

Figure 1. The one-key challenge: Design a fast text entry
method using just a single physical key for input.

The One-Key Challenge:

Searching for a Fast One-Key Text Entry Method

I. Scott MacKenzie

Dept. of Computer Science and Engineering

York University

Toronto, Canada M3J 1P3

mack@cse.yorku.ca

ABSTRACT
A new one-key text entry method is presented. SAK, for
"scanning ambiguous keyboard", combines one-key physical
input (including error correction) with three virtual letter keys
and a SPACE key. The virtual letter keys are highlighted in
sequence ("scanned") and selected when the key bearing the
desired letter receives focus. There is only one selection per
letter. Selecting SPACE transfers scanning to a word-selection
region, which presents a list of candidate words. A novel feature
of SAK is multiple-letter-selection in a single scanning interval.
In an evaluation with 12 participants, average entry speeds
reached 5.11 wpm (all trials, 99% accuracy) or 7.03 wpm (error
free trials). A modification using "timer restart on selection"
allowed for more time and more selections per scanning
interval. One participant performed extended trials (5 blocks x 5
phrases/block) with the modification and reached an average
entry speed of 9.28 wpm.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – input devices and strategies (e.g., mouse,
touchscreen); K.4.2 [Computer and Society]: Social Issues –
assistive technologies for persons with disabilities

General Terms
Design, Experimentation, Human Factors

Keywords
Text entry, keyboards, ambiguous keyboards, scanning
keyboards, mobile computing, assistive technologies.

1. INTRODUCTION
At a recent tutorial on text input, the presenter suggested that the
ubiquitous mobile phone keypad could be redesigned with fewer
keys. If text entry is possible using a keypad with 26 letters on 8
keys, why not put the letters on 7 keys, or 6 keys, or 5 keys, or 4
keys, or 3 keys, or 2 keys, or 1 key? See Figure 1. The audience

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ASSETS’09, October 25–28, 2009, Pittsburgh, Pennsylvania, USA.

Copyright 2009 ACM 978-1-60558-558-1/09/10…$10.00.

laughed at the thought of a one-key keyboard. But, wait. The
presenter noted that people with severe physical disabilities are
often constrained to single-switch input to computers. The
switch may be operated by the hand or foot, or perhaps even by
a head movement, the blink of an eye, or sipping and puffing on
a straw. Of course, the need and desire to use computer
technology and to communicate, often through text, is the same
for disabled people as it is for the able-bodied.

This paper lays out the one-key challenge for text entry. Is one-
key text entry possible? How quickly and accurately can it be
done? Below, we examine and review research on small
keyboards. The review includes ambiguous keyboards, such as
the phone keypad, and smaller versions of ambiguous
keyboards. We also review scanning keyboards, as used by
people with disabilities. A method is described to combine
scanning with an ambiguous keyboard to arrive at a design
where one-key text entry is not only possible, but is reasonably
fast and accurate. The results of a user study are given with
comparisons drawn to results from related user studies.

1.1 Mobile Phone Text Entry
According to gsmworld.com, one trillion or more text messages
are sent yearly from one mobile phone to another. Most are
entered using the conventional 12-key phone keypad, which
positions the 26 letters of the English alphabet across just eight
keys (Figure 1, top left). The arrangement is ambiguous for text
entry, since each key bears either three or four letters. There are
two common methods to disambiguate. "Multitap" involves

91

http:gsmworld.com
http:978-1-60558-558-1/09/10�$10.00
mailto:mack@cse.yorku.ca

Figure 2. Letter-key assignments in the Blackberry 8100

pressing a key multiple times: one press for the 1st letter, two for
the 2nd, and so on. For example, "beep" is entered using multitap
as

233n3370
b e ep_

The marker "n", for "next", reveals the need to separate
consecutive letters on the same key. Typically, a timeout or a
special key such as down-arrow is used. A "0" is also included
to add a SPACE at the end of a word. The other method is "one
key with disambiguation", commonly known as "T9". With T9,
there is only one keypress per letter. A built-in dictionary maps
candidate words to a key sequence. Ideally, "beep" is entered
with T9 as

23370
beep_

This is an over simplification for at least two reasons. One is
that multiple words may match the key sequence. If so, they are
offered in order of their frequency in the language. The other is
that the display is unstable during entry of a word, because of
the ambiguity. The following is a more accurate rendering of
entering "beep" using T9:

2 a
23 be

233 bed
2337 beer
2337n beds

2337nn adds
2337nnn bees

2337nnnn beep
2337nnnn0 beep_

Here, we see both the instability in the display during entry and
the need to press "n" four times to reach "beep". Although "one
key" in "one-key with disambiguation" is not strictly true, the
overhead for English is small. One estimate is that 95% of
words in English can be entered unambiguously using T9 [23].

1.2 Research on Ambiguous Keyboards
There is substantial research on ambiguous keyboards, such as
the phone keypad. A recent survey [19] identifies three types of
such keyboards: Qwerty-like, phone-like, and reduced-key.
Qwerty-like ambiguous keyboards leverage users' familiarity
with the Qwerty letter arrangement. One example is the
Blackberry 8100 ("SureType") by Research In Motion. As seen
in Figure 2, the letters are arranged along five columns, rather
than the usual ten with Qwerty keyboards. This allows for
bigger keys, which in turn improves user access to the keys.
With 26 letters on 14 keys, there is less ambiguity.

Phone-like ambiguous keyboards combine the three-column
format of phone keypads with a different letter arrangement.
Generally, the goal is to increase the "linguistic separation" of

keys by positioning common letters on different keys. This is
seen in Ryu and Cruz's LetterEase in Figure 3a [21]. Letters are
dispersed and assigned over the full 3 × 4 matrix of keys. An
alternative is Gong and Tarasewich's ACD (alphabetically
constrained design) in Figure 3b [6]. While the particular
groupings were chosen to reduce ambiguity, the alphabetic
arrangement aims to reduce users' visual scan time in finding the
desired letter.

(a) (b)

Figure 3. Phone-like ambiguous keyboards: (a) LetterEase
[21], (b) ACD (alphabetically constrained design) [6]

Reduced-key ambiguous keyboards push the limits alluded to in
the one-key challenge. With fewer keys, ambiguity increases.
An example with four letters keys is Tanaka-Ishii et al.'s
TouchMeKey4 [25] in Figure 4a. The design uses an alphabetic
letter ordering to reduce the visual scan time. Dunlop's four-key
watch-top device in Figure 4b uses slightly different groupings
[4]. Gong et al. describe a three-letter-key design [7] with letters
also arranged alphabetically (Figure 4c).

(a) (b) (c) (d)

Figure 4. Small ambiguous keyboards: (a) TouchMeKey4
[25], (b) watch-top [4], (c) L3K (letters on three keys) [7], (d)

L1K (letters on one key)

The L1K (letters on one key) design in Figure 4d is offered only
to provoke discussion. Before considering L1K, we should
mention that all the key arrangements discussed above require
additional keys, such as a BACKSPACE key for error correction, a
SPACE key to delimit words, or a "next" key to navigate through
the ambiguous list, where necessary.
So, how would one enter text using the L1K keyboard in
Figure 4d? The answer is simple: Using the same method as
with the other keyboards: (i) press keys bearing the desired
letters until the full word is entered, (ii) press "next" until the
desired word in the candidate list is reached, then (iii) press
SPACE to select the word. Of course, with the L1K design,
entering a five-letter word means pressing the key five times,
whereupon all five-letter words in the dictionary are candidates.
If the user enters "which" – the most common five-letter word in
English – the situation is fine (i.e., 111110). However, a word
like "float" is likely to take about a thousand presses of "next",
depending on the size of the dictionary (i.e., 11111nnn…0).

1.3 Direct vs. Indirect Input
The keyboards discussed above all use "direct input": keys are
accessed directly by a finger, stylus, or mouse pointer. A small
step forward in the one-key challenge is to separate input and

92

output. Letter keys become "virtual keys" on the system's
display (output). Physical keys (input) indirectly move the focus
point and select virtual keys. A two-way pager from the 1980s
operated in this manner – the AccessLink-2 by WirelessAccess
(now defunct). The general idea is shown in Figure 5a where
five physical keys navigate and select letters on virtual keys.

(a) (b)

Figure 5. Indirect text entry; (a) five keys (b) three keys

(a) (b)

Figure 6. Scanning keyboards. (a) linear (b) row-column

There are clear performance issues with this style of keyboard.
How many focus movements are required, on average, for text
entry in a given language? Can the number of focus movements
be reduced using a different letter arrangement or some other
technique? These questions are similar to those that arise in
designing ambiguous keyboards.

Moving from five keys to three keys requires a linear sequence
of letters. The arrangement in Figure 5b is sometimes called the
"date stamp method". It has a history of use in video games,
where players enter their name after achieving a high score.

To move from three keys to one key, another leap is required.
Instead of using cursor keys to navigate virtual letter keys,
navigating is automatic using a built-in timer. Letter keys are
sequentially highlighted ("scanned") and when the desired letter
key receives focus, it is selected using the sole physical key.
The main problem with such "scanning keyboards" is that they
are prohibitively slow for text entry. In the next section, we
introduce some of the key design issues for scanning keyboards.

1.4 Scanning Keyboards
Users with physical disabilities are often unable to use a regular
computer keyboard, a mobile phone keyboard, or a pointing
device, such as a mouse. Input may be constrained to a single
key or switch. Text entry is typically performed using a
scanning keyboard. The general idea is shown in Figure 6a, for
linear scanning. Focus advances from one virtual key to the
next, paced by a programmable timer. When the desired letter
key is highlighted, it is selected.

Whether the scanning interval is 5 seconds or 1 second, text
entry using the scheme in Figure 6a is tedious. For example, it
takes 26 scan steps to reach "z". For this reason, most scanning
keyboards use some form of multi-level, or "divide and
conquer" scanning, as shown in Figure 6b for row-column
scanning. Here, scanning proceeds row to row. When the row
bearing the desired letter is highlighted, it is selected. Scanning
enters the row and proceeds from one letter key to the next.
When the desired letter key is highlighted, it is selected. The
selected letter is added to the text message and scanning reverts
to the home position for input of the next letter.

Row-column scanning improves on linear scanning. The letter
"j", for example, is reached in 5 scan steps (3 rows + 2
columns). Still, it is slow. Researchers have investigated many

methods to speed-up text entry with scanning keyboards. The
methods fall into three main categories: using different letter or
row-column arrangements, using word or phrase prediction or
completion, or reducing the scanning interval.

The most obvious improvement for row-column scanning is to
rearrange letters with frequent letters near the beginning of the
scan sequence, such as in the first row or in the first position in a
column. There are dozens of research papers investigating this
idea, many dating to the 1970s or 1980s. Some of the more
recent efforts are hereby cited [1, 9, 12, 15, 26]. Dynamic
techniques have also been tried, whereby the position of letters
varies depending on previous letters entered and the statistical
properties of the language and previous text [12, 20].

Performance may also improve using a three-level selection
scheme, also known as block, group, or quadrant scanning [3,
14]. The idea is to scan through a block of items (perhaps a
group of rows). The first selection enters a block. Scanning then
proceeds among smaller blocks within the selected block. The
second selection enters one of the smaller blocks and the third
selection chooses an item within that block. Block scanning is
most effective if there are a large number of selectable items.

Reducing the scanning interval will increase the text entry rate,
but there is a cost: higher error rates or missed opportunities for
selection. One approach is to dynamically adjust the system's
scanning interval. Decisions to increase or decrease the scanning
interval can be based on previous user performance, including
text entry throughput, error rate, or reaction time [11, 13, 24].

Word or phrase prediction or completion is also widely used
with scanning keyboards [9, 20, 22]. As a word is entered, the
current word stem is expanded to form a list of matching
complete words. The list is displayed in a dedicated region with
a mechanism for the user to select the word early.

We should be clear that all scanning keyboards in use are
variations on "divide and conquer". For any given entry, the first
selection chooses a group of items and the next selection
chooses within the group. It is worth speculating on the prospect
of combining the core concept of a scanning keyboard – input
using one physical key – with the most appealing feature of an
ambiguous keyboard – one keypress per character. We will do
this shortly. First, we will summarize and examine published
user evaluations of keyboards with just a few keys.

2. REVIEW OF USER STUDIES
The one-key challenge is not just about entering text using a
single key, but doing so with reasonable speed. So, what is the
state of the art on text entry speeds using just one, or a few,
physical keys for input? As it turns out, most publications

93

Table 1

Comparison of Text Entry Studies Using a Small Number of Input Keys

Study
(1st author)

Number
of Keysa

Direct/
Indirect Scanning Number of

Participants
Speedb

(wpm) Notes

Bellman [2] 5 Indirect No 11 11 4 cursors keys + SELECT key. Error rates not reported. No error
correction method.

Dunlop [4] 4 Direct No 12 8.90 4 letter keys + SPACE key. Error rates reported as "very low".

Dunlop [5] 4 Direct No 20 12 4 letter keys + 1 key for SPACE/NEXT. Error rates not reported. No
error correction method.

Tanaka-Ishii [25] 3 Direct No 8 12+ 4 letters keys + 4 keys for editing, and selecting. 5 hours training.
Error rates not reported. Errors corrected using CLEAR key.

Gong [7] 3 Direct No 32 8.01 3 letter keys + two additional keys. Error rate = 2.1%. Errors
corrected using DELETE key.

MacKenzie [16] 3 Indirect No 10 9.61 2 cursor keys + SELECT key. Error rate = 2.2%. No error correction
method.

Baljko [1] 2 Indirect Yes 12 3.08
1 SELECT key + BACKSPACE key. 43 virtual keys. RC scanning.
Same phrase entered 4 times. Error rate = 18.5%. Scanning
interval = 750 ms.

Simpson [24] 1 Indirect Yes 4 4.48
1 SELECT key. 26 virtual keys. RC scanning. Excluded trials with
selection errors or missed selections. No error correction. Scanning
interval = 525 ms at end of study.

Koester [10] 1 Indirect Yes 3 7.2

1 SELECT key. 33 virtual keys. RC scanning with word prediction.
Dictionary size not given. Virtual BACKSPACE key. 10 blocks of
trials. Error rates not reported. Included trials with selection errors
or missed selections. Fastest participant: 8.4 wpm.

a For "direct" entry, the value is the number of letter keys. For "indirect" entry, the value is the total number of keys.
b The entry speed cited is the highest of the values reported in each source, taken from the last block if multiple blocks.

focus on keystroke analyses or linguistic techniques. The
research tends to be theoretical and, in most cases, the designs
are not implemented and tested with users. Table 1 summarizes
the results from nine papers where measurements with real users
were performed and where text entry speeds were reported. Since
we are interested in one-key text entry, the table is limited to
methods using just one or a few keys. Evaluations using phone
keypads and their variants are excluded.
The table includes four direct and five indirect entry methods.
Three studies used scanning keyboards. Of the studies using 3-5
physical keys, text entry speeds were in the range of 8-12 wpm.
Bellman and MacKenzie implemented a system similar to the
five-key pager in Figure 5 [2]. They compared techniques to
minimize focus movements by rearranging letters. A static
arrangement was fastest, reporting in at about 11 wpm.
Dunlop's simulated watch-top text entry method placed letters on
four keys in an alphabetic arrangement (Figure 4b) [4]. The
implementation used a Hewlett Packard iPAQ. Entry rates were
respectable at 8.9 wpm.1

1 Text entry speed was reported as "time per phrase". The values
were converted to "words to minute" using information
provided by the author [Dunlop, personal communication].

Dunlop and Masters evaluated a similar
method using the same letter arrangement, but implemented on a
Sony Ericsson K300i [5]. Entry speeds were 12 wpm, averaged
over the last eight phrases of input. Both methods just cited are
labeled "direct input" in the table, although this is not strictly
true. Virtual letter keys were presented on the display with input
using separate physical keys. However, since each physical key

mapped directly to a virtual key, the direct-input category seems
appropriate.
Tanaka-Ishii et al.'s TouchMeKey4 system placed letters on three
virtual keys (Figure 4a) [25]. Letter keys were selected using the
mouse pointer. Separate + and – virtual keys moved through a list
of candidate words and a SELECT key was clicked to choose the
desired word. Entry speed was just over 12 wpm after five hours
of practice. Gong et al. used linguistic modeling to improve the
word list ordering in a similar system using three keys
(Figure 4c) [7]. Entry speeds were about 8 wpm.
Three-key indirect text entry using Å, Æ, and SELECT keys and a
linear array of letter keys was presented by MacKenzie
(Figure 5b) [16]. Using a dynamic, optimized letter arrangement
combined with a snap-to-home cursor mode yielded entry speeds
just under 10 wpm.
Although there is a substantial body of research on scanning
keyboards, only a few studies present a user evaluation where
text entry speeds are reported. Three such studies appear along
the bottom rows in Table 1. Baljlko and Tam describe a row-
column scanning system where letters of the alphabet and other
symbols were arranged according to a Huffman encoding tree
[1]. One key made selections while a BACKSPACE key corrected
errors. The fastest entry speeds were about 3 wpm.
Simpson and Koester used a conventional row-column scanning
arrangement, similar to Figure 6b, while automatically varying
the scanning interval according to user performance [24]. The
system included one physical key for selecting, but no
mechanism to correct errors. The highest entry rate was 22.41

94

Figure 7. A scanning ambiguous keyboard (SAK) combines
letter-selection (top) and word-selection (bottom) regions

Figure 8. Scanning ambiguous keyboard (SAK) letter
assignments with the lowest scan steps per character (SPC).

characters per minute (÷5 = 4.48 wpm),2 averaged over four
participants on the 4th of four blocks of trials. The scanning
interval in the last block was 525 ms. Importantly, the text entry
speed calculation excluded both selection errors and letter
selections that did not occur at the earliest opportunity during
scanning. No doubt, the entry rate would be lower – perhaps,
quite a bit lower – if all the data were included.
A higher entry speed was reported by Koester and Levine [10]
who compared a letters-only and letters+WP (word prediction)
row-column scanning system with single switch input. After 20
blocks of trials, the entry speed was fastest using letters+WP. The
average entry speed was 7.2 wpm, with one participant reaching
8.4 wpm. Only three participants were used and error rates were
not reported (although errors were ≈5% during the practice
trials). The dictionary size was also not reported. A small
dictionary improves the performance since words are more likely
to appear in prominent positions in the candidate list.
Nevertheless, Koester and Levine's one-key text entry rate of 7.2
wpm (average over three participants) or 8.4 wpm (fastest
participant) is the fastest in the literature for one-key text entry.
Thus, the bar is set for the one-key challenge.

3. SCANNING AMBIGUOUS KEYBOARD
All the pieces for a new one-key text entry method exist in the
paragraphs above. It is just a matter of putting them together. A
"scanning ambiguous keyboard" (SAK) combines the most
demanding requirement of a scanning keyboard – input using one
key – with the most appealing feature of an ambiguous keyboard
– one keypress per character. The general idea is shown in
Figure 7. Letters are assigned over a small number of virtual keys
in a letter-selection region. Scanning proceeds left to right in a
cyclic pattern. When the key bearing the desired letter is
highlighted, it is selected. There is only one selection per letter
and only one physical key (not shown). With each letter
selection, a list of candidate words is presented.
When the full word is entered (or earlier, see below), SPACE is
selected to begin scanning in the word-selection region. When
the desired word is highlighted, it is selected and added to the
text message with a terminating space. Scanning then returns to
the letter-selection region for entry of the next word.

The candidate list is organized in two parts. The first presents
words exactly matching the current keycode sequence, ordered
by their frequency in the language. The second presents extended

2	 It has been a convention dating back to the 1920s to define
"word" in "words per minute" as five characters, including
letters, punctuation, etc. [27].

words, where the current keycode sequence is treated as the word
stem.
Of course, there are many design issues. The first is simple: How
many letter keys should be used and how should letters be
assigned to keys? In answering this question, a model was built
to search for designs that minimize SPC – the number of scan
steps per character required, on average, for text entry in a given
language.3 SPC includes both passive scan steps (no selection)
and active scan steps (selection) and also includes the number of
scan steps to reach and select the desired word in the candidate
list.
The model includes the possibility of "early selection". If the
candidate word appears in the list before the word is fully
entered, it is selected – if the result is fewer scan steps compared
to the alternative of continuing to select letter keys.
A novel feature of SAK designs is double selection. Two
selections can occur in the same scanning interval if the
highlighted key bears both the desired letter and the next letter.
Of course, the ability to double-select depends on the scanning
interval and a user's motor ability.
Clearly, SAK designs are compromises. Fewer letter keys reduce
the scans in the letter selection region but increase ambiguity
and, therefore, increase the scans in the word selection region.
More letter keys and the opposite occurs.
The model works with a language corpus in the form of a word-
frequency list. For this, we used Silfverberg et al.'s list of 9,025
unique words and frequencies, drawn from the British National
Corpus [23].
An exhaustive run of the model computed SPC for all designs
from 1 to 6 virtual letter keys with all possible alphabetic letter
assignments. The letter assignment with the lowest scan steps per
character, SPC = 1.834, is shown in Figure 8.
SPC < 2 is remarkably low. As an example, the word "character"
can be entered in just 15 scan steps:

c...a.r.a.tS..W

A lowercase letter is a selection on the key bearing the letter. A
period (".") is a passive scan step. If double selection is possible,
only the first letter is shown. In the example, "c" = "ch" and the
second "a" = "ac". "S" is a selection on the virtual SPACE key.
"W" is a word selection. Early selection is shown in the example,
since all letters were not entered. Evidently "character" appeared
as the 3rd word in the candidate list after "charact" (1113113) was
entered. For the example word, SPC = 1.50, computed as 15 scan
steps divided by 10 characters ("character_").

The SPC calculation, whether for an example word or English in
general, is a best case, and assumes users take all opportunities to
optimise. Of course, missed opportunities can and will occur,

3 The full details of the model are described in a separate paper
[17].

95

http:c...a.r.a.tS

Figure 9. Scanning Ambiguous Keyboard (SAK)
implementation

depending on a variety of factors, such as the user's skill, motor
ability, or the scanning interval. But, missed opportunities are not
errors; they simply slow the entry of words and phrases.
Two designs in the literature are similar to the SAK concept
presented here; however, both involve more than one physical
key. Harbusch and Kühn describe an ambiguous keyboard using
"step scanning": one key advances the focus point while another
makes selections [8]. Venkatagiri describes a scanning keyboard
with three or four letters per virtual key [26]. Separate physical
keys choose the desired letter once a key receives focus. Both
papers just cited present models only. No user studies were
performed, nor were the designs actually implemented.

3.1 SAK Implementation
A prototype SAK application was developed in Java to
implement the scanning ambiguous keyboard described above. A
screen snap is shown in Figure 9. The scanning interval is set by
a configuration parameter. Physical input uses any key on the
system's keyboard. The prototype presents text phrases to the
user (top field). As the user enters the phrase, the current key
codes and transcribed text appear in separate fields. Both
keystroke and phrase-level data are collected and stored.

In the screen snap, the user has entered the first three words in
the phrase "staying up all night is a bad idea". The next word,
"night" has been completely entered (keycodes = 22113). Focus
is on the third letter key. The desired word is the second entry in
the candidate list. A selection in the next scan interval ("[space]")
transfers scanning to the word-selection region. A pause then
select chooses the word and adds it to the transcribed text.

3.1.1 Error Correction
It is important to support error correction with any text entry
method. One possibility here is to add a separate physical key to
delete the last selection [1]. Of course, this compromises the one-
key constraint. Another possibility is to add a virtual DELETE or
BACKSPACE key among the scanned letter keys. Most scanning
keyboards do this [12, 14, 15, 26]. This is not feasible for SAK
designs, however, since a small set of letter keys is important to
keep SPC low and thereby increase text entry speed.
Error correction was implemented in the prototype SAK using a
"long press" – pressing and holding the physical key for two or
more scan steps. There are at least two examples of this for
scanning keyboards [9, 20]. If a long press occurs during entry of

a word, the current key sequence is cleared. If a long press occurs
between words, the last word is deleted.

3.1.2 Ambiguity Analysis
The prospect of very long candidate lists is unavoidable with
ambiguous keyboards having just a few keys [19]. Although the
SPC calculation accounts for this, it does so only as an overall
average for text entry in a given language. And so, we ask: How
long are the candidate lists? Are long candidate lists common?
The answers to these questions are determined by two factors: the
letter-key assignments and the dictionary. For the 9,025-word
dictionary used with the prototype SAK, 55.7% of the words are
at the front of the candidate list when word selection begins.
Furthermore, 82.2% of the words appear in the candidate list at
position 4 or better; 94.8% are at position 10 or better, and 99.6%
are at position 20 or better.
So, very long candidate lists are rare. But, still, they occasionally
occur. As an example of position 20, if a user wished to enter
"alas" (1213) it would be at the end of a long list of candidates:
{ does, body, goes, boat, dogs, diet, flat, coat, andy, gift, flew,
ends, aids, alex, clay, bias, blew, gods, dies, alas }.
While models are excellent tools for exploring human-computer
interfaces, it remains to see how the prototype SAK will fare in a
user evaluation.

4. USER EVALUATION
Twelve participants were recruited from the local university
campus to enter text on the scanning ambiguous keyboard
described above. The mean age was 25.3 years (SD = 3.2). Five
were female, seven male.

After a briefing and demonstration, participants were allowed to
enter a few practice phrases. Following this, participants entered
five blocks of phrases, five phrases per block. The total time was
about one hour per participant.

The application pulled phrases at random from a standard set of
500 phrases [18]. The computed SPC for the phrase set was
1.980. Given that SPC = 1.834 for the SAK under test, the
phrases were, on average, slightly more complicated than English
in general. This is an important point. It would be relatively easy
to concoct text phrases using words with low SPCs and thereby
obtain inflated text entry speeds. This was not done. The
scanning interval was set to 1100 ms for the 1st block. It was
decreased by 100 ms per block, finishing at 700 ms.

4.1 Results and Discussion
The results are shown in Figure 10. With all trials included, entry
speed improved from 3.98 wpm in the 1st block to 5.11 wpm in
the 5th block.

Word corrections (long presses) occurred at a rate of about two
per phrase, which is rather high. However, the result was
transcribed text with a very low error rate of only 0.96% (i.e.,
accuracy > 99%).

Although the main effect of block on entry speed was significant
(F4,44 = 7.58, p < .0001), this is expected in view of the
confounding influence of scanning interval. In fact, the
evaluation was designed specifically to elicit an improvement in
text entry speed by starting with a conservative scanning interval
and speeding up gradually from block to block.

96

The results above are promising for one-key text entry. In fact,
even faster rates may be possible with some design modifications
(see below).
Note that the "all trials" line in Figure 10 shows no improvement
in text entry speed after the 3rd block. The main reason for this
was the faster scanning intervals, which in turn resulted in more
selection errors or missed opportunities. Each block involved
only 8-10 minutes of text entry, so it is likely the scanning
interval was reduced a bit too soon for participants to adjust in
the 4th and 5th blocks.
Given that the paper by Simpson and Koester in Table 1 reported
text entry speed for error-free trials only [24], an additional
"error-free trials" line is added to Figure 10. For this data set,

1stentry speed increased from 5.30 wpm in the block to
7.03 wpm in the 5th block.

Figure 10. Entry speed (wpm) by block and scanning interval.
Results are shown for all trials (bottom) and error-free trials

(top). Error bars show ±1 standard error.

4.1.1 Timer Restart On Selection
Participants made a variety of comments and suggestions about
the interface. One idea to improve interaction was to restart the
scanning timer when a selection is made. This would extend the
current scanning interval and provide the user with precious time
to think and to prepare for the next selection. Taken alone,
restarting the timer slows the interaction. But, the net effect may
be to increase text entry speed if there are fewer selection errors
or missed opportunities. Restarting the timer also means that
faster scanning intervals become possible, because, in any
interval where there is a selection, the duration of the scan step is
automatically extended.
An interesting side effect of restarting the timer is that more than
two selections are possible in a single scanning interval. In fact it
would be simple to make, say, four or five selections since with
each selection the entire scanning interval is again available for
the next key press. Thus, the double selection input strategy
noted earlier becomes multiple selection.
A simple script was run to determine the prevalence of such
multiple-select opportunities in the 9025-word dictionary. As it
turns out, a full 36% of the words offer at least one opportunity
for a triple selection (e.g., "book" = 1222). There are also many
words with >3 consecutive letters on the same key, and even a
few with numerous consecutive letters on the same key (e.g.,
"feedback" = 11111112).

This idea was considered so provocative, the SAK application
was modified to implement a "timer restart on selection" mode.
One participant agreed to do an extra five blocks (five phrases
each) to test the mode. For these "extended" trials, the scanning
interval started at 700 ms and was reduced by 50 ms per block,
finishing at 500 ms. The results are shown in Figure 11.
The entry speeds ranged from 7.38 wpm in the 6th block to
9.28 wpm in the 10th block. The overall error rate for the
extended trails was very low, at 0.81%. A look at the raw data
revealed some use of multiple selections. Of 558 total letter
selections, there were 98 (17.5%) double selections, 17 (3.0%)
triple selections, and 3 (0.5%) quadruple selections.

Figure 11. Extended trials for one participant using the
"timer restart on selection" mode. The data are for five

blocks with five phrases per block.

Comparing the results to those in Table 1 for one-key input is
promising. The SAK prototype faired considerably better than
Baljko and Tam's row-column method using a Huffman encoding
tree (3.08 wpm) [1] and also better than Simpson and Koester's
row-column design with an adaptive scanning interval
(4.48 wpm) [24]. At 7.2 wpm, Koester and Levine's letters+WP
system compares quite well [10]. However, they tested three
participants only, practiced over 20 blocks. The results here are
for 12 participants over just 5 blocks. Koester and Levine cite
their best participant's performance as 8.2 wpm. In Figure 11, a
participant reached 9.28 wpm on the 10th block using the "timer
restart upon selection" mode for blocks 6-10. Thus, the best
participant’s performance with SAK is about 13% faster than
Koester and Simpson's best participant. No doubt a more
extended test of the SAK design over, say, 20 blocks with the
"timer restart on selection" mode would yield even better results.

4.1.2 Non-dictionary Words and Other Features
The SAK design tested here is a research prototype. Further
development is needed, for example, to include a spell mode to
add new words to the system's dictionary. Other features are also
needed, such as adding punctuation, changing configuration
parameters, or switching applications. One possibility is to use
the long press as a conduit. A long press could still be used for
error correction, but the design could be re-worked to popup a
small set of scanned virtual "option keys" (see Figure 12).

Figure 12. Options accessed through a long press

97

5. CONCLUSIONS
This paper laid out the one-key challenge for text entry. A new
text entry method using just one physical key for input was
presented, implemented, and tested with users. The design is a
scanning ambiguous keyboard with an alphabetic arrangement of
letters on three keys. The design is useful for accessible
computing in situations where one-key input is needed.
After just a small amount of practice (<1 hour), the average text
entry rate for 12 users was 5.11 wpm, including all data, or
7.03 wpm considering error-free trials only. Using a "timer
restart on selection" mode, one participant performed an
additional five blocks of trials (five phrases per block) and
achieved a rate of 9.28 wpm on the last block.

6. REFERENCES
1. 	 Baljko, M. and Tam, A., Indirect text entry using one or two

keys, Proc ASSETS 2006, (ACM, 2006), 18-25.

2. 	 Bellman, T. and MacKenzie, I. S., A probabilistic character

layout strategy for mobile text entry, Proc Graphics

Interface '98, (Toronto: Canadian Information Processing

Society, 1998), 168-176.

3. 	 Bhattacharya, S., Samanta, D., and Basu, A., User errors on

scanning keyboards: Empirical study, model and design

principles, Interacting with Computers, 20, 2008, 406-418.

4. 	 Dunlop, M. D., Watch-top text-entry: Can phone-style

predictive text entry work with only 5 buttons?, Proc

MobileHCI 2004, (Heidelberg, Germany: Springer-Verlag,

2004), 342-346.

5. 	 Dunlop, M. D. and Masters, M. M., Investigating five key

predictive text entry with combined distance and keystroke

modelling, Pervasive and Ubiquitous Computing, 12, 2008,

589-598.

6. 	 Gong, J. and Tarasewich, P., Alphabetically constrained

keypad designs for text entry on mobile phones, Proc CHI

2005, (New York: ACM, 2005), 211-220.

7. 	 Gong, J., Tarasewich, P., and MacKenzie, I. S., Improved

word list ordering for text entry on ambiguous keyboards,

Proc NordiCHI 2008, (New York: ACM, 2008), 152-161.

8. 	 Harbusch, K. and Kühn, M., An evaluation study of two-

button scanning with ambiguous keyboards, Proc AAATE

2003, (Taastrup, Denmark: AAATE c/o Danish Centre for

Assistive Technology, 2003), 954-958.

9. 	 Jones, P. E., Virtual keyboard with scanning and augmented

by prediction, Proc 2nd European Conference on Disability,

Virtual Reality and Associated Technologies, (University of

Reading, UK, 1998), 45-51.

10. 	 Koester, H. H. and Levine, S., Learning and performance of

able-bodied individuals using scanning systems with and

without word prediction, Assistive Technology, 6, 1994, 42
53.

11. 	 Lesher, G., Higginbotham, D. J., and Moulton, B. J.,

Techniques for automatically updating scanning delays,

Proc RESNA 2000, (Arlingtion, VA: RESNA, 2000), 85-87.

12. 	 Lesher, G., Moulton, B., and Higginbotham, D. J.,
Techniques for augmenting scanning communication,

Augmentative and Alternative Communication, 14, 1998,

81-101.

13. 	 Lesher, G., Moulton, B., Higginbotham, J., and Brenna, A.,

Acquisition of scanning skills: The use of an adaptive

scanning delay algorithm across four scanning displays,

Proc RESNA 2002, (Arlington, VA: RESNA, 2002), 75-77.

14. 	 Lin, Y.-L., Chen, M.-C., Wu, Y.-P., Yeh, Y.-M., and Wang,

H.-P., A flexible on-screen keyboard: Dynamically adapting

for individuals needs, Universal Access in Human-Computer

Interaction. Applications and Services, (Berlin: Springer,

2007), 371-379.

15. 	 Lin, Y.-L., Wu, T.-F., Chen, M.-C., Yeh, Y.-M., and Wang,

H.-P., Designing a scanning on-screen keyboard for people

with severe motor disabilities, Computers Helping People

With Special Needs, (Berlin: Springer, 2008), 1184-1187.

16. 	 MacKenzie, I. S., Mobile text entry using three keys, Proc

NordiCHI 2002, (New York: ACM, 2002), 27-34.

17. 	 MacKenzie, I. S., SAK: Scanning ambiguous keyboard for
efficient one-key text entry, (under review), 2008.

18. 	 MacKenzie, I. S. and Soukoreff, R. W., Phrase sets for

evaluating text entry techniques, Ext Abstracts CHI 2003,

(New York: ACM, 2003), 754-755.

19. 	 MacKenzie, I. S. and Tanaka-Ishii, K., Text entry with a

small number of buttons, in Text entry systems: Mobility,

accessibility, universality, (I. S. MacKenzie & Tanaka-Ishii,

K., Eds.). San Francisco, Morgan Kaufmann, 2007, 105
121.

20. 	 Miró, J. and Bernabeu, P. A., Text entry system based on a

minimal scan matrix for severely physically handicapped

people, Proc ICCHP 2008, (Berlin: Springer, 2008), 1216
1219.

21. 	 Ryu, H. and Cruz, K., LetterEase: Improving text entry on a

handheld device via letter reassignment, Proc OZCHI 2005,

(New York: ACM, 2005), 1-10.

22. 	 Shein, F., Hamann, G., Brownlow, N., Treviranus, J.,

Milner, D., and Parnes, P., WiVik: A visual keyboard for

Windows 3.0, Proc RESNA 1991, (Arlington, VA: RESNA,

1991), 160-162.

23. 	 Silfverberg, M., MacKenzie, I. S., and Korhonen, P.,

Predicting text entry speed on mobile phones, Proc CHI

2000, (New York: ACM, 2000), 9-16.

24. 	 Simpson, R. C. and Koester, H. H., Adaptive one-switch

row-column scanning, IEEE Trans Rehabilitation

Engineering, 7, 1999, 464-473.

25. 	 Tanaka-Ishii, K., Inutsuka, Y., and Takeichi, M., Entering

text with a four-button device, Proc Conference on

Computational Linguistics - Vol. 1, (Morristown, NJ:

Association for Computational Linguistics, 2002), 1-7.

26. 	 Venkatagiri, H. S., Efficient keyboard layouts for sequential

access in augmentative and alternative communication,

Augmentative and Alternative Communication, 15, 1999,

126-134.

27. 	 Yamada, H., A historical study of typewriters and typing

methods: From the position of planning Japanese parallels,

Journal of Information Processing, 2, 1980, 175-202.

98

