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Abstract are ofterdistributed Several different, physically separated

network elements may receive or generate data streams that,

We give a space-efficient, one-pass algorithm for approx- together, comprise one logical data set; to be of use in oper-
imating the ! difference}", |a; — b;| between two func-  ations, the streams must be analyzed locally and their syn-
tions, when the function valuas andb; are given as data  opses sent to a central operations facility. The enormous
streams, and their order is chosen by an adversary. Our scale, distributed nature, and one-pass processing require-
main technical innovation is a method of constructing fam- ment on the data sets of interest must be addressed with
ilies {V;} of limited-independence random variables that new algorithmic techniques.
are range-summable, by which we mean tﬁ%ﬁ;é Vi(s) We present one fundamental new technique here: a
is computable in timeolylog(c), for all seedss. These  space-efficient, one-pass algorithm for approximating the
random-variable families may be of interest outside our L' difference", |a; — b;| between two functions, when
current application domain, i.e., massive data streams gen-the function values; andb; are given as data streams, and
erated by communication networks. OLt-difference al- their order is chosen by an adversary. This algorithm fits
gorithm can be viewed as a “sketching” algorithm, in naturally into a toolkit for Internet-traffic monitoring. For
the sense of [Broder, Charikar, Frieze, and Mitzenmacher, example, Cisco routers can now be instrumented with the
STOC '98, pp. 327-336], and our algorithm performs bet- NetFlow feature [6]. As packets travel through the router,
ter than that of Broder et al. when used to approximate the the NetFlow software produces summary statistics on each
symmetric difference of two sets with small symmetric dif- flow.! Three of the fields in the flow records are source IP-
ference. address, destination IP-address, and total number of bytes
of data in the flow. At the end of a day (or a week, or an
hour, depending on what the appropriate monitoring inter-
val is and how much local storage is available), the router
(or, more accurately, a computer that has bdeoked up”
to the router for monitoring purposes) can assemble a set of
values(z, f;(z)), wherez is a source-destination pair, and
f:(2) is the total number of bytes sent from the source to the
destination during a time interval The L' difference be-

1. Introduction

Massive data sets are increasingly important in a wide
range of applications, including observational sciences,
product marketing, and monitoring and operations of large

o k i icall i . . . ;
;ystems n netwo.r' operations, raw data typlcg y armve tween two such functions assembled during different inter-
in streamsand decisions must be made by algorithms that ; : S

vals or at different routers is a good indication of the extent
make one pass over each stream, throw much of the ravvto which traffic patterns differ
data away, and produce “synopses” or “sketches” for further o lori hp I h ' q | |
processing. Moreover, network-generated massive data sets OU' @lgorithm allows the routers and a central contro

*An expanded version of this paper has been submitted !Roughly speaking, a “flow” is a semantically coherent sequence of
for journal publication and is available in preprint form at packets sent by the source and reassembled and interpreted at the destina-
http://lwww.research.att.com/"jf/pubs/L1diff.ps tion. Any precise definition of “flow” would have to depend on the applica-

tOn leave from the Univ. of Pennsylvania. Part of this work was done tion(s) that the source and destination processes were using to produce and
at the Univ. of Pennsylvania, supported by grants NL$FR96-19910 and interpret the packets. From the router’s point of view, a flow is just a set of
ARO DAAH04-95-1-0092. packets with the same source and destination IP-addresses whose arrival

{Supported by grant ONR N00014-97-1-0505, MURI. times at the routers are close enough, for a tunableitdefirof “close.”



and storage facility to compute! differences efficiently families of random variables that aré-bad 4-
under a variety of constraints. First, a router may want the wise independerst
L' difference betweerf;, and ;1. The router can store a

, . The property of2?-bad 4-wise independence suffices for
small “sketch” of f;, throw out all other information about

- ) the time- and spackeunds on our algorithm. Construc-

f¢, and still be able to approximallf; — fe+1[l fromthe o, of tryly 4-wise independent, range-summable random-

sketch off; and (a sketch Offet1. variable families for which the range sums can be computed
The functlonsft assembled at each of several remote 55 efficiently as in our construction remains open.

routersf; at time¢ may be sent to a central tape-storage  The rest of this paper is organized as follows. In Sec-

facility C'. As the data are written to tap€, may wantto  tjon 2, we give precise statements of our “streaming” model

compute thel.! difference betweerf." and f{*), but this  of computation and complexity measures for streaming and

computation presents several challenges. First, each routesketching algorithms. In Section 3, we present our main

R; should transmit its statistical data whéi's load islow  technical results. Section 4 explains the relationship of our

and theR;-C' paths have extra capacity; therefore, the data algorithm to other recent work, including that of Brogr

may arrive atC' from the R;’s in an arbitrarily interleaved  al. [4] on sketching and that of Aloet al.[1] on frequency

manner. Also, typically the’s for which f(x) # 0 consti- moments. Some details have been omitted from this ex-

tute a small fraction of alk’s; thus, ; should only trans-  tended abstract because of space limitations; they can be

mit (x, £\ (z)) when ) (z) # 0. The set of transmitted  found in our journal submission [8].

z’s is not predictable by”. Finally, because of thbuge

size of these streamsthe central facility will not wantto 2 Models of Computation

buffer them in the course of writing them to tape (and can-

not read from one part of the tape while writingto another),  Our model is closely related to that of Henzinger, Ragha-

and telling R; to pause is not always possible. Neverthe- van, and Rajagopalan [11]. We also describe a related

less, our algorlthm supports approximating thk differ- sketch model that has been usedy.,in [4].

ence betweem and ft at C', because it requirelt-

tle workspace, requirditle time to procesgach incoming 2.1 The Streaming Model

item, and can process in one pass all the values of both func-

tions{(z, ft(l)(l‘))} U{(z, ft(z)(x))} in any permutation. As in [11], adata streamis a sequence of data items
Our L!-difference algorithm achieves the following per- 1,72, - .., o Such that, on eachassthrough the stream,
formance: the items are read once in increasing order of their indices.
We assume the items come from a set of siz&/, so that
Consider two data streams of length at most eachs; has sizdog M. In our computational model, we
n, each representing thaon-zero points on assume that the input is one or more data streams. We focus
the graph of an integer-valued function on a on two resources—theorkspaceequired in words and the
domain of sizen. Assume that the maxi- time to procesan item in the stream. An algorithm will typ-
mum value of either function on this domain ically also require pre- and post-processing time, but usually
is M. Then a one-pass streaming algorithm applications can afford more time for these tasks.
can compute with probability — ¢ an approx- o ]
imation A to the L'-difference B of the two Definition 1 The complexity class
functions, such thai4 — B| < AB, using PASST(s(e, A, n, M),t(e, A, n, M)) ' (to be read as
spaceO(log(M) log(n) log(1/¢)/A?) and time “probably approximately streaming space complexity
O(log(n) loglog(n) + log(M)log(1/€)/A2) to s(e, A\, n, M). and time complexny(e, A, n, M)") contains
process each item. Theput streams may be in- those functionsf for which one can output a random
terleaved in an arbitrary (adversarial) order. variableX such thatX — f| < Af with probability at least

1 — ¢ and computation ok can be done by making a single
The main technical innovation used in this algorithm is pass over the data, using workspace at m@st\, n, M)
a limited-independence random-variable construction thatand taking time at mos{e, A, n, M) to process each of the

may prove useful in other contexts: n items, each of which is in the rangeo M — 1.
A family {Vi(s)} of uniform +1-valued If s = ¢, we also writePASST(s) for PASST(s,¢). N
random variables is calledange-summablef We will also abuse notation and write € PASST (s, )
3_1 Vi (s) can be computed in timelylog(c), to indicate that an algorithml for f witnesses thaf €
for all seedss. We construct range-summable PASST(s, ).

2A WorldNet gateway router now generates more that 10Gb of NetFlow 3The property of.?-bad 4-wise independence is defined precisely in
data each day. Section 3 below.



2.2 The Sketch Model

Sketches were used in [4] to check whether two docu-
ments are nearly duplicates. A sketch can also be regarded

as asynopsis data structufd0].

Definition 2 The complexity clasBAS(s(e, A, n, M))) (to

Shift the bits ofz one place to the left or one place to
the right.

¢ Perform the bitwise AND, OR, or XOR aof andy.
¢ Add x andy or subtracte from y.

e Assign toz the number of 1's among the bits of

be read as “probably approximately sketch complexity \ye call such a model aarithmeticmodel and give com-

s(e, A, n, M)") contains those functiong : X x X — 7
of two inputs for which there exists a sét of size 2¢,
a randomizedsketch functiorh : X — S, and a ran-
domizedreconstruction functiorp : S x S — Z such
that, for all z1,z2 € X, with probability at leastl — ¢,
lp(h(21), h(w2)) — f(21, 22)| < Af(21, 22). u

By “randomized function” of; inputs, we mean a func-
tion of k£ + 1 variables. The first input is distinguished as the
source of randomness. It is naeaessary that, for all set-
tings of the lask inputs, for most settings of the first input,
the function outputs the same value.

Note that we can also define the sketch complexity of a

functionf : X x Y — Z for X # Y. There may be two
different sketch functions involved.

plexity bounds in it. These operations all take at most lin-
ear time in a bit model; thus a machine that performs such
operations bit by bit will run more slowly by a factor of
max(log M, logn). Multiplication over a finite field may
take more thatog n time in a bit model; we use this opera-
tion but donotassume that it can be performed in constant
time.

3 The L' Difference of Functions
3.1 Algorithm for Known Parameters

We consider the following problem. The input stream
is a sequence of tuples of the fofiya;, +1) or (¢, b;, —1)

There are connections between the sketch model and théuch that, for eachin the universgn], there is at most one
streaming model. Lek'Y" denote the set of concatenations tUPle of the form(i, a;, +-1) and at most one tuple of the
of z € X with y € Y. It has been noted in [12] and else- form (z,b;, —1). If there is no tuple of the forni, a;, +1)
where that a function oY with low streaming complex-  then defines; to be zero for our analysis, and similarly for
ity also has low one-round communication complexity (re- bi- Itis importantthat tuples of the forii, 0, +:1) not con-

garded as a function o x Y"), because it suffices to com-

tribute to the size of the input. Also note that, in general, a

municate the memory contents of the hypothesized streamsSmall-space streaming algorithm cannot know for whilsh

ing algorithm after reading th& part of the input. Some-

the tuple(i, a;, +1) does not appear. The goal is to approx-

times one can also produce a low sketch-complexity algo-imate the value ofy = 3 |a; — b;| to within £AF;, with

rithm from an algorithm with low streaming complexity.
Our main result is an example.

probability at least — e.
Let M be an upper bound om; andb;. We assume

Also, in practice, it may be useful for the sketch func- thatn and/ are known in advance; in Section 3.6 we dis-
tion A to have low streaming complexity. If the s&t is cuss small modifications to make when either of these is not

large enough to warrant sketching, then it may also warrant<nown in advance. _ _ _
processing by an efficient streaming algorithm. Our algorithm will need a special family of uniforsal -
Formally, we have: valued random variables. Feachk, 1 < k < 4log(1/¢),

and each, 1 < ¢ < 72/A?, choose anaster seed, , and
useSy  to define a 4-wise independent family; ;. .} of

n seeds, each of lengthg A/ + 1. Each seed; ;. , inturn
defines a range-summabie’-bad 4-wise independent fam-
ily {Vi ; ¢} of M uniform+t1-valued random variables, an
object that we now define.

Theorem 3 If f € PAS(s(e, A, n, M)) via sketch func-
tion h € PASST(s(e, A\, n, M), t(e,\,n, M)), thenf €
PASST(2s(e, A\, n/2, M), t(e, \,n/2, M)).

2.3 Arithmetic and Bit Complexity

Definition 4 A family {V;(s)} of uniform +1-valued ran-

Often one will run a streaming algorithm on a stream of dom variables with sample point (seed)s calledrange-

n items of sizdog M on a computer with word size at least summable,n?-bad 4-wise independerif the following
max(log M, logn). We assume that the following opera- properties are satisfied:

tions can be performed in constant time on words: . i L
P 1. The family{V;} is 3-wise independent.

int - I
* Copyxintoy 2. For alls, Z;Ié V;(s) can be computed in time poly-

logarithmic inc.

4This is not always possible,g.,not if f(x,y) is thez'th bit of y.



3. Foralla < b,

B Vis) | | = 0((b—a)?).

3.2 The Construction of Random Variables

This construction is the main technical innovation of our
paper. Itis also a significant point of departure from the
work on frequency moments by Alaat al. [1]. The rela-
tionship between our algorithm and the frequency-moment
algorithms is explained in Section 4.

Fix and forget:, &, and¢. We now describe the con-
struction of a single family of// random variabled’;,

0 < j < M, such that, for alk < M, one can compute

Note that 4-wise independence is sufficient to achieve prop- ZC / V; quickly.

erty 3 and that the trivial upper bound @((b — a)*);

Suppose without loss of generality, thdtis a power of

we don’t know how to achieve property 2 for truly 4-wise 2. |et H 104 1) be the matrix with}/ columns andog M
independent random variables. The 3-wise independencgows such that th¢'th column is the binary expansion f

insures that most 4-tuples df’'s are independent. Of

the remaining 4-tuples, with((b — a)*) exceptions, the
(j1, ja, js, ja) makingV;, V;, Vi, V;, = +1 are balanced by
(41, J2, js, ja) makingV;, V;, V5, V;, = —1, and thus the net
contribution to the expected value is zero.

For example,
0101 0 1 01
Hz=10 01 1 00 1 1
000 01 1 11

We can use any standard construction to define a fam-

ily of seeds from a master seeglg.,the construction based

on BCH codes in [3]. From a master seggl, and num-

bersi, ¢, one can construct the segd; , and then the value
E;;é Vz’,j,k,[(si,k,ﬁ) QUICk|y when needed.
The high level algorithm is given in Figure 1.

Figure 1. High level L! algorithm

Algorithm L1({(i, ¢;, 6;)))

Initialize: Fork = 1to4log(1/¢) do
For{ =1to (8- A)/A\? do
/lany A > A’ will work for A’ known
// to be between 7.5 and 9.
{Zke=0;
pick a master seefl; ,
from the(k, ¢)’th sample spade
/I This implicitly definess; x ,
/[ for 0 < ¢ < n and in turn implicitly defines
Vi kefor0<i<mnandd <j< M.

For each tupléi, ¢;, ;) in the input stream do
Fork = 1to4log(1/e€) do

For{=1to (8- A)/A\* do

Zie += 0; Zcz_l Vijkt

Outputmediang avg, Z,iz .

Let H(logM) be formed fromH 1.4 3r) by adding a row
of 1's at the top.

Hs) =

O = O =
_——_— O =
— o e

1
1
0
1

OO O =
O O ==
S == =
—o o~

We will index thelog M + 1 rows of H starting with—1
for the row of all 1's, therd for the row consisting of tha"-
bits of the binary expansions, and continue consecutively up
to the(log(M)—1)Strow. We will left multiply £ by a seed
s of lengthlog M + 1 and use the same indexing scheme for
bits of s as for rows off/. We will also refer to the last bit
of s and the last row of! as the “most significant.”

Given a seed € {0,1}'°eM+! Jets . H; denote the
inner product overZ, of s with the;'th column of /. Let
i, denote thé:'th bit of the binary expansion of, starting
from zero. Definef(¢) b

f@) =

Thus the sequengeof valuesf (i), i = 0, 1,2, ..,
as:

(i0Vi1)®(i2Viz)D- - -©(fog r—2Vilog ar—1). (1)

is given

011110001000 1000 10000111 01110111

10000111 01110111 1000 011101110111 ...,

by starting withpg = 0, puttingpi+2 = prPrPrpr, Where
7 denotes the bitwise negation of the patterrand taking
the limit. Finally, putV; = (—1)(5'Hj)+f(j).

Proposition 5 The quantity) ;_
in time polylogarithmicire.

V;(s) can be computed



Proof. First assume thatis a power of 4. We may then
assume that = M. ThenH .4 3r) is given recursively by

1...1 1...1 1...1 1...1
H(logM—Z) H(logM—Z) H(logM—Z) H(logM—Z)
0...0 1.1 0...0 1.1
0...0 0...0 1.1 1.1

Also, note that the first/ bits of p have the fornpiog ar =
Plog M —2Plog M —2Plog M —2Plog M —2- Let s’ be a String of
lengthlog M — 2 that is equal tos without the —1'st bit
and without the two most significant bits, and fétdenote
the fraction of 1's ins’ - H1o5 a7—2). Also, for bitsby, b,

1...1
let f,,,, denote the fraction of 1's in - Hb(logMb‘z)
Leby
by - - by

Thenfy,s, = f' Or fv,b, = 1 — f’, depending ohy, b5, and
the three bits of dropped frons’ (namely,—1, log M — 2,
andlog M — 1). Recursively computg¢’, and use the value
to compute all thefi,,,’s and, from that, the number of 1's
in Zj;é V;(s). This procedure requires recursive calls of
depth that is logarithmic in.

Similarly, one can computg (<)) ! v, '
Finally, if ¢ is not a power of4, write the interval
{0,...,(c = 1)} = [0,¢) as the disjoint union of at most

O(log(c)) intervals, each of the forfg4", (¢ + 1)4"). Use
the above technique to compute the fractiod’tsf equal to

1 over each subinterval, and then combine. If one is care-
ful to perform the procedure bottom up, the entire proce-

dure requires judbg(c) time, notlog?(c) time, in an arith-
metic model. For example, suppase- 22. Write [0, 22)
as [0,16) U [16,20) U [20,21) U [21,22). A naive way

the left of the inequality, since, forach desired outcome
(v1,va, vs, v4), the sets

{s: (V]l (5)’ ij(s)’ Vja(s)’ ‘/j4(5)) = (vl’v2’v3’v4)}

have the same size by linear algebra. R
Secondly, observe thatebause any three columns iBf

are independent, if the columig;, , ;,, H;,, andH;, are

dependent, then their mod 2 sum is zero. In that case, the

seeds is irrelevant because

I Vvi(s)

k=1

(_1)(8'f1jk)+f(jk)

S

1
_1)f(jl)+f(j2)+f(ja)+f(j4).

—_

(2)

Line (2) follows from the fact that the columns
H;,  Hj,, Hj,, and H;, sum to zero. Thus it is sufficient
to show that

2 ¥

a<ji,j2,55,J4<b
J1Dj2Bj3Bja=0

< Ala,b)(b— a)z,

Ula,b) (_1)f(j1)+f(jz)+f(j3)+f(j4)

for someA(«a, b) that we find in the course of the proof. We
will give a recurrence ford(«, b) and discuss a computer
search ovet, b with b — « small that yields a better overall
bound.

Claim 7 U (4a, 4b) = 16U (a, b).

Proof. Let (51, j2, j3, j4) be a dependent tuple jaa, 4b)*.
Consider the two least significant bits of tlis. Of the

to proceed would be to perform recursive calls 3 deep to 64 possibilities making the columns dependent, 24 are odd

computey_;” V;, then calls 2 deep foy_ 2 V5, then 1

deep for each of’;; andVs;. Better would be to compute
Vao directly, use this value to compute; and "2 . V;
(note thatl/; 5 is easy to compute froiiz), and finally use
> 216 Vs to computey” 2 V.

Altogether, this requires tim@(log(c)) in an arithmetic
model and in any casleg®")(c) time in a bit-complexity
model. |

We now show that this construction yields a family of
random variables that is?-bad 4-wise independent. The
fact that{V; } is three-wise independent s in [3].
Proposition 6 For all « < b we have

4

E ivj(s) < 4(b—a)?.

Proof. First, note that, for some tupldgi, jz, js, ja),
the ji'st, j»'d, j5'd, andj,'th columns of H are indepen-

(i.e, V3,V V,, V;, = —1) and 40 are even. Given a tuple
(j1,J2, Js, ja) with odd configuration of the two least sig-
nificant bits {.e,, such that for an odd number @§ bit O

or bit 1 of j; is 1), pair it with (57, 7%, 74, 74) such that;!
and j; agree on all but the least two significant bits, and
(71,44, J5, j4) has an even configuration of the two least
significant bits. If(j1, j2, j3, j4) iS @ tuple having one of
the 16 other configurations of the two least significant bits,
attempt to pair it inductively withj1, j5, j5, 74) such that

Ji and j! have the same two least significant bits. Thus
U(4a,4b) = 16U (a, b). &

We now return to general andb. First assumeé — a >
16. Let a’ be the smallest multiple of 4 that is at least
and letd’ be the greatest multiple of 4 that is at maést
(Sinceb — a > 16 > 4, itfollows thata < o’ < V' <
b.) The number of unpaired tuples i, ) is at most the
number of unpaired tuples ia’,5")* plus the number of
unpaired tuples having at least one columfuire’)U[d, b).
The number of unpaired tuples [n’, v')* is U(a’, V')

dent. These tuples do not contribute to the expectation onl6U (a’/4,b'/4) < A(a’/4,b'/4)(b' — &')?, by induction.



We now count the number of unpaired tuples having at leastthis &, there are at moS06(b — a) = 24 -6 - (17/8)(b—a)

one columnirfa, a’) U [¥', b). ways to pick a dependent unpaired tuple with all columns
There are at most six tuples such that= j» = j3 = j4 different, and at most6(b — a) + 6 < 37(b — a) ways to

isinfa,a’)U[V,b). There are at mos(h — a) tuples such  pick a tuple with a repeated column, such that all columns

that two of the columns are i, @’) U [V’, b) and two of the  are in[a, b) and some column is ifu, «’) U [6', b), for a total

columns are identical and equal to some other value. (Afac-of 343(b — «a).

tor (3) = 6 is needed to assign the four columns to thetwo ~ We need to sum over ali such that* < (b — a). Thus

values). We now count the tuples whose the columns arewe get thal/(«, b) is

all different. Pick an assignment of roles for the columns,
which contributes a factor 24. There are at most 6 ways to
pick j; in[a,a’) U [V, b). Next we will pick j; andjs. Sup-
pose that the least significant bit in whighand js differ is
thek'th. Let o« be the least multiple af* +! that is at least

a, and let3 be the greatest multiple af'+* that is at most

b, where
K= {

If & < js,j3 < B, then we can formy’, andj} by tog-
gling thek’'th bit of j» andjs and pair(ji, j2, js, j4) With
(J1, 45, J%, ja). We then have

k—1;
kE+1;

k odd
k even

ea<a<ijyis<p<b
o (j1,7%, 7%, 7a) is a dependent tuple

* (Jj1,J9,J5,Ja) @nd(j1, jo, js, j4) have opposite parity.
To see this, assume without loss of generality that the
k'th bits of j, andjs are0 and 1, respectively. Then
the disjunction in expansion (1) corresponding to bits
k andk’ for each off(j4) and f(j3) is odd because
of the 1 in bitk but thek-£’ disjunction forf(j%) and
f(j2) differ because th&'th bits are zero but thé”'th
bits differ. All the other disjunctions are the same in

f(j2) asf(jz) andinf(js) asf(j3)-

Thus we need only considgs and js such thatj. is less
thana or greater tharg. If o —a < 2% then clearly there
are at most*’ ways to choosgs € [a,«). Otherwise, if
a —a > 2%, then the sefa, o — 2%") U[a 4 2¥' a) is
closed under toggling th&'th bit; so, if j» andjs are both
in[a, o — 28") Ua + 28", a) U [a, 3), then we can paif,
andjs (and similarly at thé end). The set of remaining
possibilities forj, and js is [a — 2¢",a + 2¥') C [o —
2%’ ), which has size at mogt’. Thus, whether or not
a < a — 2 and whether or not > 2 + 2, there are
at most2*' possibilities forj, in [« — 2 a + 2¥') and
another2®’ possibilities in[b — 28", 3 + 2*'), so we get
2k'+1 < 9k+2 possibilities forj, in total. Thek + 1 least
significant bits ofj; are determined (thk least significant
are the same as i3 and bitk is opposite); so there are at
most [ (b — a)/28+1] < 1I(b — a)/2¥+! ways to choose
Js. (Note that, becaude— @ > 16, we have(b —a + 1) <
11(b — a).) Thus there are at moét7/8)(b — a) ways to
pick j» andjs. After that,j, is determined. Altogether, for

< U(d, ')+ 343(b — a) log, (b — a)
/ b/
< 16U (“Z Z) +343(b — a) log, (b — a)
a U\ (b —a\’

< JRR— — —
< 16A<4,4)< 1 ) + 343(b — a) log, (b — a)

a v
< A(Z’ Z) (b —a’')* +343(b — a) log, (b — a)

a v
< A(Z’ Z) (b—a)? +343(b — a)log,(b — a),

and so, ifA(a, b)(b—a)? > A(a’'/4,V' /4)(b—a)?+343(b—
a)log, (b — a), thenU(a,b) < A(a,b)(b — a)?. Dividing
by (b — a)?, we get

log, (b — a)

Ala,b) > A([a/4], [b/4]) + 343 (b—a)

Let
D;

A(a, b).

sup
4ig(b—a)<ait

For eachC' > 2, we have the recurrence

DiZ{

whereM¢ = max(Dy, ..., Dc—1) is a bound om4(a, b)
overd < b—a < 4t fori< C,ie,b—a <4 We
want to find a minimal solution. We will discuss below how
we establishi/ precisely using an exhaustive computer
search.

Recurrence (3) has a solution

Dis1+343-3% i>C

Me 1< O, (3)

j=C
C+1/3

D;

< Mg+ 686
where the empty sum is taken to be zero. If we @ut 6
we get

D; < Mg +1.42,

whence, for alk, b, A(a, b) < Ms + 1.42.
It remains to evaluat&/s, which we do by direct search.
We now discuss our search strategy.



Claim 8 The valueM¢c = max;_,<40=02c A(a,b) is at
most

Proof. Supposda, b) is a pair witht — a < 22¢ buta >
22¢=1 We producer’, b’ with «’ < a andd’ < b such that
b —a =b—aandA(a’,b') = A(a,b). The claim follows.
First, we show that, i;, b < 27, thenA(a, b) = A(2" —
b,2" —a). Given a tupldj, j2, js, ja) € [a, b)?, write each

J with r bits, padding with leading zeros if necessary. Form

Jji =27 — 1 — j;, by negating all the bits ig;;. This proce-
dure toggles the parity of the %’ disjunct in the expansion
of f(j) when thek-%' bits are00 or 11; for eachk, in a

Theorem 9 The algorithm described in Figure 1 outputs a
random variablelV = mediamkzngZ,iZ such thajiw” —
Fi| < AFy with probability at leastl — .

Proof. Note that, for each < min(a;, b;), bothV; ; . ,and
—V; .k ¢ are added t&y,, and, forj > max(a;, b;), neither
Vi jkenor—=V; ; ., is added. Thus

Zre=) 2.

1 min(a;,b;)<j<max(as,b;)

Vi j ke

We shall now comput&'[Z7,] and E[Z},], for eachk, £.
We shall use the convention that, ., ., = —> <.,
if b < a. For notational convenience, we [gt; denote

dependent tuple, there are an even number of columns that’i,j,k,¢ in the analysis below.

are00 or 11 in bitsk and’ and an even number of columns
that are01 or 10 there. It follows that(ji, j2, js, j4) and

(71, 44, J, &) have the same parity. Note also that this map-

ping is a bijection froma, b) to [2" — b, 2" — ). From this

we can conclude that(a, b) = A(2"—b,2"—a). Similarly,

if a,b<3-2"thenA(a,b) = A(3-2" —5,3-2" —a).
Finally:

o If 22¢-1 <« q < 2%¢ then
— 1f 22¢=1 < b < 22¢ then put(d’, b')
b,22¢ — a).
— If 22¢ < b < 3229~ then put(d/, b')
220—1 —b 3. 220—1 _ Cl).
— 1f 3-2¢~1 < b, then noté < a 4 22¢ < 22¢+1,
Put(a’, b') = (22C+1 — b, 22C+1 _ q),

(220 _

(3

o If 2°¢ < q, then findg > 2C with 29 < a < 2911,
—If b < 29%! then2? < a < b < 29F1,
(/1)) = (291 — b, 2941 _ q).

— Otherwise29t! < b < a4 22¢ < 29+ 4 99 =
3.24. Put(a/,b') = (3-29— b,3-27 — a).

Put

In all casesg’ < a. &

Thus, if we are interested i, i.e., (¢, b) withb —a <
4096, we need only consider < 2048. A computer search
was done ford(«a, b) overa < 2048 andb < a + 4096, and
the maximum i2.55334. ThusA(a, b) < 2.56 4+ 1.42 < 4.

|

3.3 Correctness

The proof in this section, that the algorithm described in
Figure 1 is correct, closely follows the one given by Alon
et al. [1] for the correctness of their algorithm (see Sec-
tion 4.3).

r 2
bi—1
E[Zi) = E ZZVM
i j=a;
- . 9
= F (Z ivm) (4)
m=1

2.

1<m<m/<F;

I
> E[(£Vm)’]+2 E[(£V)(£Vim)]

(5)

where, in line (4), we have relabeled the indice$’adnd in
line (5) we used the pairwise independenc&gfandV,,,:.
Next, consider

E[Zg,z] =F Z Z Vi g1 Viz g2 Vis ja Via ja
0<i1,iz,is,i4<n ai, <j1<bi,
aiy <j2<bi,
aig <Ja<big

L @iy SJa<biy d

By 3-wise independence and the fact tlﬂiﬁ/Odd] = 0,

the only terms with non-vanishing expectation are of the
form V% (of which there areF, terms), V> V7., for
(i,7) # (i'j") (of which there arg}) F'; (F'; — 1) terms), and
‘/ilyjl %27j2‘/i37j3‘/i47j4 for (il’jl)’ (iz’jz)’ (i3,j3)’ (i4,j4)

all different. Suppose, in the latter case, thati-, is, i4

are not all the same. Le& II;, =, Vi, and

Y = IL, 2, Yimijm- ThenE[X] = 0 by three-wise
independence of th&’s, and X and Y are independent



by four-wise independence of the seeds, .. There-
fore, if (il,jl), (iz, jz), (ig, jg), (i4, _]4) are all different and
i1, 12, i3, 14 are not all the same,

EViy Vi j2Via jaVia sl = E[XY] = 0.

Thus we have

bi—1
E[Zg,z] < F1—|—6F1(F1—1)+ZE ZVM
i j=a
< 6F12+Z4(bi —a;)? (6)
< 10F7.

In line (6), we used Proposition 6, which shows that our

construction of random variablesng-bad 4-wise indepen-
dent, with constant 4.
Thus

Var(Z,iZ) = E[Zé,z] - Ez[Ziiz] <A F12,

for A = 9. Now, putY), = &ZlSZS(S,A)/AQ Zi ;- Then
Var(Yy) < %QFE. By Chebyshev’s inequality,

Var(Yy)
Pr(|Ye — Fi| > AFy) < k)
( N
< 1/8.

PutW = median, Y. Then|W — Fy| > AF; only if
we havelY;, — Fi| > AP for half of thek’s. By Chernoff’s
inequality, the probability of this is at most

|

3.4 Cost

Theorem 10 An implementation of algorithm L1 (in Fig-
ure 1) isin

PASST( log(M)log(n)log(1/e¢)/A?,
log(n) loglog(n) + log(M) log(1/€)/A?).
If the input tuples come in the

(0, agp, —|—1), (1, ai, —|—1), ceey (0, bo, —1), (1, bl, —1) ey
(or, more generally, if the tuples come in the same order

order

as theb tuples), then another implementation of algorithm

L1 runsin
PASST (log(M ) log(n) log(1/€) /A%, log(M)log(1/€)/A?).
Proof. The algorithm stores

e log(1/¢)/A? random variables’; , whose values are
at mostM n

e a master seed, specifying the seeds and through the
seeds the values of th{e-1)-valued random variables

Vijk,t

The space to store the counters (¥ (log(M) +
log(n))log(1/€)/A%). By our construction, each seed
has sizelog M + 1. For eachk, ¢, we need a family
of n 4-wise independent seedbe., we needlog M +
1 families of n 4-wise independent binary random vari-
ables. This can be generated from a master seed of length
(log M 4 1)(2logn + 1), as in [3]. Thus for eaclt, ¢
we needO(log(M)log(n)) bits of master seed, and so
we would need) (log(M ) log(n) log(1/¢€)/A?) bits of stor-
age for the master seed to hadglog(1/¢)/\?) inde-
pendent parallel repetitions. This dominates the counter
storage. (One can achieve some savings by noting
that the 1/)\? parallel repetitions need not be fully in-
dependent, only pairwise independent. Thus, we need
O(log(M)log(1/¢)) families of n/A? 4-wise independent
binary random variables, requiring master seed space of
only O (log(M)log(1/¢)(log n + log(1/A))), which is in-
comparable with the counter storagasep.)

We now consider the cost of processing a single item
(i,¢;,41). First, one has to produce the seegds , from
the master seeds, .. Using the construction in [3], fix a
finite field FF = Z,[«z]/¢ of characteristic 2 and approxi-
mately » elements, where is an irreducible polynomial
of degreelog n. Arbitrarily enumerate the invertible ele-
ments of ' = {;}, for0 < ¢ < n, such that one can
computez; from ¢ quickly; e.g.,let z; (a polynomial inz
over Z,) have coefficients given by the binary representa-
tion of ¢, so thatr; andi have the same representation. We
first need to compute? in ', which can be done in time
O(log(n)loglog(n)). For eachk and¢, we now compute
each bit of the seesi , , by taking a vector of log(n) + 1
bits of Sk . and dotting it with the vectofl, z;, 7], which
takes constant time in an arithmetic model. Thus, comput-
inglog M + 1 bits of s; 1, ¢ requiresO(log(M)) time, once
z? is known. Finally, froms; , , we can compute the sum
Z;;é V; intime O(log(c)) = O(log(M)) in an arithmetic
model. Altogether, this takes time

O(log(n) loglog(n) + log(M) log(1/¢)/A?).

Finally, we consider the restricted order. (These tech-
niques are standard in coding theory [13]; we include them
for completeness.) The savings comes from computihg
from x?_, rather than fromx;. Suppose we are guaranteed
that the tuples occur in the order

(0, agp, —|—1), (1, ai, —|—1), ceey (0, bo, —1), (1, bl, —1) ceey

or just that thea tuples occur in the same order as the
tuples. (In the latter case, we can redefirso that theu;



tuple occurg’th.) Note that the polynomiat is a genera-
tor of the nonzero elements &f = Z-[z]/¢. We can then
let z; = «' € F, wherez; is represented by the string
of coefficients ofz’ mod ¢. Multiplication of an element
p(x) € F byz € F consists of giving(z) a bit shift and
then reducing modulg (i.e, XORing with (¢ — z'°87) if

If, at some pointl’, we read a tupléi, ¢;, §) with i >
N7, then, for eachk, £, we prepare a new master seed for
a family of i 4-wise independent seeds. The union of all
seeds is still 4-wise independent. (In fact, for any collection
O of old seeds, the distribution on any set of new seeds is
fully independent of any setting ¢1.) We store both the old

necessary), which could reasonably take constant time in arand the new master seeds. At the end, we will have a final

arithmetic model. Similarly we can computg = =3 from

value ofn, and, along the way, we will have constructed

x3_| = 30~ constant time. Thus, under this assumption master seeds for families of sizg n'/? n'/* n'/% ..
about the input, the processing algorithm is somewhat sim-These require storage spdeg(n), ; log(n), 1 log(n) .. .,

pler and faster in practice as well as faster in theory. Alto-

gether, the processing time is

O(log(M)log(1/¢)/X%)
per item in an arithmetic model. |
3.5 Optimality

Our algorithm is quite efficient in the parametersy/,
ande, but requires space quadraticliph. We now show
that, for some non-trivial settings éf, for all large settings
of n and all small settings af any sketching algorithm that
approximates thé! difference to within\ requires space
close tol /A. Thus our algorithm uses space within a poly-
nomial of optimal.

Theorem 11 Fix M = 1. For sufficiently smalk and for
any (large)o and any (small)? > 0, the L' problem is not
in PAS(log™ (n) /A=),

A similar result holds in the streaming model.

This proof is omitted to save space and may be found in

our journal submission [8].
3.6 Algorithm for Unknown Parameters

If M is notknown in advance, we won't know in advance

and, thus, the total storaged¥log(n)), ignoring the fac-
torlog(M ) log(1/€)/A? that is the same whether or not we
know n in advance. The average processing time per item
increases by(1), but the maximum processing time per
item increases bipg n.

4 Related Work
4.1 Relationship with Sketch Algorithms

Broderet al.[4] consider the problem of detecting near-
duplicate web pages. For their and our purposes, a web
page is a subset of a large universe, and two web pages
A and B are near-duplicates if(4, B) = Iﬁﬂg} is large.
They present an algorithm that computes a small fixed-size
“sketch” of each web page such that, with high praligh
r(A, B) can be approximated to within additive error given
the two sketches. A central technique is based on the ob-
servation that, under a random injectibrof the universe
into the integers, the probability that minimum/gfd U B)
is in h(A N B) is exactlyr(4, B). Some of the relevant
techniques in [4] were used, earlier, in [7, 5].

Our results on computing the' difference between two
functions can be viewed as a sketch algorithm. The sketch
functionh takes as input (the graph of) a single function and
performs the algorithm of Section 3.1, getting a8,  }
of random variables. To reconstruct thé difference from
two sketcheq Z o}, {Z;, ,}, computep({Zy ¢}, {2, ,}) =

how many random variables to construct. Note that, be- mediangavg,(Zx , — 7}, ,)*.

cause of the recursive constructionfandp, this is not a
problem. If, at any point, we encounter a tuplg ¢, 8) with

¢ bigger than the maximur@’ encountered before, we sim-
ply do the following. For each, ¢, we pick(log ¢ — log C')
new master seeds;, , of lengthO(log n). We use the mas-
ter seeds to extend randomdach of then seedss; x , to
length[log c] + 1. We also virtually form larger matrices
H and patterrp without actually instantiating them.

Theorem 12 The L' difference of two functions from
{0,...,n—1}t0{0,....,. M — 1}isin
PAS(log(n) log(M) log(1/¢€)/\?).

In particular, thel.! difference (orL? difference) of two
characteristic functiong 4, andx g is the size of the sym-
metric difference| AA B|; we've shown how to approxi-

It is also possible to run the algorithm with a constant mate it to within small relative error with high probability.

factor penalty ifn is not known in advance. Initialize to

The size of the sketch i©(log(m)log(n)log(1/€)/A?),

2. Start reading the stream, performing the calculation for the space bound of the streaming algorithm. Finally, note

thisn. As the stream is read, maintaWy = max;<;<7 i,
whereT' is the current position in the stream ahds the
first component of thé&th item (¢, ¢;,, 6:).

that computation of these sketches can be performed in the
streaming model, which is sometimes an advantage both
theoretically and in practice.



Note that these are all generalizations 6f =
Table 1. Relative-error approximability via |{i : a; # 0}, which was studied in [1].
sketches
Theorem 14

1. F7 € PASST(log(M)log(n)log(1/€)/A?).

[AL B[ | [AnB[ | [AUB] | [AAB] 40 )
Here trivial | ifflarge | yes yes 2. F7" € PASST(log(M) log(n) log(1/€) /A%).

Broderet al.[4] | trivial | iff large yes iff large 3. Forall fixed\ < 1, ¢ < 1/4, andM > 1/7 + 2, and
forany f = o(n), we haveF] ¢ PASST(f(n)).

Similar results hold for the sketch model.
Corollary 13 The symmetric difference of two sets from a

universe of size is in The proof is omitted eécause of space limitations and
can be found in our journal submission [8].
PAS(log(n) log(1/€)/\?).
4.3 Approximating the L? Difference and the Sec-
One can now ask which cells of thie B Venn diagram ond Frequency Moment
can be approximated as functions(of, B) in the sketch
model using our techniques and using the techniques of  Ajon et al.[1] consider the following problem. The input
[4]. First note that/A|, |B|, and|A| + |B| are trivial in is a sequence of elements frdnj = {0,...,n — 1}. An
the sketch model. Next, an additive approximationrof  glament ¢ [n] may occur many times; we let denote the
yields an approximation ofl + ») with small relative er-  nymper of times occurs in the sequence. Now the length

ror; thus, [A U B| = (4] + [B[)/(1 + ) can be ap- 4t he sequence is some unrelated tor. (This notation at-
proximated with small relative error using the techniques i5-hes the same semanticsita;, andb; as Section 3 does
of [4] or with small relative error a§ A| + | B|+|AAB[)/2  namely,n is the number of different types of items and our

using our techniques. In general, one cannoj[ approxi-goa| is to approximatE?;ol la; — b;|P. Syntactically, the
mate |A N B| with small relative error, even using ran- parametergn, m) here play the roles afi/, n) in Defini-

domness [12], but, ifA N B| is sufficiently large com-  {ion 1, since, in the input format of this section, theresare
pared with| AU B|, the intersection can be approximated as jtems each of which is a number between 0 and 1)

|ANB| = (|A[+|B|)r/(1+r) by the algorithmin [4] and as The k'th frequency moment,. of the sequence is de-
[ANB| = (|A[+|B|—-|AAB])/2by ouralgorithm. Finally,  fineq to beY" a*. Note that the first frequency moment
the algorithm of [4] only approximatds—» additively, and, Fi = Y a; is justm and is therefore trivial to compute,
if 1 — r is smaller than the errarof approximationice., if but other frequency moments are non-trivial. Akiral.[1]
[AAB| < ¢[AU B), then the algorithm of [4], which ap-  give a variety of upper and lower bounds for frequency mo-

proximate§ AA B| as|AAB| = (|A] + |B|) 135, does not  ments. n particular, they show
perform well® but our algorithm approximateg A B| with

small relative error regardless of the sizg .4f\ B|. Theorem 15 ([1]) Let > = 37 a7, whereg; is the num-

This information is summarized in Table 1. Other cellsin Per of occurrences of in the input stream. Thei, €
the Venn diagram reduce to these restéts,, by comple- ~ PASST((logn + log m) log(1/¢) /A?, log(n) loglog(n) +
mentingA or B (but note thatd and A-complement may ~ 10g(1/€)/A%).

have different sizes). In this result and the following corollary, the time cost

o ] of log n loglog n can be reduced to 1 on a machine that can
4.2 Approximating Sizes of Supports and the Ze-  perform finite field multiplication on elements of sike; n

roth Frequency Moment in constant time. It can also be reduced under suitable re-
strictions on the input order.
In this section, we briefly consider three variants. We sketch the algorithm, without proof, in order to illus-
Let trate the previous work that is our point of departure. A full
treatment of the correctness and workspace of the algorithm
Ff = Hizai#b} of Theorem 15 may be found in [1].
FP°% = [{i:(ai=0Abi£0)V(a; #0Ab; =0)} Proof. [sketch]

For eachk, 1 < k < O(log(1/€)) and for eacl?, 1 <
0 < O(1/A%), let {vg([4]}: be a set of 4-wise independent
5This approximation was never a stated goal in [4]. random variables. Outputedian,avg, (> aivu[i])z. |

Fg = Hi:(a; > 7))V (b > 7a;)}]




Consider now a generalization of the input allowing [2] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy.

signed examples. That is, each item in the sequence con- Tracking Join and Self-Join Sizes in Limited Storage.
sists of a typé € [n] and a signt, and there may be many In Proc. of the 18'th Symp. on Principles of Database
items of type:i of each sign. Denote by; the number of SystemsACM Press, New York, pages 10-20, 1999.
positive occurrences afand byb; the number of negative [3] N. Alon and J. SpencerThe Probabilistic Method
occurrences of, and letF), denote_ |a; — b;|". Jc.)hn Wile an'd Sons Néw York. 1992

We have obtained the following corollary. It was ob- y ' ' '
tained independently by Aloet al. [2]. [4] A. Broder, M. Charikar, A. Frieze, and M. Mitzen-
Corolay 16 £, € PASST(osn +log ) og(1//, DACher Miwse independent permutations o
log(n) log log(n) +log(1/¢)/A2). (Here Fy = S (a;—b;)?, r1oc. y p-k 3 2713/3 36.19 gg
wherea; is the number of positive occurrencesiah the ing, ACM Press, New York, pages ' '
input andb; is the number of negative occurrencesi df [5] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
the input.) Syntactic Clustering of the Web. Proc. Sixth Int'l.

Proof. [sketch] With &, ¢, and vs[i] as above, output World Wide Web Conferencé/orld Wide Web Con-

mediangave, (3 (a; — bi)vu[i])z. . sortium, Cambridge, pages 391-404, 1997.
The algorithm of Corollary 16 can be used to approxi- 6] Cisco NetFlow, 1998. _
mate thel.? difference between the two functiongndsb. http://www.cisco.com/warp/public
Note that, for signed input examples, computing the fre- I732/netflow/
quency moment”; is non-trivial. In fact, we don't know [7] E. Cohen. Size-estimation framework with applica-
how to computel”; in the input representation of Corol- tions to transitive closure and reach. In J. Com-
lary 16. put. System S¢ib5:441-453,1997. (Special issue of
For anyp, the problem of computing théth frequency selected papers from 199BEE Symp. on Founda-
moment and that of computing the correspondifgdif- tions of Computer Scienge.
ference of functions differs only in the representation of the
input stream. Given ah? instance streartii, c;, 6;)), one [8] http:/www.research.att.com/jf
can expand each itew, ¢;, ;) into ¢; occurrences off, i) /pubs/L1diff.ps

to get a frequency moment instance. Therefore a frequency [9] P. Flajolet and G. N. Martin.
moment algorithm for signed examples can be used to com-
pute thel? difference of functions, but note that, in gen-

eral, one pays a high cost in processing time, even just to
read the input—the input has been expanded exponentially.
The algorithm of Corollary 16 avoids this cost, because itis [10] P. Gibbons and Y. Matias. Synopsis Data Structures

Probabilistic Count-
ing. In Proc. 24’th Foundations of Computer Science
ConferencelEEE Computer Society, Los Alamitos,

pages 76—82, 1983.

efficient in both input representations. for Massive Data Sets. To appearRroc. 1998 DI-
MACS Workshop on External Memory Algorithms.
4.4 Earlier work on probabilistic counting DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, American Mathematical
Flajolet and Martin [9] give a small-space randomized Society, Providence. Abstract Rroc. Tenth Sympo-
algorithm that approximates the number of distinct ele- sium on Discrete AlgorithmsACM Press, New York
ments in a stream. Their algorithm assumed the existence of and Society for Industrial and Applied Mathematics,
certain ideal hash functions. Later, Alehal.[1] improved Philadelphia, pages S909-910, 1999.

this result by substituting a practically available family of
hash functions and also gave a variety of other results on
approximating the frequency moments. Many results of this
kind, some old and some new, are described in [10].

[11] M. Rauch Henzinger, P. Raghavan, and S. Ra-
jagopalan. Computing on data streams. Techni-
cal Report 1998-011, Digital Equipment Corporation
Systems Research Center, May 1998.
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