of bytes sent from the source to the destination during a time interval t. The L^{1} difference between two such functions assembled during different intervals or at different routers is a good indication of the extent to which traffic patterns differ.

Our algorithm allows the routers and a central control

[^1]and storage facility to compute L^{1} differences efficiently under a variety of constraints. First, a router may want the L^{1} difference between f_{t} and f_{t+1}. The router can store a small "sketch" of f_{t}, throw out all other information about f_{t}, and still be able to approximate $\left\|f_{t}-f_{t+1}\right\|_{1}$ from the sketch of f_{t} and (a sketch of) f_{t+1}.

The functions $f_{t}^{(i)}$ assembled at each of several remote routers R_{i} at time t may be sent to a central tape-storage facility C. As the data are written to tape, C may want to compute the L^{1} difference between $f_{t}^{(1)}$ and $f_{t}^{(2)}$, but this computation presents several challenges. First, each router R_{i} should transmit its statistical data when R_{i} 's load is low and the $R_{i}-C$ paths have extra capacity; therefore, the data may arrive at C from the R_{i} 's in an arbitrarily interleaved manner. Also, typically the x 's for which $f(x) \neq 0$ constitute a small fraction of all x 's; thus, R_{i} should only transmit $\left(x, f_{t}^{(i)}(x)\right)$ when $f_{t}^{(i)}(x) \neq 0$. The set of transmitted x 's is not predictable by C. Finally, because of the huge size of these streams, ${ }^{2}$ the central facility will not want to buffer them in the course of writing them to tape (and cannot read from one part of the tape while writing to another), and telling R_{i} to pause is not always possible. Nevertheless, our algorithm supports approximating the L^{1} difference between $f_{t}^{(1)}$ and $f_{t}^{(2)}$ at C, because it requires little workspace, requires little time to process each incoming item, and can process in one pass all the values of both functions $\left\{\left(x, f_{t}^{(1)}(x)\right)\right\} \cup\left\{\left(x, f_{t}^{(2)}(x)\right)\right\}$ in any permutation.

Our L^{1}-difference algorithm achieves the following performance:

Consider two data streams of length at most n, each representing the non-zero points on the graph of an integer-valued function on a domain of size n. Assume that the maximum value of either function on this domain is M. Then a one-pass streaming algorithm can compute with probability $1-\epsilon$ an approximation A to the L^{1}-difference B of the two functions, such that $|A-B| \leq \lambda B$, using space $O\left(\log (M) \log (n) \log (1 / \epsilon) / \lambda^{2}\right)$ and time $O\left(\log (n) \log \log (n)+\log (M) \log (1 / \epsilon) / \lambda^{2}\right)$ to process each item. The input streams may be interleaved in an arbitrary (adversarial) order.

The main technical innovation used in this algorithm is a limited-independence random-variable construction that may prove useful in other contexts:

A family $\left\{V_{j}(s)\right\}$ of uniform ± 1-valued random variables is called range-summable if $\sum_{0}^{c-1} V_{j}(s)$ can be computed in time polylog(c), for all seeds s. We construct range-summable

[^2]families of random variables that are n^{2}-bad 4wise independent. ${ }^{3}$
The property of n^{2}-bad 4-wise independence suffices for the time- and space-bounds on our algorithm. Construction of truly 4 -wise independent, range-summable randomvariable families for which the range sums can be computed as efficiently as in our construction remains open.

The rest of this paper is organized as follows. In Section 2, we give precise statements of our "streaming" model of computation and complexity measures for streaming and sketching algorithms. In Section 3, we present our main technical results. Section 4 explains the relationship of our algorithm to other recent work, including that of Broder et al. [4] on sketching and that of Alon et al. [1] on frequency moments. Some details have been omitted from this extended abstract because of space limitations; they can be found in our journal submission [8].

2 Models of Computation

Our model is closely related to that of Henzinger, Raghavan, and Rajagopalan [11]. We also describe a related sketch model that has been used, e.g., in [4].

2.1 The Streaming Model

As in [11], a data stream is a sequence of data items $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ such that, on each pass through the stream, the items are read once in increasing order of their indices. We assume the items σ_{i} come from a set of size M, so that each σ_{i} has size $\log M$. In our computational model, we assume that the input is one or more data streams. We focus on two resources-the workspace required in words and the time to process an item in the stream. An algorithm will typically also require pre- and post-processing time, but usually applications can afford more time for these tasks.
Definition 1 The complexity class $\operatorname{PASST}(s(\epsilon, \lambda, n, M), t(\epsilon, \lambda, n, M)$) (to be read as "probably approximately streaming space complexity $s(\epsilon, \lambda, n, M)$ and time complexity $t(\epsilon, \lambda, n, M) ")$ contains those functions f for which one can output a random variable X such that $|X-f|<\lambda f$ with probability at least $1-\epsilon$ and computation of X can be done by making a single pass over the data, using workspace at most $s(\epsilon, \lambda, n, M)$ and taking time at most $t(\epsilon, \lambda, n, M)$ to process each of the n items, each of which is in the range 0 to $M-1$.

If $s=t$, we also write $\operatorname{PASST}(s)$ for $\operatorname{PASST}(s, t)$.
We will also abuse notation and write $A \in \operatorname{PASST}(s, t)$ to indicate that an algorithm A for f witnesses that $f \in$ $\operatorname{PASST}(s, t)$.

[^3]
2.2 The Sketch Model

Sketches were used in [4] to check whether two documents are nearly duplicates. A sketch can also be regarded as a synopsis data structure [10].

Definition 2 The complexity class $\operatorname{PAS}(s(\epsilon, \lambda, n, M))$) (to be read as "probably approximately sketch complexity $s(\epsilon, \lambda, n, M) ")$ contains those functions $f: X \times X \rightarrow Z$ of two inputs for which there exists a set S of size 2^{s}, a randomized sketch function $h: X \rightarrow S$, and a randomized reconstruction function $\rho: S \times S \rightarrow Z$ such that, for all $x_{1}, x_{2} \in X$, with probability at least $1-\epsilon$, $\left|\rho\left(h\left(x_{1}\right), h\left(x_{2}\right)\right)-f\left(x_{1}, x_{2}\right)\right|<\lambda f\left(x_{1}, x_{2}\right)$.

By "randomized function" of k inputs, we mean a function of $k+1$ variables. The first input is distinguished as the source of randomness. It is not necessary that, for all settings of the last k inputs, for most settings of the first input, the function outputs the same value.

Note that we can also define the sketch complexity of a function $f: X \times Y \rightarrow Z$ for $X \neq Y$. There may be two different sketch functions involved.

There are connections between the sketch model and the streaming model. Let $X Y$ denote the set of concatenations of $x \in X$ with $y \in Y$. It has been noted in [12] and elsewhere that a function on $X Y$ with low streaming complexity also has low one-round communication complexity (regarded as a function on $X \times Y$), because it suffices to communicate the memory contents of the hypothesized streaming algorithm after reading the X part of the input. Sometimes one can also produce a low sketch-complexity algorithm from an algorithm with low streaming complexity. ${ }^{4}$ Our main result is an example.

Also, in practice, it may be useful for the sketch function h to have low streaming complexity. If the set X is large enough to warrant sketching, then it may also warrant processing by an efficient streaming algorithm.

Formally, we have:
Theorem 3 If $f \in \operatorname{PAS}(s(\epsilon, \lambda, n, M))$ via sketch function $h \in \operatorname{PASST}(s(\epsilon, \lambda, n, M), t(\epsilon, \lambda, n, M))$, then $f \in$ $\operatorname{PASST}(2 s(\epsilon, \lambda, n / 2, M), t(\epsilon, \lambda, n / 2, M))$.

2.3 Arithmetic and Bit Complexity

Often one will run a streaming algorithm on a stream of n items of size $\log M$ on a computer with word size at least $\max (\log M, \log n)$. We assume that the following operations can be performed in constant time on words:

- Copy x into y

[^4]- Shift the bits of x one place to the left or one place to the right.
- Perform the bitwise AND, OR, or XOR of x and y.
- Add x and y or subtract x from y.
- Assign to z the number of 1 's among the bits of x.

We call such a model an arithmetic model and give complexity bounds in it. These operations all take at most linear time in a bit model; thus a machine that performs such operations bit by bit will run more slowly by a factor of $\max (\log M, \log n)$. Multiplication over a finite field may take more than $\log n$ time in a bit model; we use this operation but do not assume that it can be performed in constant time.

3 The L^{1} Difference of Functions

3.1 Algorithm for Known Parameters

We consider the following problem. The input stream is a sequence of tuples of the form $\left(i, a_{i},+1\right)$ or $\left(i, b_{i},-1\right)$ such that, for each i in the universe [n], there is at most one tuple of the form $\left(i, a_{i},+1\right)$ and at most one tuple of the form $\left(i, b_{i},-1\right)$. If there is no tuple of the form $\left(i, a_{i},+1\right)$ then define a_{i} to be zero for our analysis, and similarly for b_{i}. It is important that tuples of the form $(i, 0, \pm 1)$ not contribute to the size of the input. Also note that, in general, a small-space streaming algorithm cannot know for which i 's the tuple $\left(i, a_{i},+1\right)$ does not appear. The goal is to approximate the value of $F_{1}=\sum\left|a_{i}-b_{i}\right|$ to within $\pm \lambda F_{1}$, with probability at least $1-\epsilon$.

Let M be an upper bound on a_{i} and b_{i}. We assume that n and M are known in advance; in Section 3.6 we discuss small modifications to make when either of these is not known in advance.

Our algorithm will need a special family of uniform ± 1 valued random variables. For each $k, 1 \leq k \leq 4 \log (1 / \epsilon)$, and each $\ell, 1 \leq \ell \leq 72 / \lambda^{2}$, choose a master seed $S_{k, \ell}$ and use $S_{k, \ell}$ to define a 4-wise independent family $\left\{s_{i, k, \ell}\right\}$ of n seeds, each of length $\log M+1$. Each seed $s_{i, k, \ell}$ in turn defines a range-summable, n^{2}-bad 4 -wise independent family $\left\{V_{i, j, k, \ell}\right\}$ of M uniform ± 1-valued random variables, an object that we now define.
Definition 4 A family $\left\{V_{j}(s)\right\}$ of uniform ± 1-valued random variables with sample point (seed) s is called rangesummable, n^{2}-bad 4 -wise independent if the following properties are satisfied:

1. The family $\left\{V_{j}\right\}$ is 3-wise independent.
2. For all $s, \sum_{j=0}^{c-1} V_{j}(s)$ can be computed in time polylogarithmic in c.
3. For all $a<b$,

$$
E\left[\left(\sum_{j=a}^{b-1} V_{j}(s)\right)^{4}\right]=O\left((b-a)^{2}\right)
$$

Note that 4-wise independence is sufficient to achieve property 3 and that the trivial upper bound is $O\left((b-a)^{4}\right)$; we don't know how to achieve property 2 for truly 4 -wise independent random variables. The 3-wise independence insures that most 4-tuples of V 's are independent. Of the remaining 4-tuples, with $O\left((b-a)^{2}\right)$ exceptions, the $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ making $V_{j_{1}} V_{j_{2}} V_{j_{3}} V_{j_{4}}=+1$ are balanced by $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ making $V_{j_{1}} V_{j_{2}} V_{j_{3}} V_{j_{4}}=-1$, and thus the net contribution to the expected value is zero.

We can use any standard construction to define a family of seeds from a master seed, e.g., the construction based on BCH codes in [3]. From a master seed $S_{k, \ell}$ and numbers i, c, one can construct the seed $s_{i, k, \ell}$ and then the value $\sum_{j=0}^{c-1} V_{i, j, k, \ell}\left(s_{i, k, \ell}\right)$ quickly when needed.

The high level algorithm is given in Figure 1.

Figure 1. High level L^{1} algorithm

```
Algorithm L1 \(\left(\left\langle\left(i, c_{i}, \theta_{i}\right)\right\rangle\right)\)
Initialize: For \(k=1\) to \(4 \log (1 / \epsilon)\) do
    For \(\ell=1\) to \((8 \cdot A) / \lambda^{2}\) do
    \(/ /\) any \(A \geq A^{\prime}\) will work for \(A^{\prime}\) known
    \(/ /\) to be between 7.5 and 9 .
    \(\left\{Z_{k, \ell}=0 ;\right.\)
    pick a master seed \(S_{k, \ell}\)
        from the ( \(k, \ell\) )'th sample space\}
        // This implicitly defines \(s_{i, k, \ell}\)
        // for \(0 \leq i<n\) and in turn implicitly defines
        \(/ / V_{i, j, k, \ell}\) for \(0 \leq i<n\) and \(0 \leq j<M\).
```

 For each tuple (\(i, c_{i}, \theta_{i}\)) in the input stream do
 For \(k=1\) to \(4 \log (1 / \epsilon)\) do
 For \(\ell=1\) to \((8 \cdot A) / \lambda^{2}\) do
 \(Z_{k, \ell}+=\theta_{i} \sum_{j=0}^{c_{i}-1} V_{i, j, k, \ell}\)
 Output median \({ }_{k} \operatorname{avg}_{\ell} Z_{k, \ell}^{2}\).

3.2 The Construction of Random Variables

This construction is the main technical innovation of our paper. It is also a significant point of departure from the work on frequency moments by Alon et al. [1]. The relationship between our algorithm and the frequency-moment algorithms is explained in Section 4.

Fix and forget i, k, and ℓ. We now describe the construction of a single family of M random variables V_{j}, $0 \leq j<M$, such that, for all $c \leq M$, one can compute $\sum_{j=0}^{c-1} V_{j}$ quickly.

Suppose, without loss of generality, that M is a power of 2. Let $H_{(\log M)}$ be the matrix with M columns and $\log M$ rows such that the j 'th column is the binary expansion of j. For example,

$$
H_{(3)}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Let $\hat{H}_{(\log M)}$ be formed from $H_{(\log M)}$ by adding a row of 1's at the top.

$$
\hat{H}_{(3)}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

We will index the $\log M+1$ rows of \hat{H} starting with -1 for the row of all 1 's, then 0 for the row consisting of the 2^{0} bits of the binary expansions, and continue consecutively up to the $(\log (M)-1)^{\text {st }}$ row. We will left multiply \hat{H} by a seed s of length $\log M+1$ and use the same indexing scheme for bits of s as for rows of \hat{H}. We will also refer to the last bit of s and the last row of \hat{H} as the "most significant."

Given a seed $s \in\{0,1\}^{\log M+1}$, let $s \cdot \hat{H}_{j}$ denote the inner product over Z_{2} of s with the j 'th column of \hat{H}. Let i_{k} denote the k 'th bit of the binary expansion of i, starting from zero. Define $f(i)$ by

$$
\begin{equation*}
f(i)=\left(i_{0} \vee i_{1}\right) \oplus\left(i_{2} \vee i_{3}\right) \oplus \cdots \oplus\left(i_{\log M-2} \vee i_{\log M-1}\right) \tag{1}
\end{equation*}
$$

Thus the sequence p of values $f(i), i=0,1,2, \ldots$, is given as:

01111000100010001000011101110111
$10000111011101111000011101110111 \ldots$,
by starting with $p_{0}=0$, putting $p_{k+2}=p_{k} \overline{p_{k} p_{k} p_{k}}$, where $\bar{\pi}$ denotes the bitwise negation of the pattern π, and taking the limit. Finally, put $V_{j}=(-1)^{\left(s \cdot \hat{H}_{j}\right)+f(j)}$.

Proposition 5 The quantity $\sum_{j=0}^{c-1} V_{j}(s)$ can be computed in time polylogarithmic in c.

Proof. First assume that c is a power of 4. We may then assume that $c=M$. Then $\hat{H}_{(\log M)}$ is given recursively by

$$
\left[\begin{array}{cccc}
1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 \\
H_{(\log M-2)} & H_{(\log M-2)} & H_{(\log M-2)} & H_{(\log M-2)} \\
0 \cdots 0 & 1 \cdots 1 & 0 \cdots 0 & 1 \cdots 1 \\
0 \cdots 0 & 0 \cdots 0 & 1 \cdots 1 & 1 \cdots 1
\end{array}\right] .
$$

Also, note that the first M bits of p have the form $p_{\log M}=$ $p_{\log M-2} \overline{p_{\log M-2} p_{\log M-2} p_{\log M-2}}$. Let s^{\prime} be a string of length $\log M-2$ that is equal to s without the -1 'st bit and without the two most significant bits, and let f^{\prime} denote the fraction of 1 's in $s^{\prime} \cdot H_{(\log M-2)}$. Also, for bits b_{1}, b_{2},
let $f_{b_{1} b_{2}}$ denote the fraction of 1 's in $s \cdot\left[\begin{array}{c}1 \cdots 1 \\ H_{(\log M-2)} \\ b_{1} \cdots b_{1} \\ b_{2} \cdots b_{2}\end{array}\right]$.
Then $f_{b_{1} b_{2}}=f^{\prime}$ or $f_{b_{1} b_{2}}=1-f^{\prime}$, depending on b_{1}, b_{2}, and the three bits of s dropped from s^{\prime} (namely, $-1, \log M-2$, and $\log M-1$). Recursively compute f^{\prime}, and use the value to compute all the $f_{b_{1} b_{2}}$'s and, from that, the number of 1's in $\sum_{j=0}^{c-1} V_{j}(s)$. This procedure requires recursive calls of depth that is logarithmic in c.

Similarly, one can compute $\sum_{j=q 4^{r}}^{(q+1) 4^{r}-1} V_{j}$.
Finally, if c is not a power of 4 , write the interval $\{0, \ldots,(c-1)\}=[0, c)$ as the disjoint union of at most $O(\log (c))$ intervals, each of the form $\left[q 4^{r},(q+1) 4^{r}\right)$. Use the above technique to compute the fraction of V 's equal to 1 over each subinterval, and then combine. If one is careful to perform the procedure bottom up, the entire procedure requires just $\log (c)$ time, not $\log ^{2}(c)$ time, in an arithmetic model. For example, suppose $c=22$. Write $[0,22)$ as $[0,16) \cup[16,20) \cup[20,21) \cup[21,22)$. A naïve way to proceed would be to perform recursive calls 3 deep to compute $\sum_{j=0}^{15} V_{j}$, then calls 2 deep for $\sum_{j=16}^{19} V_{j}$, then 1 deep for each of V_{20} and V_{21}. Better would be to compute V_{20} directly, use this value to compute V_{21} and $\sum_{j=16}^{19} V_{j}$ (note that V_{16} is easy to compute from V_{20}), and finally use $\sum_{j=16}^{19} V_{j}$ to compute $\sum_{j=0}^{15} V_{j}$.

Altogether, this requires time $O(\log (c))$ in an arithmetic model and in any case $\log ^{O(1)}(c)$ time in a bit-complexity model.

We now show that this construction yields a family of random variables that is n^{2}-bad 4 -wise independent. The fact that $\left\{V_{j}\right\}$ is three-wise independent is in [3].
Proposition 6 For all $a<b$ we have

$$
E\left[\left(\sum_{j=a}^{b-1} V_{j}(s)\right)^{4}\right] \leq 4(b-a)^{2}
$$

Proof. First, note that, for some tuples $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$, the j_{1} 'st, j_{2} 'd, j_{3} 'd, and j_{4} 'th columns of \hat{H} are independent. These tuples do not contribute to the expectation on
the left of the inequality, since, for each desired outcome $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$, the sets

$$
\left\{s:\left(V_{j_{1}}(s), V_{j_{2}}(s), V_{j_{3}}(s), V_{j_{4}}(s)\right)=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)\right\}
$$

have the same size by linear algebra.
Secondly, observe that, because any three columns of \hat{H} are independent, if the columns $\hat{H}_{j_{1}}, \hat{H}_{j_{2}}, \hat{H}_{j_{3}}$, and $\hat{H}_{j_{4}}$ are dependent, then their mod 2 sum is zero. In that case, the seed s is irrelevant because

$$
\begin{align*}
\prod_{k=1}^{4} V_{j_{k}}(s) & =\prod_{k=1}^{4}(-1)^{\left(s \cdot \hat{H}_{j_{k}}\right)+f\left(j_{k}\right)} \\
& =(-1)^{f\left(j_{1}\right)+f\left(j_{2}\right)+f\left(j_{3}\right)+f\left(j_{4}\right)} \tag{2}
\end{align*}
$$

Line (2) follows from the fact that the columns $\hat{H}_{j_{1}}, \hat{H}_{j_{2}}, \hat{H}_{j_{3}}$, and $\hat{H}_{j_{4}}$ sum to zero. Thus it is sufficient to show that

$$
\begin{aligned}
U(a, b) & \triangleq \sum_{\substack{a \leq j_{1}, j_{2}, j_{3}, j_{4}<b \\
j_{1} \oplus j_{2} \oplus j_{3} \oplus j_{4}=0}}(-1)^{f\left(j_{1}\right)+f\left(j_{2}\right)+f\left(j_{3}\right)+f\left(j_{4}\right)} \\
& \leq A(a, b)(b-a)^{2}
\end{aligned}
$$

for some $A(a, b)$ that we find in the course of the proof. We will give a recurrence for $A(a, b)$ and discuss a computer search over a, b with $b-a$ small that yields a better overall bound.

Claim $7 U(4 a, 4 b)=16 U(a, b)$.
Proof. Let $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ be a dependent tuple in $[4 a, 4 b)^{4}$. Consider the two least significant bits of the j 's. Of the 64 possibilities making the columns dependent, 24 are odd (i.e., $V_{j_{1}} V_{j_{2}} V_{j_{3}} V_{j_{4}}=-1$) and 40 are even. Given a tuple $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ with odd configuration of the two least significant bits (i.e., such that for an odd number of i 's bit 0 or bit 1 of j_{i} is 1), pair it with $\left(j_{1}^{\prime}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}^{\prime}\right)$ such that j_{i}^{\prime} and j_{i} agree on all but the least two significant bits, and $\left(j_{1}^{\prime}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}^{\prime}\right)$ has an even configuration of the two least significant bits. If $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ is a tuple having one of the 16 other configurations of the two least significant bits, attempt to pair it inductively with $\left(j_{1}^{\prime}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}^{\prime}\right)$ such that j_{i} and j_{i}^{\prime} have the same two least significant bits. Thus $U(4 a, 4 b)=16 U(a, b)$.

We now return to general a and b. First assume $b-a \geq$ 16. Let a^{\prime} be the smallest multiple of 4 that is at least a, and let b^{\prime} be the greatest multiple of 4 that is at most b. (Since $b-a \geq 16 \geq 4$, it follows that $a \leq a^{\prime} \leq b^{\prime} \leq$ b.) The number of unpaired tuples in $[a, b)^{4}$ is at most the number of unpaired tuples in $\left[a^{\prime}, b^{\prime}\right)^{4}$ plus the number of unpaired tuples having at least one column in $\left[a, a^{\prime}\right) \cup\left[b^{\prime}, b\right)$. The number of unpaired tuples in $\left[a^{\prime}, b^{\prime}\right)^{4}$ is $U\left(a^{\prime}, b^{\prime}\right)=$ $16 U\left(a^{\prime} / 4, b^{\prime} / 4\right) \leq A\left(a^{\prime} / 4, b^{\prime} / 4\right)\left(b^{\prime}-a^{\prime}\right)^{2}$, by induction.

We now count the number of unpaired tuples having at least one column in $\left[a, a^{\prime}\right) \cup\left[b^{\prime}, b\right)$.

There are at most six tuples such that $j_{1}=j_{2}=j_{3}=j_{4}$ is in $\left[a, a^{\prime}\right) \cup\left[b^{\prime}, b\right)$. There are at most $36(b-a)$ tuples such that two of the columns are in $\left[a, a^{\prime}\right) \cup\left[b^{\prime}, b\right)$ and two of the columns are identical and equal to some other value. (A factor $\binom{4}{2}=6$ is needed to assign the four columns to the two values). We now count the tuples whose the columns are all different. Pick an assignment of roles for the columns, which contributes a factor 24 . There are at most 6 ways to pick j_{1} in $\left[a, a^{\prime}\right) \cup\left[b^{\prime}, b\right]$. Next we will pick j_{2} and j_{3}. Suppose that the least significant bit in which j_{2} and j_{3} differ is the k^{\prime} th. Let α be the least multiple of $2^{k^{\prime}+1}$ that is at least a, and let β be the greatest multiple of $2^{k^{k}+1}$ that is at most b, where

$$
k^{\prime}= \begin{cases}k-1 ; & k \text { odd } \\ k+1 ; & k \text { even. }\end{cases}
$$

If $\alpha \leq j_{2}, j_{3}<\beta$, then we can form j_{2}^{\prime} and j_{3}^{\prime} by toggling the k^{\prime} 'th bit of j_{2} and j_{3} and pair $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ with $\left(j_{1}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}\right)$. We then have

- $a \leq \alpha \leq j_{2}^{\prime}, j_{3}^{\prime}<\beta \leq b$
- $\left(j_{1}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}\right)$ is a dependent tuple
- $\left(j_{1}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}\right)$ and $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ have opposite parity. To see this, assume without loss of generality that the k 'th bits of j_{2} and j_{3} are 0 and 1 , respectively. Then the disjunction in expansion (1) corresponding to bits k and k^{\prime} for each of $f\left(j_{3}^{\prime}\right)$ and $f\left(j_{3}\right)$ is odd because of the 1 in bit k but the $k-k^{\prime}$ disjunction for $f\left(j_{2}^{\prime}\right)$ and $f\left(j_{2}\right)$ differ because the k^{\prime} 'th bits are zero but the k^{\prime} 'th bits differ. All the other disjunctions are the same in $f\left(j_{2}\right)$ as $f\left(j_{2}^{\prime}\right)$ and in $f\left(j_{3}\right)$ as $f\left(j_{3}^{\prime}\right)$.

Thus we need only consider j_{2} and j_{3} such that j_{2} is less than α or greater than β. If $\alpha-a \leq 2^{k^{\prime}}$ then clearly there are at most $2^{k^{\prime}}$ ways to choose $j_{2} \in[a, \alpha)$. Otherwise, if $\alpha-a>2^{k^{\prime}}$, then the set $\left[a, \alpha-2^{k^{\prime}}\right) \cup\left[a+2^{k^{\prime}}, \alpha\right)$ is closed under toggling the $k^{\prime \prime}$ 'th bit; so, if j_{2} and j_{3} are both in $\left[a, \alpha-2^{k^{\prime}}\right) \cup\left[a+2^{k^{\prime}}, \alpha\right) \cup[\alpha, \beta)$, then we can pair j_{2} and j_{3} (and similarly at the b end). The set of remaining possibilities for j_{2} and j_{3} is $\left[\alpha-2^{k^{\prime}}, a+2^{k^{\prime}}\right) \subseteq[\alpha-$ $\left.2^{k^{\prime}}, \alpha\right)$, which has size at most $2^{k^{\prime}}$. Thus, whether or not $a \leq \alpha-2^{k^{\prime}}$ and whether or not $b \geq \beta+2^{k^{\prime}}$, there are at most $2^{k^{\prime}}$ possibilities for j_{2} in $\left[\alpha-2^{k^{\prime}}, a+2^{k^{\prime}}\right.$) and another $2^{k^{\prime}}$ possibilities in $\left[b-2^{k^{\prime}}, \beta+2^{k^{\prime}}\right)$, so we get $2^{k^{\prime}+1} \leq 2^{k+2}$ possibilities for j_{2} in total. The $k+1$ least significant bits of j_{3} are determined (the k least significant are the same as in j_{2} and bit k is opposite); so there are at most $\left\lceil(b-a) / 2^{k+1}\right\rceil \leq \frac{17}{16}(b-a) / 2^{k+1}$ ways to choose j_{3}. (Note that, because $b-a \geq 16$, we have $(b-a+1) \leq$ $\frac{17}{16}(b-a)$.) Thus there are at most $(17 / 8)(b-a)$ ways to pick j_{2} and j_{3}. After that, j_{4} is determined. Altogether, for
this k, there are at most $306(b-a)=24 \cdot 6 \cdot(17 / 8)(b-a)$ ways to pick a dependent unpaired tuple with all columns different, and at most $36(b-a)+6 \leq 37(b-a)$ ways to pick a tuple with a repeated column, such that all columns are in $[a, b)$ and some column is in $\left[a, a^{\prime}\right) \cup\left[b^{\prime}, b\right)$, for a total of $343(b-a)$.

We need to sum over all k such that $2^{k} \leq(b-a)$. Thus we get that $U(a, b)$ is

$$
\begin{aligned}
& \leq U\left(a^{\prime}, b^{\prime}\right)+343(b-a) \log _{2}(b-a) \\
& \leq 16 U\left(\frac{a^{\prime}}{4}, \frac{b^{\prime}}{4}\right)+343(b-a) \log _{2}(b-a) \\
& \leq 16 A\left(\frac{a^{\prime}}{4}, \frac{b^{\prime}}{4}\right)\left(\frac{b^{\prime}-a^{\prime}}{4}\right)^{2}+343(b-a) \log _{2}(b-a) \\
& \leq A\left(\frac{a^{\prime}}{4}, \frac{b^{\prime}}{4}\right)\left(b^{\prime}-a^{\prime}\right)^{2}+343(b-a) \log _{2}(b-a) \\
& \leq A\left(\frac{a^{\prime}}{4}, \frac{b^{\prime}}{4}\right)(b-a)^{2}+343(b-a) \log _{2}(b-a),
\end{aligned}
$$

and so, if $A(a, b)(b-a)^{2} \geq A\left(a^{\prime} / 4, b^{\prime} / 4\right)(b-a)^{2}+343(b-$ a) $\log _{2}(b-a)$, then $U(a, b) \leq A(a, b)(b-a)^{2}$. Dividing by $(b-a)^{2}$, we get

$$
A(a, b) \geq A(\lceil a / 4\rceil,\lfloor b / 4\rfloor)+343 \frac{\log _{2}(b-a)}{(b-a)}
$$

Let

$$
D_{i}=\sup _{4^{i}<(b-a) \leq 4^{i+1}} A(a, b)
$$

For each $C \geq 2$, we have the recurrence

$$
D_{i} \geq \begin{cases}D_{i-1}+343 \cdot \frac{2 i}{4^{2}} & i \geq C \tag{3}\\ M_{C} & i<C,\end{cases}
$$

where $M_{C}=\max \left(D_{0}, \ldots, D_{C-1}\right)$ is a bound on $A(a, b)$ over $4^{i}<b-a \leq 4^{i+1}$ for $i<C$, i.e., $b-a \leq 4^{C}$. We want to find a minimal solution. We will discuss below how we establish M_{C} precisely using an exhaustive computer search.

Recurrence (3) has a solution

$$
\begin{aligned}
D_{i} & =M_{C}+343 \sum_{j=C}^{i} \frac{2 j}{4^{-j}} \\
& \leq M_{C}+686 \frac{C+1 / 3}{3 \cdot 4^{C-1}}
\end{aligned}
$$

where the empty sum is taken to be zero. If we put $C=6$ we get

$$
D_{i} \leq M_{6}+1.42,
$$

whence, for all $a, b, A(a, b) \leq M_{6}+1.42$.
It remains to evaluate M_{6}, which we do by direct search. We now discuss our search strategy.

Claim 8 The value $M_{C}=\max _{b-a \leq 4^{C}=2^{2 C}} A(a, b)$ is at most

$$
M_{C}^{\prime}=\max _{\substack{a \leq 2^{2 C-1} \\ b \leq a+2^{2 C}}} A(a, b)
$$

Proof. Suppose (a, b) is a pair with $b-a \leq 2^{2 C}$ but $a>$ $2^{2 C-1}$. We produce a^{\prime}, b^{\prime} with $a^{\prime}<a$ and $b^{\prime}<b$ such that $b^{\prime}-a^{\prime}=b-a$ and $A\left(a^{\prime}, b^{\prime}\right)=A(a, b)$. The claim follows.

First, we show that, if $a, b \leq 2^{r}$, then $A(a, b)=A\left(2^{r}-\right.$ $\left.b, 2^{r}-a\right)$. Given a tuple $\left(j_{1}, j_{2}, j_{3}, j_{4}\right) \in[a, b)^{4}$, write each j with r bits, padding with leading zeros if necessary. Form $j_{i}^{\prime}=2^{r}-1-j_{i}$, by negating all the bits in j_{i}. This procedure toggles the parity of the $k-k^{\prime}$ disjunct in the expansion of $f(j)$ when the $k-k^{\prime}$ bits are 00 or 11 ; for each k, in a dependent tuple, there are an even number of columns that are 00 or 11 in bits k and k^{\prime} and an even number of columns that are 01 or 10 there. It follows that $\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ and $\left(j_{1}^{\prime}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}^{\prime}\right)$ have the same parity. Note also that this mapping is a bijection from $[a, b)$ to $\left[2^{r}-b, 2^{r}-a\right)$. From this we can conclude that $A(a, b)=A\left(2^{r}-b, 2^{r}-a\right)$. Similarly, if $a, b \leq 3 \cdot 2^{r}$ then $A(a, b)=A\left(3 \cdot 2^{r}-b, 3 \cdot 2^{r}-a\right)$.

Finally:

- If $2^{2 C-1}<a \leq 2^{2 C}$, then
- If $2^{2 C-1}<b \leq 2^{2 C}$, then put $\left(a^{\prime}, b^{\prime}\right)=\left(2^{2 C}-\right.$ $\left.b, 2^{2 C}-a\right)$.
- If $2^{2 C}<b \leq 3 \cdot 2^{2 C-1}$, then put $\left(a^{\prime}, b^{\prime}\right)=(3$. $\left.2^{2 C-1}-b, 3 \cdot 2^{2 C-1}-a\right)$.
- If $3 \cdot 2^{C-1}<b$, then note $b<a+2^{2 C} \leq 2^{2 C+1}$. Put $\left(a^{\prime}, b^{\prime}\right)=\left(2^{2 C+1}-b, 2^{2 C+1}-a\right)$.
- If $2^{2 C}<a$, then find $q>2 C$ with $2^{q}<a \leq 2^{q+1}$.
- If $b \leq 2^{q+1}$, then $2^{q}<a<b \leq 2^{q+1}$. Put $\left(a^{\prime}, b^{\prime}\right)=\left(2^{q+1}-b, 2^{q+1}-a\right)$.
- Otherwise, $2^{q+1}<b \leq a+2^{2 C} \leq 2^{q+1}+2^{q}=$ $3 \cdot 2^{q}$. Put $\left(a^{\prime}, b^{\prime}\right)=\left(3 \cdot 2^{q}-b, 3 \cdot 2^{q}-a\right)$.

In all cases, $a^{\prime}<a$.
Thus, if we are interested in M_{6}, i.e., (a, b) with $b-a \leq$ 4096, we need only consider $a \leq 2048$. A computer search was done for $A(a, b)$ over $a \leq 2048$ and $b \leq a+4096$, and the maximum is 2.55334 . Thus $A(a, b) \leq 2.56+1.42 \leq 4$.

3.3 Correctness

The proof in this section, that the algorithm described in Figure 1 is correct, closely follows the one given by Alon et al. [1] for the correctness of their algorithm (see Section 4.3).

Theorem 9 The algorithm described in Figure 1 outputs a random variable $W=$ median $_{k} \operatorname{avg}_{\ell} Z_{k, \ell}^{2}$ such that $\mid W-$ $F_{1} \mid<\lambda F_{1}$ with probability at least $1-\epsilon$.

Proof. Note that, for each $j \leq \min \left(a_{i}, b_{i}\right)$, both $V_{i, j, k, \ell}$ and $-V_{i, j, k, \ell}$ are added to $Z_{k \ell}$, and, for $j>\max \left(a_{i}, b_{i}\right)$, neither $V_{i, j, k, \ell}$ nor $-V_{i, j, k, \ell}$ is added. Thus

$$
Z_{k \ell}=\sum_{i} \sum_{\min \left(a_{i}, b_{i}\right) \leq j \leq \max \left(a_{i}, b_{i}\right)} \pm V_{i, j, k, \ell} .
$$

We shall now compute $E\left[Z_{k \ell}^{2}\right]$ and $E\left[Z_{k \ell}^{4}\right]$, for each k, ℓ. We shall use the convention that $\sum_{a \leq i<b}=-\sum_{b \leq i<a}$ if $b<a$. For notational convenience, we let $V_{i, j}$ denote $V_{i, j, k, \ell}$ in the analysis below.

$$
\begin{align*}
E\left[Z_{k, \ell}^{2}\right] & =E\left[\left(\sum_{i} \sum_{j=a_{i}}^{b_{i}-1} V_{i, j}\right)^{2}\right] \\
& =E\left[\left(\sum_{m=1}^{F_{1}} \pm V_{m}\right)^{2}\right] \tag{4}\\
& =\sum_{m=1}^{F_{1}} E\left[\left(\pm V_{m}\right)^{2}\right]+2 \sum_{1 \leq m<m^{\prime}<F_{1}} E\left[\left(\pm V_{m}\right)\left(\pm V_{m^{\prime}}\right)\right] \\
& =\sum_{m=1}^{F_{1}} 1 \tag{5}\\
& =F_{1}
\end{align*}
$$

where, in line (4), we have relabeled the indices of V and in line (5) we used the pairwise independence of V_{m} and $V_{m^{\prime}}$.

Next, consider

$$
E\left[Z_{k, \ell}^{4}\right]=E\left[\sum_{\substack{ \\0 \leq i_{1}, i_{2}, i_{3}, i_{4}<n \\ a_{i_{1}} \leq j_{1}<b_{i_{1}} \\ a_{i_{2}} \leq j_{2}<b_{i_{2}} \\ a_{i_{3}} \leq j_{3}<b i_{2} \\ a_{i_{4}} \leq j_{4}<b b_{i_{4}}}} V_{i_{1, j}} V_{i_{2}, j_{2}} V_{i_{3}, j_{3}} V_{i_{4}, j_{4}}\right] .
$$

By 3-wise independence and the fact that $E\left[V^{\text {odd }}\right]=0$, the only terms with non-vanishing expectation are of the form $V_{i, j}^{4}$ (of which there are F_{1} terms), $V_{i, j}^{2} V_{i^{i}, j}^{2}$, for $(i, j) \neq\left(i^{\prime} j^{\prime}\right)$ (of which there are $\binom{4}{2} F_{1}\left(F_{1}-1\right)$ terms), and $V_{i_{1}, j_{1}} V_{i_{2}, j_{2}} V_{i_{3}, j_{3}} V_{i_{4}, j_{4}}$ for $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right),\left(i_{4}, j_{4}\right)$ all different. Suppose, in the latter case, that $i_{1}, i_{2}, i_{3}, i_{4}$ are not all the same. Let $X=\prod_{i_{m}=i_{1}} V_{i_{m}, j_{m}}$ and $Y=\prod_{i_{m} \neq i_{1}} V_{i_{m}, j_{m}}$. Then $E[X]=0$ by three-wise independence of the V 's, and X and Y are independent
by four-wise independence of the seeds $s_{i, k, \ell}$. Therefore, if $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right),\left(i_{4}, j_{4}\right)$ are all different and $i_{1}, i_{2}, i_{3}, i_{4}$ are not all the same,

$$
E\left[V_{i_{1}, j_{1}} V_{i_{2}, j_{2}} V_{i_{3}, j_{3}} V_{i_{4}, j_{4}}\right]=E[X Y]=0
$$

Thus we have

$$
\begin{align*}
E\left[Z_{k, \ell}^{4}\right] & \leq F_{1}+6 F_{1}\left(F_{1}-1\right)+\sum_{i} E\left[\left(\sum_{j=a_{i}}^{b_{i}-1} V_{i, j}\right)^{4}\right] \\
& \leq 6 F_{1}^{2}+\sum_{i} 4\left(b_{i}-a_{i}\right)^{2} \tag{6}\\
& \leq 10 F_{1}^{2} .
\end{align*}
$$

In line (6), we used Proposition 6, which shows that our construction of random variables is n^{2}-bad 4 -wise independent, with constant 4.

Thus

$$
\operatorname{Var}\left(Z_{k, \ell}^{2}\right)=E\left[Z_{k, \ell}^{4}\right]-E^{2}\left[Z_{k, \ell}^{2}\right] \leq A \cdot F_{1}^{2}
$$

for $A=9$. Now, put $Y_{k}=\frac{\lambda^{2}}{8 \cdot A} \sum_{1 \leq \ell \leq(8 \cdot A) / \lambda^{2}} Z_{k, \ell}^{2}$. Then $\operatorname{Var}\left(Y_{k}\right) \leq \frac{\lambda^{2}}{8} F_{1}^{2}$. By Chebyshev's inequality,

$$
\begin{aligned}
\operatorname{Pr}\left(\left|Y_{k}-F_{1}\right|>\lambda F_{1}\right) & \leq \frac{\operatorname{Var}\left(Y_{k}\right)}{\lambda^{2} F_{1}^{2}} \\
& \leq 1 / 8 .
\end{aligned}
$$

Put $W=$ median $_{k} Y_{k}$. Then $\left|W-F_{1}\right|>\lambda F_{1}$ only if we have $\left|Y_{k}-F_{1}\right|>\lambda F_{1}$ for half of the k 's. By Chernoff's inequality, the probability of this is at most ϵ.

3.4 Cost

Theorem 10 An implementation of algorithm L1 (in Figure 1) is in

$$
\begin{aligned}
\operatorname{PASST}(& \log (M) \log (n) \log (1 / \epsilon) / \lambda^{2}, \\
& \left.\log (n) \log \log (n)+\log (M) \log (1 / \epsilon) / \lambda^{2}\right) .
\end{aligned}
$$

If the input tuples come in the order $\left(0, a_{0},+1\right),\left(1, a_{1},+1\right), \ldots,\left(0, b_{0},-1\right),\left(1, b_{1},-1\right) \ldots$, (or, more generally, if the a tuples come in the same order as the b tuples), then another implementation of algorithm L1 runs in

PASST $\left(\log (M) \log (n) \log (1 / \epsilon) / \lambda^{2}, \log (M) \log (1 / \epsilon) / \lambda^{2}\right)$.
Proof. The algorithm stores

- $\log (1 / \epsilon) / \lambda^{2}$ random variables $Z_{k, \ell}$ whose values are at most $M n$
- a master seed, specifying the seeds and through the seeds the values of the (± 1)-valued random variables $V_{i, j, k, \ell}$

The space to store the counters is $O((\log (M)+$ $\left.\log (n)) \log (1 / \epsilon) / \lambda^{2}\right)$. By our construction, each seed has size $\log M+1$. For each k, ℓ, we need a family of n 4-wise independent seeds, i.e., we need $\log M+$ 1 families of $n 4$-wise independent binary random variables. This can be generated from a master seed of length $(\log M+1)(2 \log n+1)$, as in [3]. Thus for each k, ℓ we need $O(\log (M) \log (n))$ bits of master seed, and so we would need $O\left(\log (M) \log (n) \log (1 / \epsilon) / \lambda^{2}\right)$ bits of storage for the master seed to have $O\left(\log (1 / \epsilon) / \lambda^{2}\right)$ independent parallel repetitions. This dominates the counter storage. (One can achieve some savings by noting that the $1 / \lambda^{2}$ parallel repetitions need not be fully independent, only pairwise independent. Thus, we need $O(\log (M) \log (1 / \epsilon))$ families of $n / \lambda^{2} 4$-wise independent binary random variables, requiring master seed space of only $O(\log (M) \log (1 / \epsilon)(\log n+\log (1 / \lambda)))$, which is incomparable with the counter storage space.)

We now consider the cost of processing a single item $\left(i, c_{i}, \pm 1\right)$. First, one has to produce the seeds $s_{i, k, \ell}$ from the master seeds $S_{k, \ell}$. Using the construction in [3], fix a finite field $F=Z_{2}[x] / \phi$ of characteristic 2 and approximately n elements, where ϕ is an irreducible polynomial of degree $\log n$. Arbitrarily enumerate the invertible elements of $F=\left\{x_{i}\right\}$, for $0 \leq i<n$, such that one can compute x_{i} from i quickly; e.g., let x_{i} (a polynomial in x over Z_{2}) have coefficients given by the binary representation of i, so that x_{i} and i have the same representation. We first need to compute x_{i}^{3} in F, which can be done in time $O(\log (n) \log \log (n))$. For each k and ℓ, we now compute each bit of the seed $s_{i, k, \ell}$ by taking a vector of $2 \log (n)+1$ bits of $S_{k, \ell}$ and dotting it with the vector $\left[1, x_{i}, x_{i}^{3}\right]$, which takes constant time in an arithmetic model. Thus, computing $\log M+1$ bits of $s_{i, k, \ell}$ requires $O(\log (M))$ time, once x_{i}^{3} is known. Finally, from $s_{i, k, \ell}$ we can compute the sum $\sum_{j=0}^{c-1} V_{j}$ in time $O(\log (c))=O(\log (M))$ in an arithmetic model. Altogether, this takes time

$$
O\left(\log (n) \log \log (n)+\log (M) \log (1 / \epsilon) / \lambda^{2}\right)
$$

Finally, we consider the restricted order. (These techniques are standard in coding theory [13]; we include them for completeness.) The savings comes from computing x_{i}^{3} from x_{i-1}^{3} rather than from x_{i}. Suppose we are guaranteed that the tuples occur in the order

$$
\left(0, a_{0},+1\right),\left(1, a_{1},+1\right), \ldots,\left(0, b_{0},-1\right),\left(1, b_{1},-1\right) \ldots,
$$

or just that the a tuples occur in the same order as the b tuples. (In the latter case, we can redefine i so that the a_{i}
tuple occurs i 'th.) Note that the polynomial x is a generator of the nonzero elements of $F=Z_{2}[x] / \phi$. We can then let $x_{i}=x^{i} \in F$, where x_{i} is represented by the string of coefficients of $x^{i} \bmod \phi$. Multiplication of an element $p(x) \in F$ by $x \in F$ consists of giving $p(x)$ a bit shift and then reducing modulo ϕ (i.e., XORing with $\left(\phi-x^{\log n}\right)$ if necessary), which could reasonably take constant time in an arithmetic model. Similarly we can compute $x_{i}^{3}=x^{3 i}$ from $x_{i-1}^{3}=x^{3(i-1)}$ constant time. Thus, under this assumption about the input, the processing algorithm is somewhat simpler and faster in practice as well as faster in theory. Altogether, the processing time is

$$
O\left(\log (M) \log (1 / \epsilon) / \lambda^{2}\right)
$$

per item in an arithmetic model.

3.5 Optimality

Our algorithm is quite efficient in the parameters n, M, and ϵ, but requires space quadratic in $1 / \lambda$. We now show that, for some non-trivial settings of M, for all large settings of n and all small settings of ϵ, any sketching algorithm that approximates the L^{1} difference to within λ requires space close to $1 / \lambda$. Thus our algorithm uses space within a polynomial of optimal.

Theorem 11 Fix $M=1$. For sufficiently small ϵ and for any (large) α and any (small) $\beta>0$, the L^{1} problem is not in PAS $\left(\log ^{\alpha}(n) / \lambda^{1-\beta}\right)$.

A similar result holds in the streaming model.
This proof is omitted to save space and may be found in our journal submission [8].

3.6 Algorithm for Unknown Parameters

If M is not known in advance, we won't know in advance how many random variables to construct. Note that, because of the recursive construction of H and p, this is not a problem. If, at any point, we encounter a tuple $\left(i_{0}, c, \theta\right)$ with c bigger than the maximum C encountered before, we simply do the following. For each k, ℓ, we pick $(\log c-\log C)$ new master seeds $S_{k, \ell}$ of length $O(\log n)$. We use the master seeds to extend randomly each of the n seeds $s_{i, k, \ell}$ to length $\lceil\log c\rceil+1$. We also virtually form larger matrices \hat{H} and pattern p without actually instantiating them.

It is also possible to run the algorithm with a constant factor penalty if n is not known in advance. Initialize n to 2. Start reading the stream, performing the calculation for this n. As the stream is read, maintain $N_{T}=\max _{1 \leq t \leq T} i_{t}$, where T is the current position in the stream and \bar{i}_{t} is the first component of the t^{\prime} th item $\left(i_{t}, c_{i_{t}}, \theta_{t}\right)$.

If, at some point T, we read a tuple $\left(i, c_{i}, \theta\right)$ with $i>$ N_{T}, then, for each k, ℓ, we prepare a new master seed for a family of $i^{2} 4$-wise independent seeds. The union of all seeds is still 4 -wise independent. (In fact, for any collection \mathcal{O} of old seeds, the distribution on any set of new seeds is fully independent of any setting of \mathcal{O}.) We store both the old and the new master seeds. At the end, we will have a final value of n, and, along the way, we will have constructed master seeds for families of size $n, n^{1 / 2}, n^{1 / 4}, n^{1 / 8}, \ldots$. These require storage space $\log (n), \frac{1}{2} \log (n), \frac{1}{4} \log (n) \ldots$, and, thus, the total storage is $O(\log (n))$, ignoring the factor $\log (M) \log (1 / \epsilon) / \lambda^{2}$ that is the same whether or not we know n in advance. The average processing time per item increases by $o(1)$, but the maximum processing time per item increases by $\log n$.

4 Related Work

4.1 Relationship with Sketch Algorithms

Broder et al. [4] consider the problem of detecting nearduplicate web pages. For their and our purposes, a web page is a subset of a large universe, and two web pages A and B are near-duplicates if $r(A, B)=\frac{|A \cap B|}{|A \cup B|}$ is large. They present an algorithm that computes a small fixed-size "sketch" of each web page such that, with high probability, $r(A, B)$ can be approximated to within additive error given the two sketches. A central technique is based on the observation that, under a random injection h of the universe into the integers, the probability that minimum of $h(A \cup B)$ is in $h(A \cap B)$ is exactly $r(A, B)$. Some of the relevant techniques in [4] were used, earlier, in [7, 5].

Our results on computing the L^{1} difference between two functions can be viewed as a sketch algorithm. The sketch function h takes as input (the graph of) a single function and performs the algorithm of Section 3.1, getting a set $\left\{Z_{k, \ell}\right\}$ of random variables. To reconstruct the L^{1} difference from two sketches $\left\{Z_{k, \ell}\right\},\left\{Z_{k, \ell}^{\prime}\right\}$, compute $\rho\left(\left\{Z_{k, \ell}\right\},\left\{Z_{k, \ell}^{\prime}\right\}\right)=$ median $_{k} \operatorname{avg}_{\ell}\left(Z_{k, \ell}-Z_{k, \ell}^{\prime}\right)^{2}$.

Theorem 12 The L^{1} difference of two functions from $\{0, \ldots, n-1\}$ to $\{0, \ldots, M-1\}$ is in

$$
\operatorname{PAS}\left(\log (n) \log (M) \log (1 / \epsilon) / \lambda^{2}\right)
$$

In particular, the L^{1} difference (or L^{2} difference) of two characteristic functions χ_{A} and χ_{B} is the size of the symmetric difference $|A \Delta B|$; we've shown how to approximate it to within small relative error with high probability. The size of the sketch is $O\left(\log (m) \log (n) \log (1 / \epsilon) / \lambda^{2}\right)$, the space bound of the streaming algorithm. Finally, note that computation of these sketches can be performed in the streaming model, which is sometimes an advantage both theoretically and in practice.

Table 1. Relative-error approximability via sketches

	$\|A\|,\|B\|$	$\|A \cap B\|$	$\|A \cup B\|$	$\|A \Delta B\|$
Here	trivial	iff large	yes	yes
Broder et al. $[4]$	trivial	iff large	yes	iff large

Corollary 13 The symmetric difference of two sets from a universe of size n is in

$$
\operatorname{PAS}\left(\log (n) \log (1 / \epsilon) / \lambda^{2}\right)
$$

One can now ask which cells of the $A-B$ Venn diagram can be approximated as functions of (A, B) in the sketch model using our techniques and using the techniques of [4]. First note that $|A|,|B|$, and $|A|+|B|$ are trivial in the sketch model. Next, an additive approximation of r yields an approximation of $(1+r)$ with small relative error; thus, $|A \cup B|=(|A|+|B|) /(1+r)$ can be approximated with small relative error using the techniques of [4] or with small relative error as $(|A|+|B|+|A \Delta B|) / 2$ using our techniques. In general, one cannot approximate $|A \cap B|$ with small relative error, even using randomness [12], but, if $|A \cap B|$ is sufficiently large compared with $|A \cup B|$, the intersection can be approximated as $|A \cap B|=(|A|+|B|) r /(1+r)$ by the algorithm in [4] and as $|A \cap B|=(|A|+|B|-|A \Delta B|) / 2$ by our algorithm. Finally, the algorithm of [4] only approximates $1-r$ additively, and, if $1-r$ is smaller than the error ϵ of approximation (i.e., if $|A \Delta B|<\epsilon|A \cup B|$), then the algorithm of [4], which approximates $|A \Delta B|$ as $|A \Delta B|=(|A|+|B|) \frac{1-r}{1+r}$, does not perform well, ${ }^{5}$ but our algorithm approximates $|A \Delta B|$ with small relative error regardless of the size of $|A \Delta B|$.

This information is summarized in Table 1. Other cells in the Venn diagram reduce to these results, e.g., by complementing A or B (but note that A and A-complement may have different sizes).

4.2 Approximating Sizes of Supports and the Zeroth Frequency Moment

In this section, we briefly consider three variants.
Let

$$
\begin{aligned}
F_{0}^{\neq} & =\left|\left\{i: a_{i} \neq b_{i}\right\}\right| \\
F_{0}^{\neq 0} & =\left|\left\{i:\left(a_{i}=0 \wedge b_{i} \neq 0\right) \vee\left(a_{i} \neq 0 \wedge b_{i}=0\right)\right\}\right| \\
F_{0}^{\tau} & =\left|\left\{i:\left(a_{i}>\tau b_{i}\right) \vee\left(b_{i}>\tau a_{i}\right)\right\}\right|
\end{aligned}
$$

[^5]Note that these are all generalizations of $F_{0}=$ $\left|\left\{i: a_{i} \neq 0\right\}\right|$, which was studied in [1].

Theorem 14

1. $F_{0}^{\neq} \in \operatorname{PASST}\left(\log (M) \log (n) \log (1 / \epsilon) / \lambda^{2}\right)$.
2. $F_{0}^{\neq 0} \in \operatorname{PASST}\left(\log (M) \log (n) \log (1 / \epsilon) / \lambda^{2}\right)$.
3. For all fixed $\lambda<1, \epsilon<1 / 4$, and $M>1 / \tau+2$, and for any $f=o(n)$, we have $F_{0}^{\tau} \notin \operatorname{PASST}(f(n))$.

Similar results hold for the sketch model.
The proof is omitted because of space limitations and can be found in our journal submission [8].

4.3 Approximating the L^{2} Difference and the Second Frequency Moment

Alon et al. [1] consider the following problem. The input is a sequence of elements from $[n]=\{0, \ldots, n-1\}$. An element $i \in[n]$ may occur many times; we let a_{i} denote the number of times i occurs in the sequence. Now the length of the sequence is some m unrelated to n. (This notation attaches the same semantics to n, a_{i}, and b_{i} as Section 3 does, namely, n is the number of different types of items and our goal is to approximate $\sum_{i=0}^{n-1}\left|a_{i}-b_{i}\right|^{p}$. Syntactically, the parameters (n, m) here play the roles of (M, n) in Definition 1 , since, in the input format of this section, there are m items, each of which is a number between 0 and $n-1$.)

The k 'th frequency moment F_{k} of the sequence is defined to be $\sum a_{i}^{k}$. Note that the first frequency moment $F_{1}=\sum a_{i}$ is just m and is therefore trivial to compute, but other frequency moments are non-trivial. Alon et al. [1] give a variety of upper and lower bounds for frequency moments. In particular, they show

Theorem 15 ([1]) Let $F_{2}=\sum a_{i}^{2}$, where a_{i} is the number of occurrences of i in the input stream. Then $F_{2} \in$ $\operatorname{PASST}\left((\log n+\log m) \log (1 / \epsilon) / \lambda^{2}, \log (n) \log \log (n)+\right.$ $\left.\log (1 / \epsilon) / \lambda^{2}\right)$.

In this result and the following corollary, the time cost of $\log n \log \log n$ can be reduced to 1 on a machine that can perform finite field multiplication on elements of size $\log n$ in constant time. It can also be reduced under suitable restrictions on the input order.

We sketch the algorithm, without proof, in order to illustrate the previous work that is our point of departure. A full treatment of the correctness and workspace of the algorithm of Theorem 15 may be found in [1].

Proof. [sketch]

For each $k, 1 \leq k \leq O(\log (1 / \epsilon))$ and for each $\ell, 1 \leq$ $\ell \leq O\left(1 / \lambda^{2}\right)$, let $\left\{v_{k \ell}[i]\right\}_{i}$ be a set of 4 -wise independent random variables. Output median ${ }_{k} \operatorname{avg}_{\ell}\left(\sum a_{i} v_{k \ell}[i]\right)^{2}$.

Consider now a generalization of the input allowing signed examples. That is, each item in the sequence consists of a type $i \in[n]$ and a sign \pm, and there may be many items of type i of each sign. Denote by a_{i} the number of positive occurrences of i and by b_{i} the number of negative occurrences of i, and let F_{k} denote $\sum\left|a_{i}-b_{i}\right|^{k}$.

We have obtained the following corollary. It was obtained independently by Alon et al. [2].

Corollary $16 F_{2} \in \operatorname{PASST}\left((\log n+\log m) \log (1 / \epsilon) / \lambda^{2}\right.$, $\left.\log (n) \log \log (n)+\log (1 / \epsilon) / \lambda^{2}\right)$. $\left(\right.$ Here $F_{2}=\sum\left(a_{i}-b_{i}\right)^{2}$, where a_{i} is the number of positive occurrences of i in the input and b_{i} is the number of negative occurrences of i in the input.)
Proof. [sketch] With k, ℓ, and $v_{k \ell}[i]$ as above, output median $_{k} \operatorname{avg}_{\ell}\left(\sum\left(a_{i}-b_{i}\right) v_{k \ell}[i]\right)^{2}$.

The algorithm of Corollary 16 can be used to approximate the L^{2} difference between the two functions a and b.

Note that, for signed input examples, computing the frequency moment F_{1} is non-trivial. In fact, we don't know how to compute F_{1} in the input representation of Corollary 16.

For any p, the problem of computing the p^{\prime} th frequency moment and that of computing the corresponding L^{p} difference of functions differs only in the representation of the input stream. Given an L^{p} instance stream $\left\langle\left(i, c_{i}, \theta_{i}\right)\right\rangle$, one can expand each item $\left(i, c_{i}, \theta_{i}\right)$ into c_{i} occurrences of (θ, i) to get a frequency moment instance. Therefore a frequency moment algorithm for signed examples can be used to compute the L^{p} difference of functions, but note that, in general, one pays a high cost in processing time, even just to read the input-the input has been expanded exponentially. The algorithm of Corollary 16 avoids this cost, because it is efficient in both input representations.

4.4 Earlier work on probabilistic counting

Flajolet and Martin [9] give a small-space randomized algorithm that approximates the number of distinct elements in a stream. Their algorithm assumed the existence of certain ideal hash functions. Later, Alon et al. [1] improved this result by substituting a practically available family of hash functions and also gave a variety of other results on approximating the frequency moments. Many results of this kind, some old and some new, are described in [10].

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. In Proc. of 28 'th Symp. on the Theory of Computing, ACM Press, New York, pages 20-29, 1996. Expanded version to appear in J. Comput. System Sci.
[2] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking Join and Self-Join Sizes in Limited Storage. In Proc. of the 18 'th Symp. on Principles of Database Systems, ACM Press, New York, pages 10-20, 1999.
[3] N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, New York, 1992.
[4] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent permutations. In Proc. of the 30'th Symp. on the Theory of Computing, ACM Press, New York, pages 327-336, 1998.
[5] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic Clustering of the Web. In Proc. Sixth Int'l. World Wide Web Conference, World Wide Web Consortium, Cambridge, pages 391-404, 1997.
[6] Cisco NetFlow, 1998.
http://www.cisco.com/warp/public /732/netflow/.
[7] E. Cohen. Size-estimation framework with applications to transitive closure and reachability. In J. Comput. System Sci., 55:441-453, 1997. (Special issue of selected papers from 1994 IEEE Symp. on Foundations of Computer Science.)
[8] http://www.research.att.com/~jf /pubs/L1diff.ps
[9] P. Flajolet and G. N. Martin. Probabilistic Counting. In Proc. 24'th Foundations of Computer Science Conference, IEEE Computer Society, Los Alamitos, pages 76-82, 1983.
[10] P. Gibbons and Y. Matias. Synopsis Data Structures for Massive Data Sets. To appear in Proc. 1998 DIMACS Workshop on External Memory Algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Providence. Abstract in Proc. Tenth Symposium on Discrete Algorithms, ACM Press, New York and Society for Industrial and Applied Mathematics, Philadelphia, pages S909-910, 1999.
[11] M. Rauch Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Technical Report 1998-011, Digital Equipment Corporation Systems Research Center, May 1998.
[12] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
[13] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North Holland Mathematical Library, Vol. 16, North Holland, New York, 1977.

[^0]: *An expanded version of this paper has been submitted for journal publication and is available in preprint form at http://www.research.att.com/~jf/pubs/L1diff.ps
 ${ }^{\dagger}$ On leave from the Univ. of Pennsylvania. Part of this work was done at the Univ. of Pennsylvania, supported by grants NSF CCR96-19910 and ARO DAAH04-95-1-0092.
 ${ }^{\ddagger}$ Supported by grant ONR N00014-97-1-0505, MURI.

[^1]: ${ }^{1}$ Roughly speaking, a "flow" is a semantically coherent sequence of packets sent by the source and reassembled and interpreted at the destination. Any precise definition of "flow" would have to depend on the application(s) that the source and destination processes were using to produce and interpret the packets. From the router's point of view, a flow is just a set of packets with the same source and destination IP-addresses whose arrival times at the routers are close enough, for a tunable definition of "close."

[^2]: ${ }^{2}$ A WorldNet gateway router now generates more that 10 Gb of NetFlow data each day.

[^3]: ${ }^{3}$ The property of n^{2}-bad 4 -wise independence is defined precisely in Section 3 below.

[^4]: ${ }^{4}$ This is not always possible, e.g., not if $f(x, y)$ is the x 'th bit of y.

[^5]: ${ }^{5}$ This approximation was never a stated goal in [4].

