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ABSTRACT

Many of today’s desktop applications are designed for use
with a pointing device and keyboard. Someone with a dis-
ability, or in a unique environment, may not be able to
use one or both of these devices. We have developed an
approach for automatically modifying desktop applications
to accommodate a variety of input alternatives as well as
a demonstration implementation, the Input Adapter Tool
(IAT). Our work is differentiated from past work by our fo-
cus on input adaptation (such as adapting a paint program
to work without a pointing device) rather than output adap-
tation (such as adapting web pages to work on a cellphone).
We present an analysis showing how different common inter-
active elements and navigation techniques can be adapted
to specific input modalities. We also describe TAT, which
supports a subset of these adaptations, and illustrate how it
adapts different inputs to two applications, a paint program
and a form entry program.

Categories and Subject Descriptors

K.4.2 [Computers and Society]: Social Issues: assistive
technologies for persons with disabilities; H.5.2 [Informa-
tion Interfaces and Presentation|: User Interfaces: in-
put devices and strategies
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Design, Human Factors
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1. INTRODUCTION

Graphical user interfaces (GUIs) are typically designed
for a specific set of input and output devices: A keyboard, a
pointing device, a monitor, and perhaps speakers. GUIs are
usually built using toolkits that provide generic interactive
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elements (interactors), such as buttons and menus. These
interactors have been optimized over the years for use with
a keyboard and pointer. However, the resulting applications
lack flexibility when a user’s input needs change.

Input needs may change when someone has a disability,
or is using an application in an off-the-desktop environment
[19]. For example, a person with a motor impairment may
be constrained to single switch input, in which she must
manipulate the entire interface with the equivalent of a one-
key keyboard. A person interacting with a projected display
in a meeting may have a pointing device but no keyboard.
How would these users interact with a text editing system?
A sketching program? A form entry application?

The most commonly used approach is to display a special
interface that can translate user input into mouse and key-
board events or can translate displayed output into audio.
The user interacts with that interface, which then sends in-
formation to the application the user wishes to control. For
example, a soft keyboard that turns pointer input into key-
board events would allow someone to control an interactive
projected display with a pointing device. Single switch users
typically use a “scanning interface” that functions similarly
to a soft keyboard, but can generate both keyboard and
mouse events and send them to any desktop application.
Because they are very general, these solutions allow a user
to control any GUI. But, because they are very general, they
are not optimized for the specific interactive elements of dif-
ferent GUIs, and as a result may be difficult or slow to use.
For example, a scanning interface may not have any way to
select a menu directly without moving the cursor pixel by
pixel across the screen until it is over that menu.

To make an interface accessible, two problems must be
solved. First, the user must be able to select (navigate to)
any of the interactors in the interface. Second, the user must
be able to control the selected interactor. We present an
analysis of options for navigation (global to an application)
and control (at the level of interactors such as menus and
buttons), available for different input configurations. The
demonstration tool we developed, the Input Adapter Tool
(IAT), automatically modifies a GUI to handle a variety of
input devices it was not designed for. IAT enables the user
to perform both navigation and control actions. Naviga-
tion in IAT is supported globally, either by traversing the
interactor hierarchy or by directly selecting an interactor.
Control is supported by dynamically customizing an appli-
cation with interactors that are specifically designed to be
usable by the available input device. For example, in Fig-
ure 1, a paint application (top) has been modified for use
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Figure 1: A paint program (top) adapted for switch
input (bottom). The canvas has been augmented
with a movable dot and a directional arrow.

with single switch input (bottom). The user is controlling a
drawing canvas interactor and drawing a circle with it. In
the switch case (bottom), the interactor has been augmented
to support single switch input by displaying an arrow rep-
resenting the current direction that a special drawing token
is moving. The switch can be used to change the direction
of the token, or toggle the drawing mode on and off.

Our contributions include an examination of possible aug-
mentations for different input devices as well as IAT, which
supports a subset of input configurations, including pointing
(no keyboard, e.g., a mouse only), keyboard without point-
ing, single switch, and speech input. TAT also supports two
kinds of navigation: direct selection of interactors, and a
hierarchical traversal of the interactor hierarchy. TAT uses a
lookup table to determine if any interactor substitutions are
necessary. When an interactor is replaced, IAT keeps a copy
of it off screen and passes information to it. For example,
when the user has a keyboard but no pointer, IAT replaces
a combobox (a list of items from which the user selects one)
with a text entry plus a display of valid inputs that is filtered
as the user types. When the user types an item that was in
the combobox, IAT causes that item to be selected in the
combobox, triggering any callbacks to the application. Fi-
nally, IAT can be extended in multiple ways. Users can edit
the lookup table to change interactor replacement mappings
or the navigation approach per input device. Developers can
also add to the library of custom interactors.

1.1 Overview

We begin with an analysis of the design space for augment-
ing interfaces to support different input devices. We then
describe TAT, a demonstration implementation that handles
an important subset of those approaches, and we conclude
with related work in input adaptation.

2. NAVIGATION AND CONTROL

We can describe the efficiency of a navigation and con-
trol technique using standard O-notation [14]. This allows
us to compare the behavior of different techniques in the
worst case. The accuracy of an O-notation increases as the
number of inputs increase — at low inputs, constants can
overwhelm inputs. For example, searching for a particu-
lar number in an unordered list of n numbers is c10(n)
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Table 1: Example methods for navigation of a graph-
ical user interface organized by input technique.
With logical navigation, the user selects an interac-
tor directly or via a logical hierarchy. With spatial
navigation, the user selects a location, either hierar-
chically or by moving from pixel to pixel. Navigation
either requires a custom extension to IAT (“Cus-
tom”), is the default technique (“No Change”), or
is supported by IAT (“IAT Library”).

whereas finding a number in an ordered list using binary
search is c20(log(n)). For large n, c1O(n) is always greater
than ¢20(log(n)). However, for small n, if ¢ is larger than
c1, ¢20(log(n)) may be larger. For navigation and control
techniques, different impairments or contexts can effect O-
notation constants.

As stated above, adaptations that are not tailored to an
application can be highly inefficient. For example, a scan-
ning interface may require a user to move the cursor across
the screen pixel by pixel. This is highly inefficient (it is ap-
proximately cO(X *Y'), where X and Y are the width and
height of the screen, in pixels, and c is the very large con-
stant associated with each scanning selection). Other forms
of input may also be inefficient. As another example, key-
board access to a web page is linear in the number of links
on a web page, because the user typically must tab through
them one by one to move down the page [15].

For an accessibility tool to adapt to the context of use, two
problems must be solved: navigation to interactors and con-
trol of interactors. We analyze how both can be approached
for a representative range of input devices.

In our analysis, we focus on four kinds of input: key-
board (no pointer); pointer (no keyboard, e.g., only mouse);
switch; and speech. A switch is an input device with very
few states, such as a button, toggle, or simple neural in-
put (e.g., [17]), that is likely to be used by people with sever
motor impairments. Speech is any spoken input recognition.
Typically, a command and dictation system is used to enter
text and control the computer.

We chose these four inputs for two reasons: First, they are
all in use today, by people with disabilities. Second, they are
representative of the design space. They range from very low
bandwidth (switch) to high bandwidth (speech, keyboard);
from error prone (speech) to highly accurate (others); and
from already partially supported by existing applications
(keyboard, pointing device) to not at all supported (switch).



2.1 Navigation adaptation techniques

Jul explored the topic of navigation extensively [12]. While
Jul’s work points to the fact that carefully designed naviga-
tion can improve both the usability and speed of navigation,
our focus here is on approaches to navigation basic enough
to be easily automated.

Navigation cannot be handled with interactor-level sub-
stitutions, but must be dealt with globally. This is because
replacing one interactor does not help the user to interact
with another one. Additionally, there is no way to know
ahead of time what interactor the user might wish to in-
teract with next. The user must be able to get from any
interactor to any other interactor at will.

Navigation can be handled using two approaches — logical
and spatial. With logical navigation the user can directly
or via a logical hierarchy select an interactor. With spatial
navigation the user can select a location, either hierarchi-
cally or by moving from pixel to pixel. An interactor is
implicitly selected by its presence at that location. Point-
ing devices are good at fast spatial navigation. A keyboard
shortcut such as Tab for moving from one link to the next
in a web page is an example of logical navigation. Table 1
summarizes our analysis of these methods. Note that the
constant ¢ will vary significantly for different users and in-
put devices. This does not affect the relative comparison
of different approaches for a given input device/user. Ad-
ditionally, there may be a start up cost, k, that makes the
differences between approaches negligible for small n.

Most interfaces have implicit support for navigation (no
one interface element codifies how the interface as a whole
is navigated). Additionally, they expect navigation to be
done with a combination of pointer input and keyboard in-
put (including tabbing and mnemonics). Although point-
ing devices easily support navigation without modification,
most other input devices are not optimized for selecting
an arbitrary interactor.

2.1.1 Logical Navigation

For logical navigation, we assume there are n interactors
between which the user wishes to navigate. There are three
possible approaches:

Direct O(1) For input devices that can generate at least
n signals, a signal can be mapped onto each interac-
tor. For example, if each interactor is given a name,
a user of a speech recognition system could access any
interactor simply by saying its name. One problem
with the direct mapping approach is that there may
be fewer input states than interactors that could get
focus (e.g., there may be more interactors than there
are characters on a keyboard). We use the term “fo-
cus” to refer to the interactor that has been designated
by the user to receive input, act on input, and so on.
This would only be the case in the most complex in-
terfaces. A mixed approach may be appropriate when
this case arises.

Linear O(n) When only a small number of signals are avail-
able, or direct navigation is too complicated (too many
different mappings must be remembered), interactors
may be ordered linearly. In this case, the user simply
indicates that selection should move forward to the
next interactor until the desired interactor is selected.
This is far slower than direct navigation.

65

Hierarchical O(log(n)) Typically, user interfaces are or-
ganized hierarchically, with simple interactors (such
as buttons) grouped into more complex units (such as
toolbars). If navigation reflects this hierarchy it can
be much faster than other approaches while still being
fairly intuitive. For example, Edwards et al. used this
approach in Mercator [9].

2.1.2  Spatial Navigation

For spatial navigation, we make similar assumptions, but
also label the screen pixel width and height as X/Y and
the grid pixel width and height as W/H. Again, there are
multiple approaches:

Navigate the pixels of the screen [12] O(X *Y) The
user can directly move the pointer from pixel to pixel.
This approach can be potentially very slow, depending
on the cost of pixel to pixel movement. In cases where
the speed is not constant (such as typical mouse use,
which conforms to Fitts’ law [10]), this may be as fast

as O(log(X xY)).

Hierarchical O(log(W « H)) The user can use a grid navi-
gation approach, such as those typical of speech recog-
nition systems [7]. Typically, a 323 grid is overlayed
on the screen. Selecting a cell causes a new grid to
be overlayed on just that cell, and so on, until the cell
is small enough to entirely overlap the interactor of
interest, at which point the user indicates that some
action should take place.

2.1.3 Navigation adaptation for different devices

Table 1 makes some suggestions regarding navigation ap-
proaches for different input configurations. In this section
we address each input configuration: keyboard (no pointer),
pointer (no keyboard), switch, and speech recognition.

There are two techniques best suited to navigating an in-
terface without a pointer: direct mapping and tab-stop. In
an interface with direct mapping, each key on the keyboard
is dynamically mapped to an interactor in the interface. For
example, five pulldown menus may be mapped to the letters
‘a’ through ‘e’ and a toolbar could be mapped to the let-
ter ‘f”. In tab-stop navigation, the user is able to “scan”
through the interactors by pressing the “tab” key.

We argue that direct mapping is best with keyboard in-
put because it is so fast (O(1)). A typical implementation
would respond to a special command sequence by display-
ing a key in a tooltip near each interactor. Upon pressing
an interactor’s associated key, that interactor would be se-
lected. In cases where there are more interactors than keys,
a combination method would be appropriate. However, this
approach may become less effective as the number of inter-
actors increases. For example, tooltips may interfere with
other interactors, it may not be clear to which interactor
a tooltip refers, or there may not be screen space available
to display every tooltip. A hierarchical scheme in which
tooltips are progressively revealed could address these is-
sues, but would be O(log(n)). An additional solution would
be use the techniques of explored in Fluid Documents [6]
which can make small, automatic adjustments to the layout
of an interface to make space for supplemental information
and to make sure it is visually salient.

In contrast, we argue that tab-stop navigation is best for
switch input because it only requires a small number of dis-



Pointing
Keyboard Only |Device Switch Speech
Binary: Spoken
Button, Toggle state keyword
Checkbox, Press key to Direct until switch is |makes
Radio Button |make selection |manipulation |pressed selection
Lists:
Pulldown Scan through
Menu, Navigate options options until
Listbox, with tool tips & |Direct switch is Spoken
Combobox arrow keys manipulation | pressed tooltip
Scan through
values until Spoken
Scale: Slider, Direct selection is keywords
Scrollbar manipulation‘|made control values!
On-screen
keyboard with |Comboboxes
Direct word with word Natural
Text Field manipulation prediction prediction language
Grid
Grid Selection:  |[Point and click |Movable Dot: |[selection:
specify cell with [on-start/end |scans through [speak cell
Drawing Area |keypress points directions. names
Option in Spoken
Right mouse | multimodal keyword
Context Menu button menu opens menu

Replacement Key
Custom

No Change JIAT Library ‘

Table 2: Example methods for adapting some of the
most commonly used interactors organized by input
method. Interactors may either be substituted with
other common interactors (“Standard Interactor”),
substituted with a custom interactor (“Custom”),
may not require any substitution (“No Change”),
or substituted with an interactor in the IAT library
(“IAT Library”).

tinct signals. One of the most common strategies for dealing
with switch interfaces is to deploy a scanning interface. Typ-
ically, a mostly static set of “keys” (which may include some
navigation controls such as arrow keys and some application-
specific options) is shown on screen, similarly to a soft key-
board. Each option is highlighted in turn. The highlight
“scans” through all available options, and the user needs to
activate the switch to make a selection when the appropriate
option is highlighted. One of the main problems with a scan-
ning interface is scale, since it may take a long time to arrive
at the object of interest (cO(n) where ¢ is proportional to
the dwell time on each object, and n is proportional to the
number of “keys”). We argue that hierarchical navigation is
best used with switch input when enough distinct signals are
available, because it is ¢cO(log(n)). Only three differentiable
signals are needed to navigate a hierarchy: “move to a sib-
ling”, “move down”, and “select.” These can be mapped to
“up”, “down”, and “pause” in some single switch interfaces,
for example.

Pointers are ideally suited to navigation, and naturally
provide a simple and direct way of selecting onscreen ele-
ments. Most modern graphical user interfaces are designed
with a pointing device in mind to control navigation. Thus,
we recommend not changing the navigation of an interface
when there is only a pointer.

Speech can be used to navigate an interface in three ways:
mimicking a pointer, direct selection of interactors, and
through voice controlled scanning. Research has demon-
strated that sound and speech can simulate a pointer, en-

abling a user to gain pixel-level control over an interface.
Examples include modulating the pitch of the voice or the
syllables spoken to control a cursor [16] and recursively di-
viding the screen into grid regions which are spoken by the
user [7]. Direct manipulation can be accomplished using
the same tooltip technique that we discussed in a keyboard
only interface. Instead of pressing the keyboard letter corre-
sponding to the interactor, the user can simply say the letter
(or word). Voice controlled scanning is another reasonable
way to navigate an interface with speech. This can be ac-
complished by having the interface automatically scan the
interactors and wait for the user to say a key phrase such as
“stop” to make a selection, or by allowing the user to sim-
ulate “tab-stop” navigation through the keywords such as
“next” and “back.” Further study is needed to understand
the approach most effective for speech navigation.

2.2 Control adaptation techniques

Most of today’s GUIs make use of generic interactors pro-
vided by the interface toolkit they are based on, such as
menus, buttons, text entry areas and so on. Those inter-
actors can typically be controlled using either a keyboard,
a pointer, or both. Our analysis suggests how standard li-
brary elements can be replaced with similar interactors that
are tailored to the needs of specific input configurations.

We derived interactors listed in Table 2 from the Macin-
tosh manual [1], and Foley’s description of interaction tasks
[11]. The set of interactors we analyzed covered all of those
in the Mac manual except outline triangles (used to expand
hierarchical trees) and are representative of Foley’s set of six
general interaction tasks which include select (binary and
list interactors), orient (movable dot), path (drawing area),
and text (scale interactors and grid drawing). The naviga-
tion interactions that we described in the previous section
also cover the navigation tasks that Foley describes includ-
ing position (spatial navigation), quantify (grid navigation),
and select (logical navigation).

There are two approaches to adapting these interactors.
Interactor substitution involves replacing an interactor with
one that is conceptually different to enhance access. An ex-
ample is substituting a menu for a text entry area that has
a fixed set of valid inputs. Alternatively, some interactors
may only require augmentation, not replacement, to func-
tion with different input devices. In this case, extra controls
can be visually overlayed on top of the interactor and events
can be passed through these controls to the interactor (sim-
ilar to [8] and [2]). An example is adding word prediction
to a text entry area.

2.2.1 Control adaptation for different devices

Given these two approaches, the next question is what
specific substitutions or augmentations should be made for
different input devices. Here we provide suggestions, sum-
marized in Table 2.

All binary interactors, such as buttons, radio buttons,
checkboxes, can be activated or toggled by a single key, once
they have the focus (“enter” is intuitive because it is often
used already). Adjusting more complex interactors so they
can be controlled with only a keyboard can be done using
“direct mapping:” The same direct technique used for nav-
igation with a keyboard can be used for selecting options in
pulldown menus and listboxes. Arrow keys can be used for
interactors such as scrollbars. A canvas can be supported



using Kamel and Landay’s recursive grid drawing method
[13]. Context menus can be accessed by a special key com-
bination. If a user is not able to type multiple keys at the
same time, “sticky” keys can be deployed so that keys may
be pressed sequentially.

Most interactors are designed to be controlled using a
pointing device through direct manipulation. However, in-
teractors that have text fields need to be modified to be con-
trolled by a pointing device. The most common techniques
to input text with a pointer are gestures (such as graffiti) or
written text, or clicking on a soft keyboard. Gesturing and
handwriting may be error prone, and require learning either
on the part of the user or the machine. A soft keyboard
is highly accurate, but takes up significant screen space and
may be slower or less intuitive for the user than handwriting
or gestures.

Once the user has navigated to an interactor, controlling
it with a switch is relatively straightforward. An optimally
efficient scanning interface can be designed for each class
of interactors. For example, binary interactors are easy to
control with a switch because the interface can repeatedly
toggle between the states until the user makes a selection.
Listboxes or menus can be controlled by repeatedly scan-
ning through the contents until the user makes a selection.
Text can be entered using a combination of word prediction
and an alphabet scanner. Context menus can be supported
by adding an extra element to any scanning interface that
triggers the menu. Similar to keyboards, canvas drawing
can be supported using Kamel and Landay’s recursive grid
drawing method [13].

When controlling interactors through speech, keywords or
sounds can be mapped to keyboard presses so the system
emulates the behavior of a keyboard. Keywords such as
“accept”, “up” and “down” can control many interactors.
Text entr]y is best supported by leveraging recognition of
natural language. Pixel level manipulations such as drawing
can be accomplished using the grid selection technique that
we discussed for navigation. In this example, the user would
draw a line by specifying where the line started, and then
where it ended.

3. IAT

We built TAT to demonstrate that adaptations such as
those described above are feasible. IAT is designed to work
with any application written using the Java Swing toolkit.
The application developer is not required to implement any
special interfaces or use any special objects. IAT automat-
ically grabs a handle to the application’s top-level window,
and then traverses the interactor hierarchy of that window to
determine if any adaptations are needed given the currently
available input devices. IAT makes the following assump-
tions about each input configuration:

Switch TAT assumes that a switch is a toggle with three
states: left, right, and rest.

Keyboard IAT assumes a standard keyboard.
Pointer IAT assumes a standard mouse.
Speech TAT assumes speech recognition of characters and

key phrases that would be performed by an off-the shelf
speech recognition application such as IBM’s ViaVoice.
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3.1 Examples

To illustrate how IAT affects the end user experience, we
present two examples illustrating how two typical GUI ap-
plications can be modified by TAT.

3.1.1 Switch control of a paint program

The application shown in Figure 2(a) is a paint program.
The top image shows the original application, while the bot-
tom image shows a version augmented to support switch
input (for this example, assume that this input has three
states: up, down, and rest). Note that a dot and arrow
appear overlayed on the augmented canvas interactor. In
this case, the dot provides feedback about the drawing state
of the canvas: drawing, moving without drawing or not the
current focus (indicating that some other interactor, such as
the file menu, is being controlled). The arrow provides feed-
back regarding the drawing direction. When a user moves
the switch to the down state the arrow moves counterclock-
wise and stops when the user releases the switch and a time-
out occurs. Then, when the user moves the switch to the
up state the dot and arrow move across the screen, send-
ing appropriate mouse events to the component below if
the interactor is currently in the drawing state. When the
user releases the switch again another timeout occurs, the
dot and arrow stop moving and a selection panel appears
(see Figure 3(c)). The user may use the selection panel to
switch tasks from control to navigation. For example, when
the user is interacting with a drawing canvas, the selection
panel allows the user to toggle the draw state of the draw-
ing canvas to navigate to the next interactor in the ordered
traversal or to return to her previous task.

3.1.2  Keyboard control of form entry

Figure 2(b) shows a form entry application as it was origi-
nally written. In Figure 2(c), the application has been mod-
ified to work with keyboard input. Note that the menu has
been replaced with a textfield that automatically displays
a list of possible selections given the current character in-
put. Other interactors have not been modified. However,
the user can directly navigate to any interactor by pressing
its associated tool-tip key. When the user toggles tool-tips
on, as they are in this example, a tool-tip key appears just
above its associated interactor.

3.2 IAT adaptation support

While IAT does not support every cell shown in Table 2,
we concentrated on supporting the full range of interactors
for three common input devices (keyboard, pointer, and
switch) and showing that other inputs (speech) are possi-
ble. We describe different types of input devices as well
as the interactor replacement and augmentation and navi-
gation augmentation we support. Note that our approach
is flexible — users can both edit a lookup table to change
interactor replacement mappings and add to the library of
custom interactors.

3.2.1 Navigation adaptation for different devices

For keyboard input, a special key command is defined that
causes IAT to overlay a tooltip next to each interactor show-
ing the character that can be used to access that interactor.
IAT ensures that these are all unique from each other and
from any existing key command bindings. IAT will cause an
interactor to receive the “focus” when the user presses the
associated key.



000 "ap IAT Adrline Farm

File
— Enter Purchaser Information Enter Purchaser Information
Erase First Name: M-I‘d.ll Name: IA.H Name: gl‘(l Nama Iéuﬂdl! Nama Idlr Nama:
- g h - m [} k
Gunder: ) pala () Female SSN Gander: ) ate O famale S5M
Address 1 Address 1 i
o
Adddress 2 Adldress 2
] [+ W i L
City Seate: [ i3] Zip = ity Seate Tip:
oonn ] 4] Q n
. Phone x - Email Phone: 2 5 Email
File
Paint 2 . 5 : < - A
= Enter Flight Information Enter Flight Information
rase
Depart Arrive Return r;;p.m Arive Rgrum
— < ity » ca <City > ] < City > 8 Al
I—_' |
: Albert Lea MK ; |
Depart Dute. " Return Date. o ey o Rgtum Date: |
< Mon_. & <D % < Maon... <D % Alima NE ]
Alturas CA | |

Submit! € o Submir!

(a) (b) (c)

Figure 2: Adapting applications with IAT. (a) A paint program (top) adapted for switch input (bottom).
The drawing canvas has been augmented with a movable dot and an arrow indicating direction. (b) A form
entry program. (c) The same program adapted for keyboard input. Interactors that have been replaced in
(c) have a darker (red) background. For example, the Departure combo box on the bottom left of (b) has
been replaced with a predictive textfield in (c). A list of valid inputs, given what the user has typed, is shown
below the textfield. Navigation is done using key-bindings, shown as blue tool-tips.

th extTypes

Champlain NY il lowercase » % \

Charleston 5C 1 UPPERCASE return \
Charlotte NC T .

Chattanooga TN | | e navigate -~
Chester GA | R toggle direction

Chicago IL - Exit

(a) (b) () (d) (e)
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In the pointer case, no navigation adaptations are neces- 3.2.2 Control adaptation for different devices
sary. IAT does not augment navigation for pointers. For pointer input, IAT augments textfields with a stan-
For switch input, each time the switch is in the rest state dard soft keyboard.
for lo.nger.than a set t.imeout, IAT tgmporarily overlays a For switch input, IAT replaces textfields with menu-based
selection list onto the interface (see Figure 3(c)). The user text entry systems (comboboxes, see Figure 3(b)). We chose
can use the list to indicate that he or she wishes to navi- to use a combobox instead of a soft keyboard because the
gate or return to manipulat_ing the interactor that currently combobox’s selection maps directly onto the switch: up is
has the .focus. In navigation mode, IAT‘ removes the se- up and down is down. We believe this direct mapping could
lection list and the user can move the switch left to navi- facilitate adoption by users. Canvases are augmented with a
gate the interactor hierarchy and right to select an interac- movable dot that can send mouse events as well as an arrow
tor. When the user returns to tbe rest state the selection indicating the current direction of movement (see Figure
list returns and the user can indicate that he or she wants 2(a)). IAT also augments sliders, passing switch events onto
to manipulate the selected interactor or wants to navigate the interactor to change the slider’s value directly.
toa differcnt. interactor. ) ] For keyboard controls, IAT replaces comboboxes with pre-
For speech input, IAT assumes a high-quality speech recog- dictive textfields augmented with information about the valid
nizer capable of dlsamt?lguatlng between characters and aug- inputs (see Figure 3(b)). For example, in Figure 2(c), IAT
ments the interface using tooltips. has replaced the “Depart” combobox on the lower left with

a predictive textfield. When the user types ‘A’ ‘I’, valid
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entries beginning with “Al” are displayed below the interac-
tor (“Albert Lea MN”, ...). Lastly, IAT augments canvases
with a movable dot that can be controlled with the key-
board arrow keys. The dot sends mouse events to the canvas
as it moves.

Finally, for speech controls IAT overlays canvas interactors
with a grid that can be used to move the mouse (see [7],
Figure 3(e)).

4. RELATED WORK

Our analysis can be differentiated from past work ana-
lyzing the space of input devices (such as [5, 3]) in our
consideration not only of physical manipulators such as the
keyboard and mouse, but also virtual, error-prone “manip-
ulators” such as speech recognition. Also, our focus is not
on the properties of input devices per se, but rather on the
ability of the user to leverage those properties, given the
context of use, to achieve efficient access to an application.

As stated in the introduction, the most commonly avail-
able input adaptation tools are usually not highly tailored
to the application in use. Probably the most flexible piece
of technology currently available to most people with dis-
abilities affecting keyboard input is the WiVik® virtual
keyboard (http://www.wivik.com). While WiVIK®) is cus-
tomizable, typically this would be done once, up front, by
an assistive technology professional, and would not typi-
cally change as the user interacts with different applications.
Also, Mankoff et al. developed web browsing support for
people with single switch input capabilities [15]. This solu-
tion was general with respect to the web browser, but could
not support other types of applications or input devices.

Some systems provide integrated support for commonly
used applications such as Microsoft Office. Examples in-
clude the most sophisticated speech recognition packages
(i.e. Dragon Naturally Speaking (http://www.dragontalk.
com) and IBM’s ViaVoice), which provide speech-specific
support for navigation and have integrated support for com-
monly used applications. In the research literature, the Peb-
bles project provides similar top quality integrated support
for using a PDA as a pointer and text entry device [18]. In
addition to directly controlling applications, users of Peb-
bles can directly control the cursor using the PDA stylus, or
generate key events using Graffiti®.

Researchers are also exploring approaches to dynamically
adapting to the context of use. Pebbles has been extended
to provide customized access to home appliances [20]. The
XWeb project provides dynamic adaptation for a variety
of applications, and does it across several different input de-
vices including keyboard and mouse, pen, laser pointers [21],
and speech [22]. XWeb is actually an interface specification
language, and therefore only works with applications writ-
ten using that language. Input device support is handled by
implementing different clients for each set of input devices.
Clients render an application using interactors that are cus-
tomized for its input (and output) devices. The Archimedes
project and the Total Access System have also provide a flex-
ible system that is able to adapt to multiple input devices
[23]. An approach taken by Wang and Mankoff is to pro-
vide general support for arbitrary mappings between input
devices [24]. However, this approach does not adapt applica-
tion interfaces to better match the needs of the user’s input
device and may therefore be more difficult to use.

Other work has investigated automatic adaptation of an
interface to different output devices or modalities. Although
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work in output adaptation typically focuses on modifying
the interface of a GUI for audio display or to fit on a smaller
screen, this also entails providing support for alternate input
devices. For example, the Mercator system could automat-
ically transform any GUI written in XWindows to audio
[9]. Mercator was solving the specific problems faced by
someone with no monitor (or no ability to see a monitor),
and therefore no pointer, but full keyboard access. To solve
this problem, Mercator also had to provide keyboard access
to the GUI. It supported hierarchically-based navigation of
arbitrary GUIs, rendering relevant information to the user
with a mixture of non-speech audio and spoken text. Once
the user navigated to a given interactor, she could invoke
its functionality with a single key press. Mercator’s solution
shares much with IAT: the user is interacting directly with
an application, yet the tool that facilitates this is general in
the sense that it can support access to any application.

Also, several systems have explored transforming Web site
interfaces designed for desktop machines to be more appro-
priate for PDA interfaces (see [15] for a summary of this
work). For example the Power Browser system [4] supports
Web page access from a cellphone or Personal Digital As-
sistant (PDA). The authors focus their efforts on output.
They use interactors customized for stylus-based input in
the PDA, and do not report on a working input solution for
the cellphone. In the cellphone case, they propose to sup-
port navigation by numbering lines and allowing the user
to jump to a line by pressing the corresponding number.
This is similar in spirit to the second form of navigation we
support, direct access rather than logical.

Our work differs from past work in two ways. First, we
present an analysis that looks at both navigation and con-
trol, and is general and applicable to a wide variety of in-
terfaces and input devices, including those that are error
prone. Second, our tool, IAT, is backwards compatible with
any application written in Java. Given a specification for
the user’s input capabilities, and an application, it makes
the necessary modifications.

5. CONCLUSION AND FUTURE WORK

We have presented an analysis of issues of navigation and
control that arise as a user’s input configuration changes.
Our analysis includes suggested solutions and recommenda-
tions for different input configurations. We implemented a
tool, TAT, on the basis of our analysis. While IAT does
not completely cover the space of adaptations suggested in
our analysis, it represents a validation of the fact that our
analysis can be used to structure adaptation. IAT improves
the accessibility of all of the standard interactors across dif-
ferent input types: keyboard, pointer, switch, and speech.
These improvements can allow someone with a disability or
in a unique environment to access existing applications with
input devices that those applications were not originally de-
signed to handle.

In future work, we plan to expand the library of substitu-
tions and modifications available in TAT. In particular, we
plan to extend support for speech input and add support for
gesture recognition for pointer based text entry.
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